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1. INTRODUCTION

The only spherically syﬁmetric asymptotically flat
solution of the Einstein—Maxwe]] equations is that of
Reissner-Nordstram (RN). It represents the space-time outside
a spherically symmetric charged body. There exist coordinates

in which the metric has the form

| om 2 2m 2 2
as? = (1 - =Ry - (- R s )7 arforfaet
r . r

da? = de? + sinZodel

where Mp represents the geometrical mass and q the electric
charge of the body. However, these two parameters are found to
be unrelated. Indeed one can put either mp or g equal to

zero. The invariant Kretschmann scalar o has the form

2
12m,q 4
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From this scalar it is evident that the geometry is not flat
when any one of the two parameters is different from zero. It
is natural then to conclude that the Einstein~Maxwell equations
admit solutions corresponding to a gphericaf!y syhmetric
massless charged body. The massless charge, however, is not a
peculiarity of the RN solution. In a paper, Som and Réychau-

dhuri!

demonstrated that the massless charged dust under rigid
rotation can exist in equilibrium in its own magnetic field.
In nature the existence of massless charge is yet

unknown. If one takes this fact as an undeniable physical
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situation, one should expect that the mass parameter in the
RN solution should take account of the contribution from the
electrostatic energy. However, when q = 0 one has mp = Mg
where mg is the Schwarzschild mass of the neutra] system. If
one adds td it a further restriction (on physical ground) that
the charge does not exist without its geometrical mass, then
Mp assumeé an invariant significance. If one works entirely
classically, one finds that, for a charged sphere, the effec-
tive mass is given by Gmo + A§2/a, where my is the bare mass
of the charged body and a is th= radius of the sphere. The
effective mass is never zero, unless the bare mass is negative.
One way to find the explicit expression of the mass.

parameter is to obtain the interior solution. Bonnor2 studied

the interior solutions correspcnding to a spherically symmetric

charge distribution. For q < Tr he found that the electrical

energy contributes to gravitztional mass. The mass parameter i
cannot be put equal to zéro unl=2ss the matter density is
negative. This solution is'unsatisfactory for a point charge,
since mp > as r. - 0, where s is the radius of the
charged sphere. For q > Mg tae only interior solution known

by the present authors has bean given recently by Teixefra,

3

Wolk and Som~. However, théir solution corresponds to an unphy-

sical source of long range sczlar field. For an attractive
scalar field these solutions zdmit the case where mp can be put
equal to zero. In this case one finds that the classical con-

dition of balance holds for lg] = Ib] , where |b] is the

'scalar charge strength.

In the present work we are tempted to investigate the

4



same problem from a different point of view. In a recent work,
Teixeira, Wolk and Som” showed how a static solution of the
Einstein-Maxwell equations may be derived from any static vacuum
solution. Henceforth we call it TWS method. In literature there
are other methods (Bonnors; Janis, Robinson and Winicoure) H
however, the interesting feature of the TWS method lies in the
fact itvis a generalization of the methods previously given by
Bonnor and by Janis, Robinson and Winicour. A1l the known so-
lutions of the Einstein-Maxwell equations for source free “
fields can be obtained quite easily by this method, and further
one can recover the original exterior solution in a straight
forward way. If the RN solution is obtained from the Schwarzschild
solution by the TWS method,it then follows that the mass para- |
meter can not be zero unless the charge parameter is zero. fhough
it is a particular way of obtaining the RN solution from the
Schwarzschild solution, the method picks out, from amoné all
possible RN solutions, jdst those of physical interest.

In section §2 we shall present a brief review of THWS
methbd for deVe]opfng coupled field solutions for the electro-
magnetic field from known vacuum solutions. In section §3 we
have used this technique to obtain the Reissner-Nordstrdm

solution from the Schwarzschild solution.

2. TWS METHOD

In the present section we review the TWS method for

developing coupled field solutions for the Einstein-Maxwell

equations.



If the metric of the line element

ds? = o2V (dxo)2 - T2V hijdXdeJ , (2.1)

. i s e s
~where v and h are functions of x (latin indices vary

iJ
from 1 to 3), represents the vacuum solutions of the Einstein
equations, then a static solution of the Einstein-Maxwell equa-

tions is given by

a2 = o2 (4x0)2 - &"2¥

i,.3d
gpdxtaxd (2.2)

where

-
"

- Zn(A cosh v + B sinh v) . (2.3)

The electrostatic potential ¢ (xl) and the electrostatic field

i
Foi (x') are

$ = - ae sinh v . (2.4)

F . =ae“ v, : (2.5)

A, Brand a are real constants of integrations, related by

B - A° = a : (2.6)

One can easily generalize (2.3), by including a magnetostatic
field

ij b —~— oijk
FiYo=2 /g el IR (2.7)

where b is a constant related with the angle of the duality

rotation 6 by tane = -b/a. The relation (2.6) then takes th

/

form



B - A = a® + b . (2.8)

We shall consider here only the electrostatic fie]d
so that the constanfs A, B and a always satisfy the relation
(2.6)! The different methods in literature can be obtained by

suitably choosing the constants.

