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Recently, the use of anfticommuting c-numbers in describing physical

systems and their symmetries hag drawn much interest. Supersymmetry among .

, . , . . (2 .
bosons and Fermlons( can be given an elegant formulation ) using themn.

o . . . ' . ; 4,5,6 . .
Applications to Hamiltonian dynamics of electron(35 »356) adapting Dirsc

(7

mathod

in this paper an extension to particle of any spin following the systematic
(8 ) . (6) Y is (93
treatment of Casalbuoni et.al . Pormulation of Bargmann and Wigner
for relativistic particle is obtained on quantization in self-consictent
mannear, It may be‘rem vked that some of the Dirac brackets between

anticommuting variables are required to go to commutators instead of

antilicomputators.

[y

L. . . . . 5,63
To fermulate pscudomechanics of particles of spin 's' ve 1ntroduce( 2
5 L , s e a a,. -a
28 sets of real wting veriables (£ , £7), a = 1, 2,...2s, vhere §
H 5 H

a . . .
arve peeudovectors and & are pseudoscalars., They commute with the space—time

5
.. et 3 Tee . (2,10) .
xdkpabloe yu. Guided by earlier succass similar nature we require

that our Langrengian be (quasi~) inverlant under a linear supersymmetyy group

of transformatinns



aaa+b

- i a_a .
X = x == R e £
U 1 me U 75 - mec

1)

The

where summation over repeated indices is understood (we enclose one of the
indices by a parenthesis when it is not to be summed) and € 's are

are real commuting constants.

anticommuting real while B, vy, b
transfofmations above leave the differential forms d €:, d EZ and
)
v ittt gl a gl (2)
5

. i Ya a .a
d (Xu o ﬁu Ss) —

The geometry is flat in space-time but curved in other sectors.

invariant.
The particle trajectory will be labelled by an invariant monotonic
Grassmann

We also require that our Langrangian is an 'even'
T,

parameter T .

. (11) . . . . .
function and is homogeneous of first degree in derivatives w.r.t.
indicated in the following by a dot. The form of eq. (2) then suggests that
. . . . . (8, 12) .
1t 18 convgnlent to perform a canonical coordinate transformation imn

(3

£? so that the most general Lagrangian is given by

xu and redefine s
L = =1 a? E: éj - i az 53 éu - nc /(i# + VU)
where &% = - %E éi éz and x o— xu + éz- ea> g? f b, under super-
syﬁmetrye The variation undexr it is given by ‘
€ o+ o e &) %)



The canonical momenta are found to be

(x, + V)
P = - §L;, = mc H I

H g 5
ox qu . vu)z

a_ oL _ . (a),a _ _i_ a
™= s ia Es — (P. &) (5)

and Lagrange equations are

é' =0
H
(a) za _ _1 sa
Zaz gu - me Pu gs
(a) 2:a _ 1 sa :
2a1 gs = — (P. & )‘ _ (6)

vhich give for nonvanishing velocities

*

2
60,@ 2 - 2 -1 ’ (7)
1 2 (mC)Z
We choose a? = o® =1/2.
2
The Hemiltonian H_ = - x.P + £3m? + £° nj - L, is found to
5

vanish. Eq. (5) shows that our Lagrangian is singular and dynamics in phase

(7)

space is constrained. We use Dirac's method to remove redundant variables



so that the particle is described solely in terms of ccordinates XU’ £

and momenta PU . We will see below that to achieve this goal we have to

reiax the invariance w.r.t the general supersymmetry but can still retain the

invariance under a gauge supersymmetry (eq. (26)).

The primary constraints following from eq. (5) are

N B a i a, ~
= - -5 ~ 0
A (m, 5~ &)
a _ a i a i a
Xs = (ﬂs —5 gs + — P. &) ~o0
X = (* - w® ¢2) o (8)

Requiring ki ~ 0 and ij ~0 and combining with eq. (6) we find

* .4 - {'a oW r za - '
X; = (] ; £%) =z o (9)

. 8 . . . e, . +
showing Xs 1s a constant of motion. If wve impose additional constraint

a , a a . .
‘x; = {} we are able to remove both T and Wu in virtue of eq. (8).

