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Abstract 
 

Why is space 3-dimensional? After a brief review of the modern approaches to 
this query, enphasizing those papers which touched upon epistemological 
problems, it is stressed that there are two questions which deserve special 
attention. They are: the possibility that the large-scale dimensionality of space 
has been changing in the course of time; and the actual accuracy of the 
experimental determinations of the dimensionality of space covering a very 
large scale from the micro to the macro-cosmos. It is argued in this paper that 
both Stellar Radiation and the Mössbauer Effect can be used to sketch the 
answers to these questions. 
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Kant was the first to point out that the threefold dimension of space can be 

related to the structure of a particular physical law (in his case, Newton’s 

gravitational law)[1]. Ehrenfest[2], in 1917, faced this problem from a different 

point of view, by formulating the incisive question: “How does it become 

manifest in the fundamental laws of Physics that space has 3 dimensions?”. 

This approach inaugurated the modern discussion about dimensionality. 

However, it is only in the framework of Modern Field Theory that this query 

actually acquires its full physical meaning. Indeed, there is nowadays a 

widespread hope that theories in higher dimensions (when supplemented with 

dimensional reduction) may lead to a deeper and unified understanding of 

extremely High-Energy Physics. Obviously, the very fact of imposing the 

process of dimensional reduction is equivalent to assuming a priori the 

threefold dimension  of space, which is just what should be questioned. To the 

best of our knowledge, there is as yet no satisfactory and unambiguous answer 

to the problem of dimensional reduction, even when the so called spontaneous 

compactification process is taken into account. 

 In the last four decades some progress has been achieved in the natural 

philosophy of space, including the dimensionality issue[3]. It is now clear that, 

besides Ehrenfest’s problem, there is another complementary question which 

must be answered: 

  How do the fundamental laws of Physics entail space dimensionality? 

 Contrary to Ehrenfest’s question, in which the tridimensionality plays a 

special rôle a priori, here the dimensionality may be taken as an unknown 

quantity to be experimentally determined. Thus, it is implicit in this alternative 

program that one should look for physical laws which do not exhibit a singular 

behaviour in three dimensions and could be argued to be valid for any 

dimensionality. That such kind of law does exist was shown by the authors 



CBPF-NF-034/97 -3- 

elsewhere[4], and are, for instance, Stefan-Boltzmann and Wien’s laws of 

blackbody radiation, Planck and de Broglie relations. 

 In spite of the aforementioned progress, there still are questions which 

deserve some special attention, namely: 

  Is the dimensionality of space the same in the macro and micro-cosmos? and 

  Has the large-scale dimensionality of space changed in the course of time? 

 More precisely: what are the temporal and spatial “scales” to which the 

experimental constraints on space dimensionality known up to now actually 

apply? 

  These questions were briefly treated by the authors[4] and its relevance 

was recently stressed by Max Jammer in the third edition of his classical book 

on Space[3]. 

  In this essay we intend to revisit this problem by focusing two 

phenomena involving very different spatial scale: Stellar Spectra and the 

Mössbauer Effect.  Trying to render this paper more readable to those not 

familiarized with the dimensionality problem, we begin by pointing out the 

main features of Ehrenfest’s fundamental papers[2]. There, several physical 

phenomena, for which qualitative differences between three-dimensional (ℜ 3) 

and n-dimensional (ℜ n) spaces are evident, have been discussed. These aspects, 

which distinguish the ℜ 3 Physics from the ℜ n one, are called by him “singular 

aspects” and his works were aimed at stressing them. A crucial assumption is 

implicit in his approach, namely, that it is possible to make the formal extension 

ℜ 3 → ℜ n for certain laws of Physics and, then, finding one or more principles 

which, in conjunction with these laws, can be used to single out the proper 

dimensionality of space. For this program to be carried out, in general, the form 

of a differential equation   which usually describes a physical phenomenon in 

three-dimensional space   is maintained and its validity for an arbitrary 



CBPF-NF-034/97 -4- 

number of dimensions is  postulated. This is supported by what Barrow & 

Tipler called “Principle of Similarity”[5], i.e., alternative physical laws in 

hypothetical higher dimensional spaces should mirror their actual form in three 

dimensions as closely as possible; in practice, the form of the law is maintained, 

perhaps for anthropomorphic reasons. 

 The epistemological limits of Ehrenfest’s approach and of their 

underlying postulates were discussed by the authors[4], and other philosophical 

questions were raised by us in other papers[6-10]. Considering our purpose here, 

it is sufficient to say in a nutshell that, besides the philosophical criticism, we 

have stressed[4] that even when a particular physical law does not show 

“singular aspects” as the number of dimensions changes, it is still possible to 

use it shed light on the dimensionality of space problem. One example, as 

mentioned before, is Planck’s law. 

