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ABSTRACT

By elaborating on the concept of information (herein represented by a specific generaliza-
tion of the entropy) we propose an unified picture for statistical inference which treats on
equivalent footing the “Bayesian” and “frequentist” views on the concept of probability.

We illustrate on the Envelope Game.
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1 Introduction

The concepts of information, entropy, probabilities, statistical inference are deep and
delica.t.é, hence subject to multiple interpretations and controversies. Due to this fact,
two main schools of thought have nowadays developed, namely the so called “Frequentist”
and “Bayesian” ones [1]. The frequentists put the emphasis on the limit of a frequency of
(real or virtual} occurrence as the correct definition of a probability; the Bayesians put the
emphasis onto Bayes theorem. A very interesting discussion of relevant issues has been
provided by Rodriguez [1] by using, as an illustration, the dilemme frequently referred
to as the “Envelope Game”. Let us recall this paradox in a quite essential version. Two
similar envelopes are placed in front of you and you are informed that one of them contains
the double of the money contained in the other one. You are authorized to definitively
keep only one of the envelopes (and we assume you would like it to be the one which
contains more money!). Once you choose one of them and before you open it, you are
allowed to permutate it with the other envelope, and this as many times as you would
like to. Is it your interest to do that?

Let us analyze the “naive” statistical inference reasoning: “This envelope contains a
quantity of money z; consequently, the other one contains either 2z or z/2 with equal
chances. Therefore, the expectation value is (2x)(1/2) + (z/2)(1/2) = (5/4)z. Since
this value is greater than z (which I have in hands}, it is my interest to exchange it
for the other”. The argument still holds once you have exchanged, consequently your
“rational” attitude should be an endless sequence of permutations, a quite absurd behav-
ior! Clearly, the only way out of the paradox is to have an “expectation value” which
equals z. Through a Bayesian analysis, Rodriguez exhibits the admissibility of the solu-
tion (22)(1/3) + (z/2)(2/3) = z. Barron [2] provides basically the same solution along
equivalent (Bayesian) lines by introducing the “sponsor” of the game (he simultanecusly
address an equivalent problem, namely the so called “Money Pump”).

Furthermore, Rodriguez makes an analogy between Modern Physics and Statistical

Inference. He states that, in the same manner we have in Physics,
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}LT,, (Relativistic Mechanics)=(Classical Mechanics} (1)

(¢ = vacuum light velocity)
and

}1‘1_% (Quantum Mechanics)=(Classical Mechanics) - ®-

(h = Planck constant),

we have, in Statistical Inference, that

}l.n;; (Bayesian)=(Frequentist) (3)
where I represents prior information and Iy the state of knowledge of “Total Ignorance”,
i.e., absence of prior information.

It is the aim of the present note to suggest a more comprehengive frame in which the
concept of “probability” would be intimately related to the concept of “information”. In
other words, a given choice of “information” (herein represented by a specific generaliza-
tion S, [3] of the Boltzmann-Gibbs-Shannon entropy) would be consistent with one and
only one choice of “probability”. If this idea was correct, Bayesian and Frequentist infer-
ences would be treated on equal footing, and Eq. (3) would require further qualification
(this point will become clear later on). The idea is illustrated with the Envelope Game.

2 Generalized Statistical Mechanics and Thermo-
dynamics

It has been recently been proposed the generalization of Statistical Mechanics (3] and
Thermodynamics [4] by using the following generalized entropy (in units of a conventional

constant k > 0)

_ 1=
5 = g-1 (4)
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(discrete version [3]; {p;} are the probabilities; 3 .p; = 1). This entropy yields the

following related forms:

.
S, = I_Ceqf_d"l’[l’(“)]q (5)
= - [aalplayp == G ®)

(continuous version {5; C, is a constant whose dimension is that of [z]?~?, and which

is irrelevant for the entropy optimization problem; if  is a pure number, we can take

Cq:l)