The nonvanishing Polsscn brackets(s) among the constréints are
found to bé ‘
{“Xi’ XE b= X’sa ’X;b} = 6ab
{ XZ’ Xg b= By 6ab
0 xﬁ} C 7;11"5* i Cap 0]



We find x 1is first class. Another first class constraint is given by

the linear combination

a - _a 1 ay o~
X = x, +r —— (@) 0 (11)

~a

5

. a a. . .
We will use X XD s XU s X as a convenient set of constraints, the

last two being second class, on phase space. To turn over the second class

7

constraints into strong relations we define Dirac bracket w.r.t., the

. a
constraints x; and Xﬁ s

a

. * . B . .’ Ed . e
{A, B} ={A, B}+ ifa, xi'} { xg, B} -ia, xsa Y { X; s B} (12)
We find for the surviving variables
1 b % .
{ Eu ’ Ev } = 1 guv 6ab
. b % .
(e, = - 18,
a b %
{ Eu > 55 } - 0]
. % o
P = -
{ Xu s %y } gu\) (13)
Total Hamiltonian N is a combination of first class constraints
and is given by
H = a _a
PP X *op XD : (14)

Here is e i a i i i
p1 s even while p2 1s odd Grassmann variable. Equations of motion

. e : % .
are given by A = [ A, H} and in particular P = 0,
u



The (unconstrained) Hamiltonian dynamics can now be quantized by

formulating the correspondence { ~ indicates operator)
. . * - -~
i A B} e > [&, 8] or [A,E]+ (15)

and requiring that the first class constraints become conditions on the states

Xg# = (P E'-mec E2)V¥ = 0 (16)

The choice of commutator or anticommutator will be determined by requiring

self-consistency of eqns. (15) and (16). Thus we write

[, gﬁ]t - -%e, o,

L‘E"‘,a‘;]i -k o6,

[gﬁ,g;]i =0 (17)
while for obvious reasons [ % Ev']_ = i E‘gyv and [;E, ;u:] = 0. For

a=D>b it is immediate in the first two relations and derived for the third

by using eq. (16) that anticommutator must be used. Ea, g2 generate Clifford
5

algebra C_. We ohtain the usual Dirac-Pauli algebra for y's on writicg

-~ oo N -~ ~ a
A R £ (18)
Yy H 5 2
Z 5
and deduce Y? = ] ysa) y? Yz ya Eq. (16) gives

(V. P=mec)y = 0 , a = 1, ...25. (19)



For these ecquations to be satisfied simultaneously, we require for a # b

[y ,v2 1 =0 (20)

and consequently

& b _ :
[ o Y, 1., = 0 (21)

a . . . .
e ven though g are anticommuting numbers. Consistency requirements
1 .

-

-~
-~

L x» X;_]+ v =0 and [—Xa s Xb ]+ Y = 0 do not lead to new
- D D -

conditions and are satisfied identically. Thus we obtain the formulation of

9 Tt

Bargmann and Wigner for particle with spin 's'.

Finally, we discuss the covariance of the theory. The infinitesimal

(8)

generator of (canonical) Pincarée and supersymmetry transformations is
. U . a _u a _a 1 a ,a a .a
= - + + 9 & - + .
¥ §x B +8E T S & T 5 (e, & e . &)
- u 1 Vi a o, a2 a '
= b P+ o WM e, C, e, G, (22)

where wuv = . are infinitesimal parameters of Lorentz transformatios
X Ve a a .
and M v the corresponding generator. GU and G are the generators
5

of supersymmetry transformations. They may readily identified to be given by

.

VAR R T C LS M R L S S A L
a a a a
¥ & 1 - 1 -
B - i P — ———— 2
M ( U 2 gu e 8’5 u )

R A (23)



; . , a a .
Under supereymmetry transformations we find that yx , ¥ , XU remaln inva-

riant while

o

=
i
i

LF, xFy = -i (el - ) (24)

a

1L

The constraint ¥~ 0 thus breaks the supersymmetry invariance. We find,
5

however, that the canonical generator ( éu =0 )
s .
¢ = (c¢f + =) (23)

has vanishing Poisson brackets with all the constraints. Theory thus

(s

retains the invariance under the following supergauge transformations by

_a a
F=N"(1t) G,

5 -
- 1 Pu a a
XU = XU + (mc)z ﬂs ( ) &€
P
=82+ —HE ¥ (1)
oo me 5
s;a = Ej + nj (1) A (26)

Poincare invariance may be also verified. For example,

W= - ~§- el g - g (27)

and

(§) Eqns. (5), (6) are left invariant even when parameter is T-~dependent.

Quasi~invariance of Lagrangian may also be checked.
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Py, &P T o P L g gl g o VAR ()

™
It

...2 P —
pl H mc 2 H

H

£2 = ( Pu/mc ) D:

U
éa___pa

P = 0 29
" (29)

The time evolution mixes coordinate and spin degrees of freedom; the whole
phase space of spinning particle is a 'superspace! The second term in the

equation for iu is the classical analogue of Schroedinger's Ziterbewegung.
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