Case 1) when A = a sinh c, one has B=a cosh c, then equation

(2.3) reduces to

¥ = - £n |a sinh (v+c)]| . (2.9)

Bonnor3 obtained the result in this form, which expresses the
solution of the Einstein-Maxwell equations in terms of the
known vacuum solution. In this form, the field refers to a set
of particles for each of which the specific charge is the same,
and such that the gravitational and electric forces ‘on each
particle balance. However, there is no straight forward way to

switch back to the original vacuum solution.

¢
&

2 2

Case 2) when A = 0, we have B =a~., Ifa =1, then equation
(2.3) takes the form

¥ = - &n sinh v . : ’ (2.10)

Equation (2.10) is equivalent to the result obtained by Janis,
Robinson and winicours. One can remark that such a field is due
to the existence of a sourcefree electrostatic field, and

vanishes as soon as the electric field vanishes.

Case 3) when A = 1, we have B = # (1+a2)]/2 » then equation

7

(2.3) is given by



Y = - £n [Eosh v - (]+a2)]/2 sinh YJ . (2.11)

We have chosen the negative value of B, because when a = 0, then

equation (2.11) corresponds to the original vacuum solution. In

~ this form Teixéira, Wolk and SomS presented the result which

gives the solutions of the Einstein-Maxwell equations in terms

of the known vacuum solutions.

3. REISSNER-NORDSTRUM SOLUTION

To obtain the RN metric by the above TWS prescription

we start from the Schwarzschild line element

2m 2m
as? = (1 - =2)(ax®)? - (1 - =571 arf Pae? (3.1)

Next we perform the coordinate transformation
exp (- 2ms/p) =1 - ZmS/r . (3.2)

The line element (3.1) takes the form

-2m_/p 2m_ /o
2 ]
ds = e S (dx%)2 - e S l:(ms/p)4sinh Yim /0y do? 4

2 . . -2 | '
+omg sinh (ms/p) szi] . (3.3)

'From this static, spherically symmetric vacuum solution the

prescription given by TWS method 1leads immediately to

d52 = [}osh(ms/p) + (1+a2)”2 sinh(ms/p{}'z(dxo)z

I— . ) .
- [cosh(mg/p) + (1+a2)1/2 sjnh(ms/pﬂz [(ms/p)4sinh-4

}



(m/p) dp? + mZ sinh™2 (ms/p)dﬂz:} . (3.4)

The 1ine element (3.4) can be written in the familiar form

2mR q2 2mR q2

a2 2,02
s? = (1 - Ry Tya®)i - Ly
= "

dr--r=dQ~ , (3.5)

by making the coordinate transformation

r = ms[éoth(mslp) + (1+a2)]/2-] s (3.6)
where
mp = (mg + qz)l/2 » Q= m.a (3.7)

o = -3 : (3.8)
Flg = % . (3.9)
r _

The transformation (3.6) is z simple change of radial coordinate

whose meaning is clear in the asymptotic region, where

r = p + (m? + q2)1/2

4. CONCLUSION

Starting from the Schwarzschild solution we obtained

the solution (3.4) of the Einstein-Maxwell equations for the



field of a spherically symmetric charged mass point. In regions
far from the source, the geometry of the space-time is flat. By
a real coordinate transformation (3.6) the solution (3.4)
can be reduced to (3.5), which is similar in form to that of
 the RN solution. "However, in tﬁis case the geometrical mass is

given by mp = (mg + q2)1/2-

If one puts q = 0, one immediately
gets back Schwarzschild solution. The vanishing of mp now implies
that both m and g must vanish identically, provided one
accepts both of them real which is the case for the TWS method.
In this case the geometrical mass of the charged mass point is

no more fpund to be independent of the electric charge q. When

me > 0, the effective mass mp > lg|. The coordinate transforma-
tion (3.6) reduces to r = p + |q], and a » o as mg > 0 in

such a way that q = m a is finite. The line element (3.5) tends
to the well known form

SZ 2,2

as? = (1-1al/m)(ax®)? - (1-lal/r) T8 arforfae? L (e

and the Kretschmann scalar
‘ .

3
o - ;’% E;qz'- 12 _I%I_ ¥ 7q4/r2] : (4.2)

which never goes to zero for any real value of q > 0 in finite
~regions. One recovers the flat space-time geometry only when
mp = 0. If, however, one do not want to give any invariant sig-
nificance to the parameters m. and q , one might put mp = 0

and g # 0. In this case we have from (3.6)

m, = £ iq . a =t i , r =q cot q/p , (4.3)

which asymptotically reduces to r = p. This gives rise to a.-
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- peculiar situation. In the near regions we find that r might take up

positive as well as negative values as p monotonically increases,

which implies an unusual behaviour of the radial coordinate.
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