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ABSTRACT

A equation of statg for. . neutron gas, baséd on Thomas-
-Fermi model, is-used to recalculate the maximum mass of neutron
stars. The complete equation of state is found to present a first
order phase transition between the subnuclear regime without free
neutrons and the nuclear regime. This suggests that the sudden
disintegration of the neutron-rich-nuclei may‘be veryrcompetitive
with relation to-fhe continuous neutron dtipiprocess. The mass

limit for neutron stars was found to be 3.26 M@.

"INTRODUCTION

It is firmly believed today that the pulsars are rét-
ating neutron stars]. This fact encourageé the study of neutron
star structures, not oniy to 1nvestigéte the pulsars itself,
but also to understand other related astrdphysica] phenomena,such
as supernova exp]osions, black holes and r-process nucleosynthesis.

Neutron star calculations are very sensiiive to the equa

tion of state in nuclear regime. Recently, a equation of state,

based on nuclear Thomas-Fermi model, was developped in connection



with the study of héavy—ion physics, giving.reasohabie resu]ts2
As a valid alternative to the envolved nuclear manybody calcul-
ations and in order to examine the plausibility of this equation
of state, we apply fhe Thomas-Fermi method to a new calculation
of neutron star configuration.

In this paper, we investigate catalyzed neutron star
_configurations in-static and spherically symmetric case (non-
-rotating star)'with‘zero_temperatufe. At densities of our 1ﬁ~

14 g cm-3

terest (about 10 ), metrics of the spacetime deviate
from the flat‘Euc]idean me;ric3. Hence we utilized the hydro-
static equilibrium equations obtained from the General Relati-
vity. |

| The'hydrostatic equilibrium equafions are presented
in Chap. ! and the equation of state in CHap..II. The results

and discussions are presented in Chap. III.

I, HYDROSTATIC EQUILIBRiUM EQUATIONS

Assuming a spherically symmetric distribution of

matter, we can write the line element as

2

ds© = e\)(cdt)2
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The diagénaly;ed energy-momentum tensor, in the case of perfect

gas, assumes the following form, obtained from Pascal's law,
L2 23 ) 0
1= T2 = T3 = - p ; TO = ¢ = dc. (2)

where p, ¢ and"d denote, respectively, pressure ,



-

energy density and matter density (including the rest mass of
the part1c1es), c is the ve]oc1ty of light.

In this case, the E1nste1n s equations reduce to

el

'l [%—k(r-]k‘ - r_z) + r'f} : (3)

<
{

oM .
1]

where the prime denotes derivative w1th respect to r; k = 81rG/c4

and G the gravitational constant.

In the external region of the star (Tuv =0),

e = 1 - 26M/rc? (4)

where M dis the mass of the star.

The mass .is given by4

M= %% l € rzdr | - (5)

where R is the radius of the star. In eq. (5) the éraVitationa]

enérgies are included. The total energy E of the star is given by

E=McZ B | (6)
and the total neutron (proton) number b_y5
: R
. . .}\/2 2
N = 4
a(p) = 41 | oagpy &7 rTar (7)

where pn(p) is the neutron (proton) number density.
The stellar structure can be immediately determined by

eqs. (3) and (5), since the equation of state

€ =.e(p)' | " (8)



is expljcitly given. In eq. (8), p is the total number density
of baryon;. Note that, in the degenerate case, the equation of
state has only one degree of freedom since the energy density
does not depend on temperature, and the chemical composition de
pends only on matter density.

We are mainly interested in the configuration of the

star, which is usually specified by the function

p=p (r) : (9)
so that we use the following equation obtained from eq. (3)6
: 2 - r
%% = - % %% (3—%)-] e kr [E +p3 l € r'zer} (10)
9p

where we utilized the following relation between pressufe and

energy density,

P=piE-c. : (11)

The configuration of a neutron star is obtained from
eq. (10) with boundary conditions:
p = p E =0 for r = 0

p =0 ' ~ forr =R

where Pe is the central value of number density.

IT. EQUATION OF STATE

Due to changes in the chemical composition of matter
and poss?b]g phase transitions, we have to consider the neutron

star matter in the following phases:



a) electron-nucleus, corresponding to a depsity between 500 g cm_3

and d_, (d_, is the neutron drip density 10" g em™3y ,

nd nd
with the pressure gradient given mainly by the electron kinetic '
energy. This bhase is also called as subnuclear regime without

free neutrons.

b) electron-nucleus-neutron, corresponding to a density between
d 4 and d (dn'is the density in which all the nuclei dissolve

out 10]3

g cm-s), with the free gas beginning to contribute

“to the pressure, but yet the dominant‘tErm is due to the
relativistic electron gas. This phase is éa11ed subnﬁc]ear
regime with free neutrons. |

c) neutron-proton-electron, corresponding to a density between

15 g Cm_3

dn and approximately 10 » which is referred to as the
nuclear regime. In this phase, almost the entire pressure is
provided by the non-relativistic neutron gas.

d) neutron-proton-electron-muon-hyperon, corresponding to a den-

3

sity greater than ]Ols g cm. ", which is called the supernu-

clear or hyperonic regime. Here various elementary particles

come into play, according to their threshold energies.