1—=Trp?
S = g—1 (6)
l-¢q 1
= —Trpif ’
= -Trp =4 (6")

(off-diagonal version [6], p being the density operator)

20 =1 _ |
5'=-—ZP'('/ 21 : ™

(discrete version of the cross or relative entropy [7}; {p,(-o)} are reference probabilities,

frequently taken to be those corresponding to equilibrium; . p( ) = = 1) and

/01 — 1
Y PRLCTLC) e

-1
(continuous version of the cross or relative entropy {8}; if p®(z) independs from z, we can
identify the constant C, appearing in Eq. (5) with (pfo))l_q).
In the ¢ — 1 limit (and using 2z!~7 ~ 1+ (1 — ¢} In 2 for arbitrary positive z) we recover

the standard expressions

S1=- ZP:' In p; 9
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(Shanon entropy [9])

i =- f dop(z) In p(z) + C (10)

(Boltzmann-Gibbs entropy [10]; C is a constant which depends on the dimension of z and
which is irrelevant for the entropy optimization problem; if x is a pure number we can
take C = 0)

S1=-Trplnp (11)

(von Neumann entropy [11])
Si==) pin(m/p”) (12)

(discrete version of Kullback-Leibler [12] or Shannon-Jaynes [13] cross entropy)

and
$=—]aﬂ@mwﬂm@wn (13)

(continuous version of Kullback-Leibler or Shannon-Jaynes cross entropy; if p® independs
from z, we can identify the constant C' appearing in Eq. (10) with ln(p®).

S, as given in Eq. (4) belongs to the large class of entropies considered in Information
Theory [14], and exhibits the same functional form (but a different ¢-dependent prefactor)
as the entropy intfbduoed by Havrda and Charvat [15] and by Daroczy [16]. Futhermore,
it is related the so called Renyi entropy (3, 16] SF = (In 3", p{)/(1 — ¢) through

_lnfi + (1 - g)S,]

R
S 1—q

q

(14)

S, is positive (Vg), expansible (for ¢ > 0), concave (for ¢ > 0; it is convex for ¢ < 0),
invariant under permutations within the {p;} (Vq), extremal for equiprobability {maximal
for ¢ > 0, and minimal for ¢ < 0}, a monotonically increasing function of the total
number W of possible configurations (Vg;3 1, pi = 1), a decreasing function of ¢ for
fixed {p;}, continuous in {p;} (in the interval [0,1] for ¢ > 0, and in the interval (0,1) for
g < 0). If A and B are independent systems (in the sense that pfi“Z = p#pP V(s j)), S,
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is pseudo-additive (or pseudo-eztensive) {17]:
SHB = 52+ 52 +(1-q)S2ASE (15)

Let us remark at this point that S, is substantially different from Sf. Indeed, it is
generically concave and noneztensive, whereas Sf is generically nonconcave and extensive
(SR(AUB) . gR(4) 4 GR(B)) This makes an enormous difference if physical applications are
focused. Indeed, concavity guarantees the thermodynamic stability of the system (posi-
tive specific heat [17, 18], generalized fluctuation-dissipation theorem [19], etc.), whereas
extensivity can be seen as a mathematically simplifying linearity property which might
be present or not. Before going on to further physical considerations, let us mention a

remarkable property [4] (which generalizes the celebrated Shannon additive property). If

we define pr, = Y '% and py = E?iw;, n P (pe +pm = 1), we easily prove that

Se({pi}) = So(pr,pu) + PLSe({pi/pL}) + Pae So({pi/PM}) (16) |

where the sets {p;}, {pi/pr} and {p;/pm} contain respectively W, Wi and (W — W)
probabilities.
The likelihood function associated with {p;} is given by [19, 20}

P({p:}) o [1 + (1 — )S,({m )™ 1)

In the ¢ — 1 limit we recover the Einstein expression [21] Py({pi}) « e®({#1), To obtain
the equilibrium distribution we must extremize P,({p:}), hence S;({p:}), under the given
constraints. For understanding how the generalization of Statistical Mechanics proceeds,
it suffices to discuss the grand-canonical ensemble. The equilibrium distribution {p;*}

optimizes S, under the constraints

Y om=1 (18)