  Starting from the validity in  ℜ n of Thermodynamics   which depends 

on topological properties of space   it is straightforward to generalize Stefan’s 

and Wien’s law, leaving indeterminate the explicit form of F(ν/T). If we now 

make the same statistical assumption as Planck did in order to determine the 

explicit form of this function F, we still find that the energy of a quantum is ε0 = 

hν, for any ℜ n, i.e., for n=3, Planck’s law does not show a “singular behaviour” 

in Ehrenfest’s sense. In spite of this fact, it was shown by the authors for the 

first time[10] that blackbody phenomenology, extended to ℜ n, can be  used to 

demonstrate the validity of the de Broglie relation, from which experimental 

limits on space dimensionality can be determined, for instance, by neutron 

diffraction. 

 In a subsequent paper, blackbody radiation was used by Grassi et al. to 

set upper limits to deviations from integer value (n=3) for the spatial number of 

dimensions,  by  analizing the 2.7 K  background  radiation[11]. They obtained 

 n−3 < 0.02. This was interpreted by Grassi et al. as “the limit between the 
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fractal dimensions of local space and fractal dimensions of space on scales of 

the horizon”. A more stringent limit,  n−3 < 1.5 × 10−9, was obtained from 

other astronomical observations[12]: data on the precession of the periastron of 

the planet Mercury and of the binary pulsar PSR 1913 + 16. The perihelion shift 

for Mercury gives a bound of the same order of magnitude in another paper[13]. 

The possibility of probing space dimensionality from blackbody radiation was 

later reconsidered[14], leading to  n−3≤  10−3 and to the conclusion that thermal 

radiation methods could improve on existing low energy bounds (obtained from 

microscopic scale) for  n−3  just if the cosmic background radiation could be 

measured with a precision greater than 10−9, unattainable within present 

experimental capabilities. At the quantum level, more precise bounds were 

obtained from the anomalous (g−2) electron factor[13,15],  n−3  < 

(5.3±2.5)×10−7, and from Lamb shift in hydrogen[16]   which improved this 

limit by four order of magnitudes   yielding  n−3  < 4×10−11. All this results 

depends on the assumption that time is one dimensional. 

 We can now put together the results for the relation between any possible 

deviation ε≡ n−3 of the integer space dimensionality n=3, and the length 

scale of the experimental observation: for scales of the order of the Bohr radius 

(≈5×10−11 m) one obtains ε <4×10−11; for those of the order of the distance 

between the Sun and Mercury (≈ 6×1010 m)   and also for distances like that of 

the binary PSR (≈ 1020 m)   one has ε < 10−9; and for the horizon scale 

(taking  the radius of the Universe ≈ 1026 m)  one gets the weaker 

boundε <2×10−2.  

 From what was briefly reviewed up to now two main conclusions can be 

established: i) that the topological dimensionality of  space discussed within the 

framework of Newtonian Mechanics[2,17], General Relativity[18,19], and Quantum 

Mechanics[4,19], seems to confirm the threefold nature of space for a very large 
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range of spatial scales; ii) so far it is admitted that space can have a fractal 

dimensionality, the experimental upper limits for this assumption, ε, changes 

only one order of magnitude as a function of a typical length scale between 

10−10 ÷ 1020 m, without  considering  the  cosmic  background  radiation  

constraint, ε < 10−3. 

 It is rather important to have data for much smaller length scales 

(compared to the atomic scale) as well as for an unexplored region outside the 

solar system (something between 1010 m and 1020 m).  

 Going to the micro-cosmos, it was estimated that ε  could be less than 

5×10−7 on a length scale characterized by the Compton wavelength of the 

electron (≈ 4×10−13 m), and ε < 10−5 from the anomalous magnetic moment of 

the muon (corresponding to a spatial scale ≈ 4×10−15 m)[13]. Now, from the 

Mössbauer Effect we can probe a characteristic nuclear length ≈ 10−15 m, and 

due to the high accuracy it can be measured, this effect could be used to impose 

a more stringent limit on ε for a spatial scale ≈ 10−15 m.  

 Considering the macro-cosmos, it would be important to have data from 

stars within the aforementioned unexplored range 1010 ÷ 1020  m.  

 Let us now discuss these two possibilities in more detail. The structure of 

the atomic spectra in remote stars allows us to probe space dimensionality at 

cosmic scale. To our purpose, let us assume that there are stars that in a good 

approximation can be considered as blackbodies[20,21]. Clearly they are not 

perfect blackbodies, but, in any case, it can be shown that the Stefan-Boltzmann 

law is a reasonably good approximation to their radiation. Indeed, if one 

expands the radiation intensity in the series  

I = I0 + I cos θ  + I cos2  θ + ... 
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(which converges quickly) and takes just the first two terms, “the relation 

between the energy density of the radiation and the temperature of matter [in the 

interior of the star] is exactly that which is obtained for perfect thermal 

equilibrium”[21], i.e., the Stefan-Boltzmann law, E = aT4, is still valid. It is 

straightforward to generalize this law for n-dimensional space, yielding E = ATn; 

in this case, Wien’s law becomes λn T = B, where A and B are unknown 

constants. If now we choose two stars (i and j), distants 1010 ÷ 1020 m from the 

Earth, and assume that space dimensionality is the same in both spatial regions,  a 

combined measurement of the ratios 

λi/λj  = Tj/Ti      and      Ei/Ej  = (Ti/Tj)n+1  

 

can be used to determine the integer value of n. This assumption is more 

plausible if we choose stars having the same red shift due to the isotropy of 

space. The advantage of this method is that it does not depend on the explicit 

form of the function F(ν/T) as is the case for background cosmic radiation. 