Let us discuss the above phases separately.

a) Subnuclear Regime Without Free Neutrons

We assume that, for-a given density, there is only one
type of nuciide and that such nuclei form a crystal structure,
immersed -in"a degenerate electron gas. For densities ~ 500 g cm_3
the electrons may be-considered as free particles, and when the

density rises up to about.]O6 g cm'3, they should be treated as



relativistic particles. If the density is around 107 g cm_3 s
where the electron Fermi energy gets to ~ 1 MeV, the electron

capture
(Z,A) + e > (Z-1,A) + v (13)

can take place and it causes a gradual neutronization of the nu
.clei, so that they deviate more and more from the beta stability
Tine (N >> 7).
The equation of state for this regime can be written as
2

ey = M(Z,A) ¢ o

The first term at right side of the equation represents the enérgy
of nuclei (Z,A) with mass M(Z,A) and number density pc'= o/A ;
Ep is the average Fermi energy of the gas (including the rest

energy), which in the completely degenerate case is given by

5
- e

°F = 73 (senh £ - &) o (15)

m4'c
32

with
£ =4 ln[} + (1+x2)]/f}

and the relativity parameter x is related to the electron number

density p_. by

e

x s ﬁgf (3% p )/ (16)

The last term in eq. (14), € results from the electron-
-nucleus interaction, and is calculated by the Wigner-Seitz sphere

approximation, where the crystal structure is chosen as being a

bcc structure, and given by7



e = -0.902 (313§ ¢ o 22/3 523 (17)

where o is the fine structure constant. The small deviations of
the negative charges from a uniform distribution, due to the
electron screening, cause another correction term which, is pro-

473 per electron. Nevertheless, as this term is

portional to Z
of same order of magnitude than the b{nding energy of atomic
.electrons but opposite in sign, so they cancel each other.

In order to write down M(Z,A), we chose the mass formula
of Garvey et a]?. The validity of the extrapolation of this mass
formula, like any other known, to_;he region far from the beta
stability valley is not certain. However, this serves to estimate
tha mass of neutron-rich-nuclei, within the uncertainty inherent
to this type of calculation.

The species of nuclei existing for each value of p is
determined by the condition that the nuclei are in equilibrium

with the electron gasg,vso that Z and A are function of p . The

neutron drip density may be determined by the condition

Com [z(p),A}(m—ﬂ n [26) a0 ¢ my <0 ey

where m is the neutron rest.mass.

b) Subnuciear Regime With Free Neutrons

Neglecting interactions between the nuclei and free
neutrons, as well as the possible existence of protons outside

of nuclei, we write the equation of state as

v

_ 2 2 |
e, = M(Z,A)c Pe *Ep ¥ Ec * mcToy ¥ €intl(Pp) (19)
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The first three terms in_above equation are the same as in

eq. (14). The fourth term, with p equal the number density

of free ﬁeutrons, gives the contribution from the rest energy
of the free neutrons. The last term represeﬁts the kinetic §nd
interaction energies of free neutrons. For €int> Ve utilized

2 (eq. (24) of reference 2),

which is based on the Thomas-Fermi model, extended to the pure

the expression given by Kupper et al.

neutron gas with T = 0.

c) Nuclear Regime

As the densify increases, the Fermi level of the degg—'
nerate ngutron gas become higher and higher. This inhibts the
néutron ejectfon from the neutron-rich-nuclei,.because {t reduces
the phase space acéssib]e to emitted neutrons. When the density
is ~ 10'3 g cmf3, the neutron-rich-nuclei become unstable and
begin to desintegrate. It is known.that in this region thé effect
of protoné is negligible, so that the total energy.is'practically
giQen by the same expression as eq. (19) without the first three

terms. We again use the Thomas-Fermi model.

d)‘Supernuﬁlear Regime

At supernuclear density (greater than the density of

14 3

ordinary nuclei ~ 2.4 x 10 g cm “), other particles appear,

the muons first and then the hyperons. Since there are many un-
certainties in this regime, we simply extend eq. (24) of
reference 2 to the hyperonic regime, at least until

16 -3 . .
10 g cm ~, which 1is the upper 1limit of interest to



this work.

