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1 Introduction

Symmetries are fundamental guides when one intends to systematize the study of any theory.
In this sense, Lorentz and CPT invariances acquire supreme importance in modern Quantum
Field Theory, both symmetries being respected by the Standard Model for Particle Physics. A
Standard Model description, where possible violations of such invariances are considered, was
developed by Colladay and Kostelecky [1], [2] and by Coleman and Glashow [3], [4]. The main
term that incorporates these features involves the gauge field and has the Chern-Simons form

ΣCS = −1
4

∫
dx4εµναβcµAνFαβ, (1)

where cµ is a constant four-vector that selects a space-time direction [5]-[8]. One can easily show
that such term originates a vacuum optical activity. Astrophysical results [9, 10], nevertheless,
contradict this possibility, putting very restrict limits on the magnitude of the cµ four-vector.
An interesting discussion was originated from the investigation on the possibility that this

Chern-Simons part be radiatively generated from the fermionic sector of ordinary QED when-
ever an axial term, bµΨ̄γ

µγ5Ψ, that violates Lorentz and CPT symmetries, is included [11]-[23].
The discussion took place around some questions:

• Does this generated term depend on the regularization scheme?

• May the vanishing of this term be a result of gauge invariance and unitarity requirements?
• Do the astrophysical observations impose limit on the radiative correction generated by
the axial term in the fermionic sector?

As shown in [19], and argued in [21], the finite radiative correction, ∆cµ, comes from can-
celation of divergences and, therefore, is regularization-dependent. The condition for gauge
invariance can be stated in a weak way, since bµ is a constant four-vector: it is the action that
must be invariant under this transformation and not necessarily the Lagrangian density. It also
means that it is not necessary to be considered a source for the violating term. In [21], it was
shown that an indetermination in the radiative correction, ∆cµ, is not relevant for the physical
content of the theory, since considering an effective constant

ceffµ = (c+∆c+ δc)µ, (2)

where δcµ is a finite counterterm (given some normalization condition), one can always adjust
the counterterm in order to obtain the experimentally observed result.
We are then left with a careful analysis of limit situations, to which the four-vector cµ could

be submitted, in order to verify if there is physical consistency in some of these cases. In [8], the
quantization consistency of an Abelian theory with the inclusion of ΣCS is thoroughly analyzed.
The authors study the implications on the unitarity and causality of the theory in cases where,
for small magnitudes, cµ is time-like and space-like. The analysis shows that the behavior of
these Gauge Field Theories depends drastically on the space-time properties of cµ. According
to [8], for a purely space-like cµ, one finds a well-behaved Feynman propagator for the gauge
field, and unitarity and microcausality are maintained. On the other hand, a time-like cµ spoils
unitarity and causality.
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In this work, we analyze the possibility of having consistency of the quantization of an
Abelian theory which incorporates the Lorentz- and CPT-violating term of equation (1), when-
ever gauge spontaneous symmetry breaking (SSB) takes place. The analysis is carried out by
pursuing the investigation of unitarity and causality as read off from the gauge-field propa-
gators. We therefore propose a discussion at tree-approximation, without going through the
canonical quantization procedure for field operators. In this investigation, we concentrate on
the analysis of the residue matrices at each pole of the propagators. Basically, we check the
positivity of the eigenvalues of the residue matrix associated to a given simple pole in order that
unitarity may be undertaken. Higher-order poles unavoidably plague the theory with ghosts;
this is why our analysis of the residues is restricted to the case of the simple poles. We shall find
that only for cµ space-like both causality and unitarity can be ascertained. On the other hand,
considering that SSB is interesting in such a situation (since the mass generation mechanism
induced by the Higgs scalar presupposes that the theory is Lorentz invariant), we obtain that,
once Lorentz symmetry is violated, there is the possibility of evading this mechanism, such that
a gauge boson mass is not generated even if SSB of the local U(1)-symmetry takes place.
In order to improve our comprehension of the physics presented by this theory, we also study

vortex-like configurations, analyzing the influence of the direction selected by cµ in space-time.
The presence of the Chern-Simons term produces interesting modifications on the equations of
motion that yield a vortex formation.
This work is outlined as follows: in Section 2, we study the SSB and present our method to

derive the gauge-field propagators. In Section 3, we set our discussion on the poles and residues
of the propagators. We study the formation of vortices in Section 4, and, finally, in Section 5,
we present our Concluding Comments.