<H>=)Y ple=U, (19)
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({&i} = set of eigenvalues of the Hamiltonian H; U, is assumed finite and known)

<05 = ZP?O:{“) = O:(:m) (m=1,2,..) ‘ (20)

(O‘(m) are the eigenvalues of the observable O{™}, herein assume(i, for simplicity, to com-

mutate with H; {05'“’} are assumed finite and known). It is easily proved that [3, 6]

eq {1 —B(l-g)lei+ 3., pmo.[m)]}r}-?
" Ze (21)

with the generalized grand-partition function given by
MYy <
Z,=) {1-B1—gei+ ) pnO™} = (22)
B and {fu.} being the Lagrange parameters. Eqgs. (21) and (22} recover, in the ¢ — 1
limit, the standard (Boltzmann-Gibbs) exponential law. The canonical ensemble is ob-

tained when the constraints (20) are not present, hence g, = 0 (¥m), hence

Pl = [1 — A(1 - Qe ™ /2, (23)
with
Z,= Y 11— A1 - el ™ (24)

The microcanonical ensemble is obtained when even the constraint (19) is absent, hence
8 =0, hence
s =1/W (Vi) (25)

It can be also proved in general that (using 8 = 1/T) {4, 6]

1 85,
T ~ a0, (26)
pm 05
T = 500 (Ym) (27)
8 Z} -1
Zi-g _
om = A (29)

! _3(ﬁﬁm) 1-¢
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and
Fp = Uy=T8 = pmO™ - (30)
_o1zr-1
B 1—gq

The presence of p! (instead of p;) in the constraints (19) and (20) demands some com-
ments. Surprising at first sight, it is in fact very natural since: (i} it appears in Eq. ( 16).;
(ii) it enables a connection with appropriately generalized (nonextensive) Thermodynam-
ics which preserves the standard Legendre transform framework [4] (or equivalently, it
automatically satisfies Jaynes Information Theory duality relations [6]); (iii} it produces,
at long distances, power-law distributions (instead of ezponential ones} within an entropic
variational procedure which uses acceptable a priori constraints [22]; indeed, if we opti-
mize §, with the constraints [ dzp(z) =1 and < 2? >= [ dz[p()]?2? = o} (o, is finite
and known) we obtain p(z) o 1/[1 + B(q — 1).7:’]?57, which recovers the Gaussian law for
g — 1, the Lorentzian law for ¢ = 2, and generic power-laws p(z) o 1 /.1:1%1 if z — 00 and
q # 1 (the benefic effect of using p? can be seen, for instance, for ¢ = 2: for the Lorentzian
distribution p(z) o« 1/(1 + Bz%), < z? >; is finite whereas < 2? >1= [ dzz?p(z) di-
verges; (iv) it produces ¢-invariant forms for the Ehrenfest theorem [6], the von Neumann
equation [23], one of the Einstein relations for stochastic movement {24], among other
remarkable properties. The g-ezpectation value < O >,= 3. plO; {associated with the
observable O) can be interpreted as a standard mean value of (p77205), but should by no
means be interpreted, for ¢ # 1, as a standard mean value of O. Indeed, < A >,# A for

any nonvanishing constant .

