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Abstract

Focusing on gauge degrees of freedom specified by a 1+3 dimensions model hosting a Maxwell
term plus a Lorentz and CPT non-invariant Chern-Simons-like contribution, we obtain a minimal
extension of such a system to a supersymmetric environment. We comment on resulting peculiar
self-couplings for the gauge sector, as well as on background contribution for gaugino masses.
Furthermore, a non-polynomial generalization is presented.
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I. INTRODUCTION

Lorentz and CPT invariances are cornerstones in modern Quantum Field Theory, both symmetries being
respected by the Standard Model for Particle Physics. Nevertheless, nowadays one faces the possibility that
this scenario is only an effective theoretical description of a low-energy regime, an assumption that leads
to the idea that these fundamental symmetries could be violated when one deals with energies close to the
Planck scale [1]. Taking this viewpoint, several approaches to analyze the violation of Lorentz symmetry
have been proposed in the literature. Eventually a common feature arises: the violation is implemented by
keeping either a four-vector (in a CPT-odd term [1]) or a traceless symmetric tensor (CPT-preserving term
[2]) unchanged by particle inertial frame transformations [3] which is generally called spontaneous violation.
Furthermore, the issue of preserving supersymmetry (Susy) while violating Lorentz symmetry is addressed
to [4]. This breaking of Lorentz symmetry is also phenomenologically motivated as a candidate to explain
the patterns observed in the detection of ultra-high energy cosmic rays, concerning the events with energy
above the GZK ( EGZK � 4× 1019 eV.T ) cutoff [5]. Moreover, measurements of radio emission from distant
galaxies and quasars verify that the polarization vectors of these radiations are not randomly oriented as
naturally expected. This peculiar phenomenon suggests that the space-time intervening between the source
and observer may be exhibiting some sort of optical activity, the origin of which is not known.
In a Theoretical Field proposal where this breaking of Lorentz invariance is taken into account, an analysis

of the unitarity, causality, and vortex-like solutions had been carried out in Ref. [6]. Another focus of
interest points to planar gauge systems, which play a relevant role in Condensed Matter descriptions, as
they happen to be related to issues like high-Tc superconductivity and fractionary quantum Hall effect.
Possible contributions from Lorentz-violating terms to the appearance of anisotropy in planar systems had
been investigated in Refs. [7] and [8].
A first proposal of Supersymmetry-Preserving Lorentz Violation was carried out in the work of Ref.[4].

The aim of that work was to investigate whether one could maintain desired properties of supersymmetric
systems, namely, cancellation of divergences and the patterns of spontaneous breaking schemes, while vio-
lating Lorentz symmetry. A Lorentz breaking tensor with constants entries has been adopted following an
original suggestion given by Colladay [3]. Working upon a modified Wess-Zumino model, the authors of Ref.
[4] had demonstrated that convenient changes of the Susy-algebra of fermionic charges and of Susy-covariant
derivatives expressions were enough to define a Susy-like invariance for the Lorentz violating starting theory.
As a matter of fact the modification of the algebra was achieved by adding a particular tensor-dependent
central term, of the kµυ∂

ν type, where kµυ exhibits real symmetric traceless tensor properties.
As a net result, it was shown that a model for a modified-Susy invariant but Lorentz non-invariant

matter system can be built. Moved by a different perspective, we now present an analysis on Lorentz and
Susy breakings concerning degrees of freedom in the gauge field sector. We start off by establishing the
supersymmetric minimal extension for the Chern-Simons-like term [1],

ΣCS = −1
4

∫
dx4εµναβcµAνFαβ , (1)

preserving the usual (1+ 3)-dimensional Susy algebra. The breaking of Susy will follow the very same route
to Lorentz breaking: the statement that cµ is a constant (in the active sense) vector triggers both Lorentz
and, as we shall comment on, Susy breakings. Handling proper superfield extensions for the background
shall prevent the model from displaying higher spin excitations, and interesting self-couplings for the gauge
sector as well as background contribution for the gaugino masses come up naturally as a consequence of the
(initially) supersymmetric structure.
In the next section, we present the Susy minimal extension for 1. In Section 2, a first generalization, with

non-polynomial couplings, shows up. Finally, we comment on conclusions and perspectives in Section 4.