2 The Gauge-Higgs Model

We propose to carry out our analysis by starting off from the action

Σ =

∫
d4x

{
−1
4
FµνF

µν + (Dµϕ)
∗Dµϕ− V (ϕ)

}
+ Σψ + Σcs, (3)

where Σψ is some fermionic action (we do not introduce fermions in our considerations here),

Σcs = −µ
4

∫
d4xεµνκλvµAνFκλ (4)

is the Chern-Simons like term, µ is a mass parameter and vµ is an arbitrary four vector of unit
length which selects a preferred direction in the space-time (cµ = µvµ). The potential, V , given
by

V (ϕ) = m2 |ϕ|2 + λ |ϕ|4 (5)

is the most general Higgs-like potential in 4D. Setting suitably the parameters such that the
ϕ-field acquires a non-vanishing vacuum expectation value (v.e.v), the mass spectrum of the
photon would get shift upon the spontaneous breaking of local gauge symmetry by means
of such v.e.v.. The Higgs field is minimally coupled to the electromagnetic by means of its
covariant derivative under U(1)-local gauge symmetry, namely

Dµϕ = ∂µϕ+ ieQAµϕ. (6)
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This symmetry is spontaneously broken, and the new vacuum is given by

〈0|ϕ|0〉 = a, (7)

where

a =

(
−m

2

2λ

)1/2

; m2 < 0. (8)

As usual, we adopt the polar parametrization

ϕ =

(
a+

σ√
2

)
eiρ/

√
2a, (9)

where σ e ρ are the scalar quantum fluctuations. Since we are actually interested in the analysis
of the excitation spectrum, we choose to work in the unitary gauge, which is realized by setting
ρ = 0. Then, the bilinear gauge action is given as below:

Σg =

∫
d4x

{
−1
4
FµνF

µν − µ

4
vµAνFκλε

µνκλ +
M2

2
AµA

µ

}
, (10)

where M2 = 2e2Q2a2.
Its is noteworthy to stress that the SSB introduces the mass term M2 in addition to the

topological Lorentz-breaking term. µ. As we shall see throughout this Section, this term will
simply shift the pole induced by vµ. If no SSB takes place, then a = 0 and we reproduce the
particle spectrum given in [8]. Another relevant issue to be tackled along this Section regards
the residues of the propagators at the poles, which inform about the eventual existence of
negative-norm 1-particle states. Later on, suitable conditions on the parameters of the model
will be adopted in order that tachyon and ghost modes be suppressed from the spectrum.
We now rewrite the linearized action (10) in a more convenient form, namely

Σg =
1

2

∫
d4xAµOµνA

ν , (11)

where Oµν is the wave operator. The propagator is given by

〈0|T [Aµ (x)Aν (y)] |0〉 = i
(O−1

)
µν
δ4 (x− y) . (12)

The wave operator can be written in terms of spin-projection operators as follows:

Oµν = (�+M2)θµν +M2ωµν + µSµν , (13)

where θµν and ωµν are respectively the transverse and longitudinal projector operators

θµν = gµν − ∂µ∂ν
� , ωµν =

∂µ∂ν
� , (14)

and
Sµν = εµνκλvκ∂λ.
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In order to invert the wave operator, one needs to add up other two new operators, since the
above ones do not form a closed algebra, as the expression below indicates:

SµαS
α
ν =

[
v2� − λ2

]
θµν − λ2ωµν − �Λµν

+ λ (Σµν + Σνµ) ≡ fµν , (15)

with
Σµν = vµ∂ν , λ ≡ Σ µ

µ = vµ∂
µ , Λµν = vµvν . (16)

These results indicate that two new operators, namely, Σ and Λ, must be included in order to
have an operator algebra with closed multiplicative rule. The operator algebra is displayed in
Table 1.