However, it raises naturally the question of how can we test the assumption that 

two stars equidistant from the Earth (same red shift) are in spaces of the same 

(fractal) dimensionality and what would be the precision of this statement (the 

bound on ε ). Of course, we can experimentally compare two blackbodies on 

Earth. However, if we intend to perform a more accurate measurement, we are 

led to the Mössbauer laboratory.  

 We envisage at least two Mössbauer experiments to determine ε , which 

will be sketched here and treated in detail elsewhere. The first, more obvious, 

involves the measurement of the so-called Lamb-Mössbauer or Debye-Waller 

factor, which gives the fraction of gamma rays emitted or absorbed without 

energy loss as a function of the temperature T. Of course, this factor depends on 

the space dimensionality through the phonon spectra. In practice, we could use 
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the variation with temperature of the energy of recoil-free gamma rays from a 

homogeneous solid[22], given by 

∂ν/∂T = − ν CL/(2Mc2), 

 

where CL is the specific heat of the lattice and M is the gram atomic weight of the 

Mössbauer element (iron, for instance); CL  is given by the Debye model and its 

expression for n-dimensions is well known[23]. 

 The second possibility, which seems more feasible, is to measure the 

isomer shift between two identical atoms, in an experimental arrangement 

similar, in a certain sense, to that of Pound and Rebka experiment[24], but 

eliminating the gravitational effect by leveling source and absorber.  If there is a 

difference ε between the space dimensionality in the vicinity of the source and 

that of the absorber it would appear as an isomer shift-like effect, and could be 

detected with good accuracy. In this case, we should take great care with the 

temperature control, as pointed out by Josephson[25].  Note that in experiments 

involving two bodies (in a certain length scale), we can invoke the homogeneity 

and isotropy of space to interpret ε as a limit to the difference between the fractal 

dimension of local space and the nearest topological dimension, 3, no matter the 

distance separating the experimental objects (stars, blackbodies or Mössbauer 

nuclei). We intend to present a detailed numerical analysis of the available data 

in a forthcoming paper.  

 Here we must only note that the interpretation of the  suggested Mössbauer 

experiment depends on the interaction between s-electrons and nuclei, i.e., on the 

Coulomb electrostatic potential ∝  αC/r1+δ. For macroscopic bodies, from 

Cavendish-like experiments, it was established[12] that ε−δ < 10−16, which does 

not give a bound on δ, but supports the assumption δ = ε. However, we cannot 

exclude the possibility that δ arises from a broken symmetry, as shown to be a 

possible case for the Newtonian gravitational potential[26]. 
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 Let us make now some final remarks concerning the time scale of the 

arguments discussed here.  

 Ehrenfest’s stability argument applied to planetary motion is valid for 

distances of the order of the solar system and in a time scale large enough to 

make the evolution of life possible on Earth, as mentioned by Whitrow[17]. One 

may add to Whitrow’s biophysical argument that it is not sufficient that the 

intensity of solar radiation on Earth’s surface should not have fluctuated greatly 

for the blossoming of life on Earth; the fact that the radiation spectra of the Sun 

did not strongly fluctuate is also required. 

  On the other hand, Tangherlini’s work about the stability of hydrogen 

atoms[18] should be invoked here to suggest the validity of Chemistry in the 

same time and spatial scale as a necessary condition, although not sufficient, 

since at least Chemical Thermodynamics of irreversible processes should also 

be valid to guarantee life on Earth.  

 Going beyond the solar system, informations from stellar radiation and 

from the cosmic background radiation are unique in the sense that they have the 

advantage of telling us that space dimensionality has been the same (up to ε ) 

for an even bigger time scale.  

 As a final conclusion, we would say that the analysis of Mössbauer 

Experiments and of Stellar Spectra can be used in a complemantary way to shed 

light on the pervasive problem of space dimensionality in Physics at the 

extremes of the length scale: from nuclei to stars.  

 This work, in which Mössbauer Effect and Stellar Radiation are put 

together for the same scope, i.e., to experimentally determine space 

dimensionality, is dedicated to the memory of Professor Jacques Danon, a man 

of wide scientific and cultural interests, who introduced the study of the 

Mössbauer Effect in Latin America[27] and later became Director of the 
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Brazilian National Observatory, in the hope that he would appreciate its 

reading. 
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