3 Information, Probabilities and the Envelope Game

Let us now address a central point: what is the meaning of ¢ in terms of inference? Jumarie
[25] argued, for the Renyi entropy, that ¢ < 1,¢ =1 and ¢ > 1 correspond respectively

to prior knowledge, no prior knowledge and prior misknowledge. Since S, is, for fixed g,
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a monotonically increasing function of ST (see Eq. (14)), the same interpretation should
apply to S,. Let us illustrate this fact through a simple example. At t = 0, four boxes
are presented to you, and you are informed that one (and only one) of them contains
a chocolate. Since for equiprobability (p; = 1/W, Vi) we have S, = (W'~7 — 1}/(1 — ¢)
(generalization of S; = In W), then So(t = 0) = 3, Si(t = 0) = In4 and S,(¢ = 0) = 3/4.
At t = 1, you are informed that the chocolate is in one of two specific boxes (among the
four ones). Then So(t =1) = 1,5,(t =1) =In2 and S5(t = 1) = 1/2. Finally, at t = 2,
the good box is indicated. Consequently, So(t = 2) = Si(t = 2) = 52(t = 2) = 0. See
Fig. 1, where the relevant quantity S,(t)/S,(0) is represented. We verify that the time-
evolution towards full knowledge (i.e., S, = 0) is slower for increasingly large ¢. Since
g = 1 is known to correspond to no prior knowledge (see, for instance, the “kangaroo
argument” [26]), the association of prior knowledge (prior misknowledge) to ¢ < 1(g > 1)
is intuitively consistent.

Let us finally address the Envelope Game. We suggest here that the “expectation
value” which drives the decision is the q-ezpectation value <gain>,. For the envelope in
hands it is (z)1? = z. For the other envelope it is (2z)p? + (2/2)(1 — p)?. As already

argued, it must be < gain >;"°"”°“’P°=< gain >§"d’""°‘°"‘, hence
1
2" +5(1—p)' =1 (31)

which is represented in Fig. 2. The Bayesian answer p = 1/3 (see [1, 2]) corresponds
to ¢ = 1 information (no prior information), whereas the frequentist answer p = 1/2
corresponds to ¢ = In(5/2)/In2 (=~ 1.322) information (prior misknowledge). They are
equivalent among them and equivalent to any other solution of Eq. (31). If we go back
now to physical analogies, the situation is fully analogous to Quantum Mechanics. Indeed,
within this formalism, the time-evolution of the physical quantities can be exclusively as-
sociated with the wave functions (Schroedinger representation), or ezclusively associated
with the operators (Dirac representation) or partially with both wave functions and op-

erators (Heisenberg or mixed representation). In terms of schematic formulas (like Eqgs.



—9- CBPF-NF-033/94
(1-3)), we would have
(Bayesian, ¢ = 1 information)=(Frequentist, ¢-information) - (32)

thus recovering, in particular, the well known result that Bayesian and Frequentist analysis
coincide whenever no prior knowledge is available (i.e., ¢ — 1). Also, Rodriguez “formula”

(present Eq. (3)) would be interpreted as follows:

Ilirrll (Bayesian, q=1 information)

—+ig

= lintll (Frequentist, g-information)
q—ﬁ

= (Frequentist, =1 information) (33)

where we have used Eq. (32).
Before ending, it is instructive to consider the generalization of the Envelope Game
in the sense that one of the envelopes contains (instead of the double) p times the money

contained in the other one (p > 0). Eq. (31) is generalized into
¢y ] 9
it o(1-p) =1, (34)

hence p(q, p) + p(g,1/p) = 1.
The Bayesian viewpoint corresponds to ¢ = 1; consequently Eq. (34) implies

1
PR = m, (35)

hence ps(p) + pa(1/p) =1 (see Fig. 3).

The Frequentist viewpoint corresponds to p = 1/2; consequently Eq. (34) implies

In 1
w=22tD) (36)

hence gr(p) = gr(1/p) (see Fig. 4).
The p — 1 limit is an interesting situation. Eq. (34) implies

P (l-p)f=1 (37)
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whose unique solutions are either (¢ = 1,V¥p) or (¢ # 1,p = 0 or 1); furthermore, the
Bayesian point (p,q) = (pg, 1) collapses with the Frequentist one (1/2,¢r). The global
situation is depicted in Fig. 5.

Further statistical inference examples in order to test the present proposal would be
very welcome.