θαν ωαν Sαν Λα ν Σα ν Σ α
ν

θµα θµν 0 Sµν Λµν − λ
�Σνµ Σµν − λωµν 0

ωµα 0 ωµν 0 λ
�Σνµ λωµν Σνµ

Sµα Sµν 0 fµν 0 0 0

Λµα Λµν − λ
�Σµν

λ
�Σµν 0 v2Λµν v2Σµν λΛµν

Σµα 0 Σµν 0 λΛµν λΣµν Λµν�
Σαµ Σνµ − λωµν λωµν 0 v2Σνµ v2�ωµν λΣνµ

Table 1: Multiplicative table fulfilled by θ, ω, S, Λ and Σ. The products are supposed to obey
the order ”row times column”.

Using the spin-projector algebra displayed in Table 1, the propagator may be obtained after
a lengthy algebraic manipulation. Its explicit form in momentum space is

〈AµAν〉 =
i

D

{
−(k2 −M2)θµν +

(
D

M2
− µ2(v · k)2
(k2 −M2)

)
ωµν

−iµSµν − µ2k2

(k2 −M2)
Λµν +

µ2(v · k)
(k2 −M2)

(Σµν + Σνµ)

}
, (17)

where D(k) = (k2 −M2)2 + µ2v2k2 − µ2(v · k)2.
The result above enables us to set our discussion on the nature of the excitations, read

off as pole propagators, present in the spectrum. At first sight, the denominator (k2 −M2)
appearing in connection with the operators ω, Λ, Σ, once multiplying the overall denominator
D, could be the origin for dangerous multiple poles that plague the quantum spectrum with
ghosts. For this reason, a careful study of this question is worthwhile. With this purpose, it is
advisable to split our discussion into 3 cases: time-like, null (light-like) and space-like vµ.
In the case vµ is time-like, one can readily check that there will always be possible to find

momenta kµ such that k2 = M2 appears as a double pole in the transverse sector (θ and S)
and a triple pole in the ω -, Λ- and Σ- sectors. This shows that in these situations non-physical
states are present that correspond to negative norm particle states. There is no need therefore
to discuss the residue matrix at these poles.
In the case vµ is light-like, it can be seen that tachyonic poles ( that are simple poles ) always

appear; this also invalidates the model in this quantum version, for supraluminal excitations
are always present in the spectrum.
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However, if vµ is a space-like vector, no higher-order pole comes out; it can be shown that
k2 =M2 is not a zero of D(k). It only appears as a simple pole for the ω -, Λ- and Σ- sectors.
So, the model exhibits non-tachyonic massive excitations associated to 3 simple poles: 2 of
them coming from D(k), the other being k2 = M2. The fact that only the space-like case is
physically acceptable confirms the detailed study carried out by Adam and Klinkhammer in
the work of ref. [8]. Nevertheless, we should still investigate the residue at these poles so as
to be sure that no ghosts are present. This shall carefully be done in the next section.

3 Unitarity analysis in the space-like case

Our present task consists in the check of the character of the poles present for vµ space-like.
Knowing that 3 different poles show up, we have to go through the study of the residue matrix
of the vector propagator at each of its (time-like) poles k2 =M2, k2 = m̃2

1 and k
2 = m̃2

2, where
m̃1 and m̃2 correspond to the zeroes of D(k), that is, M

2, m̃2
1 and m̃

2
2 are the physical masses

at the tree approximation.
To infer about the physical nature of the simple poles, we have to calculate the eigenvalues

of the residue matrix for each of these poles. This is done in the sequel. Before quoting our
results, we should say that, without loss of generality, we fix our external space-like vector
as given by vµ = (0; 0, 0, 1). The momentum propagator, kµ, is actually a Fourier-integration
variable, so we are allowed to pick a representative momentum whenever k2 > 0. We pursue
our analysis of the residues by taking kµ = (k0; 0, 0, k3).
With k2