II. THE SUPERSYMMETRIC EXTENSION OF THE MAXWELL-CHERN-SIMONS MODEL.

Adopting covariant superspace-superfield formulation, we propose the following minimal extension for 1:

A =
∫
d4xd2θd2θ̄

{
W a(DaV )S +W ȧ(D

ȧ
V )S

}
, (2)
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where the superfields Wa, V , S and the Susy-covariant derivatives Da, Dȧ hold the definitions:

Da =
∂

∂θa
+ iσµ

aȧθ̄
ȧ∂µ

Dȧ = − ∂

∂θ̄ȧ
− iθaσµ

aȧ∂µ;

from DḃWa

(
x, θ, θ̄

)
= 0 and DaWa

(
x, θ, θ̄

)
= DȧW

ȧ (
x, θ, θ̄

)
, it follows that

Wa(x, θ, θ̄) = −1
4
D

2
DaV :

Its θ-expansion reads as below:

Wa(x, θ, θ̄) = λa (x) + iθbσµ
bȧθ̄

ȧ∂µλa (x)− 1
4
θ̄2θ2�λa (x)

+2θaD (x)− iθ2θ̄ȧσµ
aȧ∂µD (x)

+σµν
a

bθbFµν (x)− i

2
σµν

a
bσα

bȧθ
2θ

ȧ
∂αFµν (x)

−iσµ
aȧ∂µ λ

ȧ
(x) θ2

and V = V †. The Wess-Zumino gauge choice is taken as usually done:

VWZ = θσµθ̄Aµ(x) + θ2θ̄λ (x) + θ̄2θλ(x) + θ2θ̄2D,

so the action (2) is gauge-invariant. The background superfield is so chosen to be a chiral one. Such
a constraint restricts the maximum spin component of the background to be an s = 1

2 component-field,
showing up as a Susy-partner for a spinless dimensionless scalar field. Also, one should notice that S
happens to be dimensionless. The superfield expansion for S then reads:

DȧS (x) = 0 and S (x) = s (x) + iθσµθ∂µs (x)− 1
4
θ̄2θ2�s (x)

+
√
2θψ (x) +

i√
2
θ2θσµ∂µψ (x) + θ2F (x) .

The component-wise counterpart for the action (2) is as follows:

Acomp. =
∫
d4x

{
−1
2
(s+ s∗)FµνF

µν +
i

2
∂µ(s− s∗)εµαβνFαβAν + 4D2(s+ s∗)

− 2is λ σµ∂µλ− 2is∗ λ σµ∂µλ−
√
2λ(σµν)Fµνψ +

√
2λ(σµν)Fµνψ +

+ λλF + λλF ∗ − 2
√
2λψD − 2

√
2λψD

}
(3)

As one can easily recognize, the first line displays the 4D Chern-Simons-like term (1), where the vector cµ

is expressed as the gradient of a real background scalar: cµ = ∂µσ, for s = ξ + iσ. Such a reduction of the
vector into a gradient of a scalar field stems directly from the simultaneous requirements of both gauge1 and
supersymmetry invariances.
Another interesting feature of this model concerns the presence of self-couplings for the gauge sector: the

fermionic background field, ψ, triggers the coupling of the gauge boson (through the field-strength) to the
gaugino. Moreover, using the field equation for the gauge auxiliary field D one arrives at a quartic fermionic

1 The gauge invariance of action 2 will become clearly manifest in the next section, where we rephrase the supersymmetrization
of the 4D Chern-Simons-like term in a formulation restricted to the chiral (anti-chiral for the h.c. counterpart) sector of
superspace.
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fields coupling - λλψψ -, and the background nature of ψ indicates a background contribution for the gaugino
mass2.
Concerning the breaking of Lorentz symmetry, realized by assuming cµ = ∂µσ to be constant under the

action of particle inertial frame transformations, one should observe that such an assumption implies that
the scalar component-field σ must be linear in the coordinates, σ = cµx

µ. As a matter of fact, a linear
dependence on xµ cannot be implemented by means of a Susy-covariant constraint (i.e., Susy-covariant
derivatives acting on S), and, in that sense, the choice of a rigid ∂µσ breaks Susy in exact analogy to the
Lorentz breaking scheme adopted. To better establish such a correspondence, one can consider the choice for
constant ∂µσ to be accompanied by a constant ψ requirement (and a constant auxiliary field, F , as well3).
In this context, a (passive) Susy-transformation keeps the status of all component-fields unchanged.
In the next section, we provide the model with a non-polynomial generalization, which brings about the

possibility of understanding the 4D C.S.-like term as a first order correction in a complete exponential
scenario.