A satisfactory outcome of the present discussion would certainly enlighten Equilibrium
and Nonequilibrium Statistical Mechanics, where confrontation between the two schools
does exist. Dougherty [27] has carefully compared both philosophies. He refers to the
frequentists as the Brussels school (“objective probability”; relevant names: L. Boltz-
mann, P. Ehrenfest, R.C. Tolman, L. Landau, S. Chapman, D. Enskog, N.N. Bogoliubov,
D.N. Zubarev, I. Prigogine, R. Balescu, J.L. Lebowitz), which uses, as starting point, the
microscopic dynamics. He refers to the Bayesians as the Mazent school (“subjective prob-
ability”, “degree of belief”, “information theory”, and other anthropomorfic concepts;
relevant names: J.W. Gibbs, C.E. Shannon, E.P. Wigner, E.T. Jaynes, W.T. Grandy,
A.J.M. Garrett, D.N. Zubarev, R. Balian), which uses, as starting point, the optimization
of an appropriate entropy with conveniently chosen constraints. To reinforce the pro-
posal for unification that we have developed in the present paper, let us quote some of
Dougherty’s statements: “ . -thus revealing the equivalence of the methods of the Brussels
school and the Mazent school -7, “As we believe that the work of the two schools is in

“ .. my conclusion is

the end equivalent we can adopt e unified attitude to the gquestion”,
that, not withstending the tacit antagonism between the two schools, the different-looking
formalisms and the differing fields of application, they are very likely to be equivalent”,
“Eventually it should be possible to offer a broader formalism that makes the best use of the
mathematical techniques of both.”, “If the two formalisms are indeed equivalent, it may be
possible to weld them together, or to present them as special cases or aspects of something
more general,”, “-- they can be seen as part of a common underlying structure.” Also,

Behara ([14], page 19) writes (unfortunately with no further details): “During the past few

years, researchers in information theory have been busy in investigating the relationships
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between the notions of probability and information. We do not go into these details
here. However, it would be appropriate to mention that probability of eccurrence of an
event can also be regarded as a function of the amount of information yielded by that
event.” By introducing a generalized entropy S, within the methodology of Information
Theory (Bayesian philosophy), and in principle determining {as suggested by the results
presented in [5] and [22]), through the particular microscopic dynamics (frequentist phi-
losophy), the correct value of ¢ to be used, we believe that we are exhibiting a realization
of Dougherty’s philosophical program and of Behara's comment. To close these general
remarks, let us add an analogy with the historical evolution of the concept of “motion”.
For most pre-socratic philosophers, motion was an intrinsic property of the moving ob-
ject; Galileo showed that this is essentially wrong since motion must be thought with
reference to an external frame. Analogously, we are herein suggesting that probability
must be thought with reference to an information frame (implicitely or explicitely taken
into account in the experimental protocol of the phenomenon we are focusing).

It is our pleasure to acknowledge J. Schweitzer, who draw our attention onto the
Envelope Game and related references. Two of us (C.T. and G.D.) are grateful for warm
hospitality received at the Laboratoire d’Expérimentation Numérique (Université Joseph

Fourier de Grenoble). Also, computational assistance by J.A. Redinz is acknowledged.
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Caption for Figures

Fig.

Fig.

Fig.

Fig.

Fig.

1 - Time evolution of the ¢ = 0,1, 2, co entropies for the “chocolate in the boxes”

problem.

2 - Locus in the (g,p) plane where the paradox does not exist (¢ =entropy index;
p =probability of having the envelope which contains more money). The point
corresponding to the “naive” reasoning which leads to the paradox, as well as those

corresponding to the Bayesian and Frequentist solutions, are indicated.

3 - The Bayesian solution when one envelope contains p times the money contained

in the other one.

4 - The Frequentist solution when one envelope contains p times the money con-

tained in the other one.

5 - The general solution (in the (g,p) plane, for typical values of p) when one
envelope contains p times the money contained in the other one. p = 2 reproduces

Fig. 2; p = 0 yields p = 1,Vg < 00; p — o0 yields p = 0, Vg < co.
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