I11. RESULTS AND DISCUSSION

a) Phase Transition

The equation of state of neutfon star matter in equi-
librium, € = e(p), has the behavior shown schematica}]y in
fig. 1, where the curve 1 represents the behavior in phases a
and b, and the curve Il in phases c and d. The discontinuity
of derivative de/dp is unphysical. Thus we impose the condition
of continuity on the pressure and the chemical potential, which
leads to-a kind of phase transition of matter.. |

| Regarding the various regimes as homogeneous phases,

we have, in the surface of contact,

(1)

H
©

(20)

()

It
h =

In eq. (20),.§he figures denote the phases and ¥ denotes the
chemical potential of the particle i. Hence we can make a Maxwell
construction, which is equivalent to find a tangent to curves 1
and II in fig. 1. Thé points of contact, by our equation of
state (eqs. (14), (19)) are: d;=2.6 x 10" g em™®  and 4, =
=3.3x10'3 g cn 3.

| The fact -that d, #'dz'implies the existence of a first
order phase transition between phase I and II, with common pre-
ssure and temperature, but with.different f{rst.derivatives of

chemical potential. The value of d2 may be considered as the



-10-

initial point of nuclear regime.

The neutron drip point was found to occur at dig =

- 6.0 x 10'1 g cm™3, which is a little more than the values

11

calculated by Langer et a].]o (3 x 10 g cm_3) and by Baym et

11 11 3

al (4.3 x10'' g cm ~). As the first point of phase transi-

tions is sligthly below the neutron drip point, this suggest
that the sudden nuclear disintegration process is very competi-
btive with relation to the continuous neut}on drip process.

A similar phase transition had been also observed for

‘a different equation of state of neutron gas]z, but in this case

.

~the first point of transition is fbund to be slightly above the
neutron drip point. | |

| Beside various uncertainties from the equation of
state, the small difference between dnd ana d] is not enough

13,14 claim that

to tell us what process is Hominant. Some authors
there is no distinct phase transition between phase a and phase
c. However, in any case, the preséure gradient becomes extremely
small in the region, so that we can canclude that the neutron
star is formed by two distinct parts: 1) a sharp core, from the
center of the star to the core surface where d = d;;  2) and a
envelope or mantle, from thée core surface, where d = d2’ to the
star surface.

Even the phase b exists, its region would be very

narrow and probably gives no effect to the neutron star structure.

b) Maximum Mass and Other Results,

It is believed that the black holes are indefinitely

collapsing objets, whose mass is beyond the upper limit of
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stable neutron star conf{guration. In order to determine the
1imit,.we plotted the total mass of the neutron star against

the centré] number density (fig. 2). The condition of stabili-

ty for neutron star, dM/dpC >0 4, is-used fo point out the_ma-
ximum mass of a neutron star as 3.26 M0 . This mean that, beyond
this value, the pressure gradient due to the neutron gas is insu
fficient to counterbalance the general relativistic effects of
gravitation which then become dominant. The maximum mass we found

is greater than the values obtained by Cohen et a].ls

16

(1.92 M@)
and by Canuto and Chitre (1.39 M@).

We also plotted the radius of the star versus the total
mass (fﬁg. 3) and versus the central number density (fig. 4).
We find that the radius of neutron stars is not monotonically
décreasihg function of mass in contrast to the most of neutron
star models. In fig. 5, we present the configuration of the core
of three neutron stars with central density chosen arbitrarily
as 0.08, 0.1 and 0.3 fm™ 3. Fdr these values of density, the total
neutron number and total pfoton number, as well as the total mass,
are shown in Table I. We can see taht the neutron star mass is
largely concentrated in the core and the proton numbér is only a

few percents of the neutron number.

TABLE 1
o (fm™3) | N_/N N /N M/M
c n" 0 p’ o 0
0.08 0.116 8.06 x 10°% | o0.115
0.1 |o0.214 [1.76 x 107° | o0.212
0.3 2.65 | 6.77 x 1072 .| 2.35

Ng = solar baryonic number = 1.2 x 10°7 baryons.
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"As is shown in fig. 6, the thickness of mantle decrea
ses rapidly as the total mass increases, which may give some 1in-
formation to determine the mass of pulsars through the observed

sudden change of period due to starquake mechanisms]7.
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FIGURE CAPTIONS

Fig. 1:
Fig. 2:
Fig. 3:
Fig. 4
Fig. 5
Fig. 6

central density equal to 0.08, 0.1 and 0.3 fm"

The points of the phase transition are given by op

and Po- | -~ .

Total mass of neutron star versus central number den-
sity. Stable neutron star configurations are represented
by the solid line, with the maximum mass equal to |

3.26 Me ,.corrésponding to a central dehsity equal to

3

1019 g cm ~. Unstable configurations are represented

by the dashed line.
Radius of the star versus total mass.
Radius of the star against the central number density.

Configuration of the core of three neutron star, with
3

The thickness of neutron star surface versus total

mass.
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