III. NON-POLYNOMIAL GENERALIZATION

Let us note that the integration defined through the Grassmanian measure d2θ̄ (or d2θ ) can be represented
by the action of a squared Susy-covariant derivative (up to a normalization factor), D

2
(or D2), on the super-

Lagrangian W a(DaV )S + h.c., if one neglects boundary terms, and that the only sector of the superfield
product W (DV )S (or W (DV )S) that admits a non-null action of D

2
(or D2) is the factor DV (or DV ).

Such a manipulation leads to the Lagrangian d4x( d2θ W a(D
2
DaV )S + d2θ̄ W ȧ(D2D

ȧ
V )S), and one can

rephrase (2) through such a parametrization:

A = h

∫
d4x

{
d2θ[W aWaS] + d2θ̄

[
W ȧW

ȧ
S

]}
,

where a suitable dimensionless (perturbation) parameter h is inserted. We remark that such an inclusion
does not spoil any power-counting renormalization property of the model. Moreover, as we aim at a Susy
version for a model hosting both regular Maxwell kinetic term and the 4D C.S.-like term [6], we end up with
the following combination:

AMax.+C.S. =
1
4

∫
d4x

{
d2θ[W aWa] + d2θ̄

[
W ȧW

ȧ
]}

+
h

4

∫
d4x

{
d2θ[W aWaS] + d2θ̄

[
W ȧW

ȧ
S

]}
.

Such an expression induces a straightforward non-polynomial generalization:

Anon−pol. =
1
4

∫
d4x

{
d2θ [W aWa exp(hS)] + d2θ̄

[
W ȧW

ȧ
exp(hS)

]}
, (4)

leaving room for a perturbative approach parametrized by orders of h. In fact, the action (4) includes a zero
order supersymmetric Maxwell theory, a first-order Susy-extended 4D C.S.-like term (reproducing the action
of the eq. (3)), and higher orders contributions. In component-field parametrization, action (4) reads:

Anon−pol. =
1
4

∫
d4x

{
exp(hs)

[
−1
2
FµνF

µν − i

2
F̃µνF

µν − 2iλaσµ
aȧ∂µ λ

ȧ
+ 4D2+

+ h
(
−2

√
2λaψaD + λaλaF −√

2λa (σµν)a
b Fµνψb

)
− h2

2
λaλaψ

bψb

]
+ h.c..

}

2 We shall analyze the propagator structure for the gauge component-fields in a forthcoming communication. We anticipate
that a constant ψ component-field configuration is compatible with the supersymmetry algebra.

3 In fact, a constant auxiliary field F is singled out as a susy-invariant parameter, as far as one deals with a constant ψ.
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The exponential version brings about the 4D C.S.-like term in the form − i
8 exp(hs)F̃µνF

µν+h.c., demanding
an integration by parts to reproduce the expression i∂µ(s − s∗)εµαβνFαβAν . One should also realize that
a quartic fermion-fields coupling is already present at order h2 , even if the field equation for the auxiliary
field D is not used to eliminate it. It is also interesting to observe how the background components s, ψ and
F influence on the gaugino physical mass.

IV. CONCLUDING COMMENTS

Working on the gauge-field sector of a system with a Lorentz breaking 4D-Chern-Simons-like term, we have
been able to derive its minimal supersymmetric extension and a peculiar nom-polynomial generalizations
has been proposed that is compatible with N = 1-Susy. Focusing on the minimal Susy-extension, one should
already realize the presence of new couplings induced by the background (passive-)superfield components.
The assumption that the Lorentz breaking is implemented by means of a constant vector, regarded as a
background input, finds its as a Susy-counterpart in a set of requirements on the space-time dependence
of each component-field of the background superfield, S. A scalar field, s, linearly dependent on xµ, as
well as a constant spinor field, ψ, arise as a consequence of gauge invariance, and these results impose
that, eventually, coupling terms are to be regarded as mass terms. A complete analysis of the propagator
structure for the gauge supermultiplet, both in superspace and in component-fields, is mandatory, including
an interesting study of the gaugino (background-)induced mass. We shall very soon report our efforts in this
matter elsewhere.
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