0 = m2
1, we have that

m2
1 =

2 (M2 + k2
3) + µ2 + µ

√
µ2 + 4 (M2 + k2

3)

2
; (18)

the residue matrix reads as below

R1 =
1√

µ2 + 4 (M2 + k2
3)



0 0 0 0
0 m2

1 − (M2 + k2
3) iµm1 0

0 −iµm1 m2
1 − (M2 + k2

3) 0
0 0 0 0


 . (19)

We calculate its eigenvalues and find only a single non-vanish eigenvalue:

λ =
2 |m1|√

µ2 + 4 (M2 + k2
3)
> 0 (20)

The same procedure and the same conclusions hold through for the second zero of D(k)
(k2 = m̃2

2 withk
2
0 = m

2
2):

k2
0 = m2

2 =
2 (M2 + k2

3) + µ2 − µ
√
µ2 + 4M2

2
; (21)

there comes out a unique non-vanishing eigenvalue

(
λ = 2|m2|√

µ2+4(M2+k2
3)
> 0

)
as above.
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The calculations above confirm the results found by the autors of ref.[8]: for a space-like
vµ, the pole of D(k) respect causality (they are not tachyonic) and correspond to physically
acceptable 1−particle states with 1 degree of freedom, since the residue matrix exhibits a single
positive eigenvalue
Finally, we are left with the consideration of the pole k2

0 = (M
2 + k2

3). The residue matrix
reads as follows:

RM =




− µ2

M2k
2
3 (M

2 + k2
3) 0 0 − µ2

M2 |k3| (M2 + k2
3)

3
2

0 0 0 0
0 0 0 0

− µ2

M2 |k3| (M2 + k2
3)

3
2 0 0 − µ2

M2 (M
2 + k2

3)
2


 , (22)

and again we have obtained only a non-vanish eigenvalue: λ = 1
M2 (M

2 + 2k2
3) > 0. This opens

up a very interesting conclusion: the M2-pole, appearing in the longitudinal sector (wµν),
describes a physically realizable scalar mode. We are before a very peculiar result: The vector
potential accommodates 3 physical excitations ( with masses m2

1, m
2
2, and M

2), each of them
carrying a single degree of freedom; so, the external background influences the gauge field by
drastically changing its physical content: instead of describing a 3−degree of freedom massive
excitation, it rather describes 3 different massive excitations, each carrying one physical degree
of freedom.
We would like to report on one more possibility. As we know, the Higgs mechanism for

mass generation for gauge bosons presupposes Lorentz invariance of the theory. This is no
longer our case. So, we want to exhibit that, for a fixed background space-like vector, vµ, there
may appear massless modes depending on the direction of the wave propagation. Indeed, the
condition for a massless pole, D(k) = 0 with k2 = 0, can be written as

c · k = ±M2. (23)

Taking a space-like cµ of the form cµ = (0;(c), the condition above reads

(c · (k = ∓M2.

With K2 = 0, |(k| = k0, whenever k0 〉 0; then, we see that

(c · k̂ = −M
2

k0
.

So, given (c, we can always find a kµ such that k2 = 0 is compatible with the condition
above; for this to take place, the propagation must be along a direction with an angle bigger
than 90o. The conclusion is that, according to the direction of the wave propagation, a massless
pole shall always show up. This confirms the breaking of isotropy and illustrates that, despite
spontaneous breaking of a local symmetry, massless excitations may be present in the spectrum.
After the technical details exposed previously, we should clarify better our analysis of the

unitarity. In the paper of ref. [8], the authors raise the question of the unitarity and they
conclude that, exclusively for a space-like vµ, the Hamiltonian admits a semi-positive self-
adjoint extension, giving therefore rise to a unitary time evolution operator.
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Here, the unitarity alluded to is not in the sense of a self-adjoint extension, but rather in
the framework of the Hilbert space of particle states. Our analysis reveals the existence of
1-particle states with negative norm square, i.e., 1-particle ghost states, whenever vµ is time-
or light-like. On the other hand, when vµ is space-like, the poles of the vector propagator are
physically acceptable and the model may be adopted as a consistent theory.

4 A discussion on vortex-like configurations

Once our discussion on the consistency of the quantum-mechanical properties of the model has
been settled down, we would like to address to an issue of a classical orientation, namely, the
reassessment of vortex-like configurations in the presence of Lorentz-breaking term as the one
we tackle here.
In our case, with the Chern-Simons-like term included, we get, from the action (3), the

equations of motion
DµDµϕ = −m2ϕ− 2λϕ|ϕ|2 (24)

and
ie(ϕ∂µϕ∗ − ϕ∗∂µϕ) + 2e2Aµ|ϕ|2 + µεµνκλvν∂κAλ = ∂νF

µν , (25)

so that we can explicitly derive the modified Maxwell equations

∇.E = −ie(ϕϕ̇∗ − ϕ∗ϕ̇) + 2e2|ϕ|2Φ− µv ·B (26)

∇×E =− ∂B

∂t
(27)

and

∇.B =0 (28)

−∂E
∂t
+∇× B = ie(ϕ∇ϕ∗ − ϕ∗∇ϕ)− 2e2|ϕ|2A

− µv0B+ µv ×E. (29)

Before going on to analyses vortex configurations, we would like to handle the modified
Maxwell equations above (eqs. (26)-(29)) to understand that there is no room for a magnetic
monopole once the Lorentz-breaking Chern-Simons term is switched on. For this purpose, we
remove the charged scalar field and see that the presence of a static monopole immediately
leads to

v0B = v ×E (30)

Now, by applying the operator ∇· to this equation, we come to a direct contradiction with
eq. (28). So, the modified Maxwell equations (26)-(29) do not support the presence of a
Dirac-like magnetic monopole.
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To analyse the vortex-type solutions, we consider a scalar field in 2-dimensional space. The
asymptotic solution that is proposed to be a circle (S1)

ϕ = aeinθ; (r → ∞), (31)

where r and θ are polar coordinates in the plane, a is a constant and n is an integer. The gauge
field assumes the form

A =
1

e
∇(nθ); (r → ∞), (32)

or, in term of its components:

Ar → 0, Aθ → − n

er
; (r → ∞). (33)

will be analyzed with our solution of the field Φ.
The breaking of Lorentz covariance prevents us from setting Aµ as a pure gauge at infinity,

as usually done for the Nilsen-Olesen vortex. This means that A0 = Φ(r), as r → ∞. The
asymptotic behavior of Φ shall be fixed by the field equations, as shown in the sequel. Returning
to our problem, in this situation, the magnetic field presents a cylindrical symmetry and

ϕ = χ(r)einθ. (34)

To avoid singularity for r → 0 and to keep an asymptotic solution, we make

limr→0χ(r) = 0 (35)

and
limr→∞χ(r) = a. (36)

In the static case, equation (24), after summing over the components, becomes

1

r

d

dr

(
r
dχ

dr

)
−

[(n
r
+ eA

)2

+m2 + 2λχ2 − e2Φ2

]
χ = 0, (37)

while the modified Maxwell equations take the form

∇2Φ + 2e2χ2Φ− µv · B = 0 (38)

and
d

dr

(
1

r

d

dr
(rA)

)
+ 2eχ2

(n
r
− eA

)
− µv3

dΦ

dr
= 0. (39)

In the asymptotic region, equations (38) and (39) become

∇2Φ− 2a2e2Φ = 0 (40)

and
d

dr

(
1

r

d

dr
(rA)

)
− 2e2a2A− µv3

dΦ

dr
= 0, (41)

where B has been set to zero, for A is a gradient at infinity. We then find

Φ = Ce−
√

2a2e2 r (42)
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and

A(r) = CK1

(√
2a |e| r

)
+

− i
√
2µv3 aeK1

(√
2a |e| r

)∫
rdrI1

(√
2a |e| r

)
e−

√
2a|e|r. (43)

So, both Φ and A falls down to zero exponentially in the asymptotic region. Note that,
asymptotically the complex scalar field ϕ = χ(r)einθ goes to a non-trivial vacuum and becomes
ϕ = aeinθ . Then the topology of the vacuum manifold is S1.
A relevant discussion at this point is the issue of the stability of the vortex configuration we

have identified. This question has to be answered if we have some elements about the energy of
the system. Following the results of the work of ([9]), we understand that, once vµ is chosen to
be space-like (and, according to the results of our discussion in Sec.3, this is the unique sensible
situation), the energy is limited from below, which assigns to our vortex the status of stable
configuration.
More generally than in the case of Nielsen-Olesen vortices [24], eq. (38) plays an important

role as long as the electric field is concerned. If the magnetic field vortex (supposed such that
B = Bẑ) is orthogonal to the external vector v, then Φ = 0 is always a trivial solution that is
compatible with the whole set of field equations.
However, whenever v · B �= 0, Φ must necessarily be non-trivial, and an electric field appears

along with the magnetic flux. If this is the situation, in the asymptotic region Φ falls off
exponentially, as exhibited in eq. (42).
The appearance of an electrostatic field attached to the magnetic vortex, whenever v ·B �=

0, is not surprising. Its origin may be traced back to the Lorentz-breaking term: indeed,
being a Chern-Simons-like term, the electrostatic problem induces a magnetic field and the
magnetostatic regime demands an electric field too. So, a non-vanishing Φ, therefore a non-
trivial E response to the Chern-Simons Lorentz-breaking term.

5 Concluding Comments

The main purpose of our work is the investigation of two aspects: the first one is the quantization
consistency of an Abelian model with violation of Lorentz and CPT symmetries, contemporarily
with the spontaneous breaking of gauge symmetry. The other one concerns the study of classical
vortex-like configurations eventually present in such a model.
The analysis carried out with the help of the propagators, derived thanks to an algebra

of extended spin operators, reveals that unitarity is always violated for vµ time-like and null.
Whenever the external vector is space-like, physically consistent excitations can be found that
present a single degree of freedom each.
The analysis of the classical vortex-like configurations shows some interesting aspects. First,

if the magnetic field vortex is orthogonal to the plane which contains the constant vector vµ,
then a trivial solution for the scalar potential, Φ = 0, is allowed. In this case, the vortex
configuration will be similar to the one of the usual Abelian model. However, if v · B �= 0, we
have a non-trivial solution for Φ and an electric field appears in connection with the magnetic
flux. As we have already pointed out, the appearance of an electric field attached to the
magnetic vortex is not surprising. It is the counterpart of what happens in a Chern-Simons
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theory in three dimensions, where the electrostatic problem induces a magnetic field and the
magnetostatic regime demands an electric field too.
In connection with this phenomenon, the analysis of the dynamics of electrically charged

particles, magnetic monopoles and neutrinos in the region outside the vortex core becomes a
well-motivated idea, for the presence of the electric field interferes now (at least for charged
particles and monopoles) and alter our knowledge about the concentration of the particles in
the region dominated by the vortex.
Finally, in view of the interesting results presented by Berger and Kosteleký in the paper

of ref. [25], it would be a relevant task to incorporate the (gauge-invariant) Lorentz-breaking
term in the action (1), in a supersymmetric framework and therefore to study the gaugino
counterpart of the action term given by equation (4). Results in this direction shall soon be
presented elsewhere [26].
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[19] A. P. Baêta Scarpelli, M. Sampaio, B. Hiller and M. C. Nemes, Phys. Rev. D 64, 046013
(2001)

[20] O. A. Battistel and G. Dallabona, Nucl. Phys. B 610, 316 (2001)
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