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ABSTRACT

Within a Migdal-Kadanoff-like real-space renormalisation
group procedure we treat critical properties of the quenched
bond-mixed spin—l Heisenberg ferromagnet in simple cubic lat-
tice. We verify ihat it is possible, within a very simple frame
work, to obtain quite reliable results for the critical temper-

atures. In addition to that, a general method for renormalising

arbitrary clusters of Heisenberg-coupled spins-% is outlined.



Real-space renormalisation group (RG) techniques are being
extensively used to treat criticality (critical frontiers and
exponents, specific heat, magnetisation, surface tension, cor-
relation lengths) in all types of magnetic systems. If conven-
iently formulated, they prove to be an extremely useful tool to
discuss a great variety of situations such as quenched or an-
nealed, classical (percolation, Ising, standard and chiral Potts,
Z(N), S»=» Heisenberg models) or quantum (transverse field Ising,
isotropic and anisotropic Heisenberg models), pure or bond-
and site-mixed, ferromagnetic, antiferromagnetic and spin-glass
systems. In particular, an overall analysis, within a Migdal-
Kadanoff-like framework, of critical properties in quenched bond-
dilute Spin—l Heisenberg and Ising magnets is already availa-
ble (Stinchcgmbe 1979b) . Herein we extend that treatment in or
der to cover the binary bond-mixed Heisenberg ferromagnetic case
in simple cubic lattice. In spite of the simplicity of the pro
cedure, the results (especially those for the critical temper-
atures) will turn out to be qualitatively (and to a reasonable

extent quantitatively) reliable.

Let us consider the dimensionless Hamiltonian

M- 1 k. 8.3
<i > Mot

(1)

where S;=1/2, ¥i, the sum runs over all pairs of first-neigh-
bouring sites on a simple cubic lattice, and the factor (—l/kﬁm
has been incorporated into the Hamiltonian (KijEJij/kBT); fur-

thermore Kij is a random variable associated with the following

probability law:
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P(Kij) = (1-p) S(Kij—Kl) + pS(Kij—Kz) (05_K15J<2) (2)

The particular cases aEKl/K2=l and a=0 respectively correspond
to the pure and diluted situations.

Before establishing the RG recursive relations on which
our treatment will be based, let us consider a series array of
two bonds with coupling constants K and K

12 237
. . ; > > > > .
necting the pairs of spins (Sl,Sz) and (52’83) (see Fig. l.a).

respectively con

The preserval of the partition function under tracing on the

intermediate spin §2, i.e.

K'+ K $,.8 K,.$. .8.+K, .5..8 (3)
eO Sl3=Tre12122323
2
provides (see Appendix):
ZAl
4X e + 2X,cosh2X,-X,sinh2)
K, = L fn—2 2 2.1 L2R_(K,,K,)  (4)
4 3(2kzcosh2A +A,sinh2A.)
21 2
where
Al = K12+K23
- > 2 r> 2 -
Ny = VKL, KD KK
This expression: (i} satisfies KS(Klz,K23)=KS(K23,K12L A4 K12’
K23; (ii) satisfies KS(K12,0)=0 for any finite K127 (iii) re-

covers, for K12=K23, Eg. (4) in Stinchcombe 1979b; (iv) pro-

vides, in the high temperature limit,

K.~ Kj,K), (K, rK,p<<1), (5)



which coincides with the high temperature limit of the series

composition law (tanhKISlng

_tanhK1 tanhK ) fo_r,spin—l Ising
2

couplings (see, for example, Ycung and Stinchcombe 1976); (v)

provides, in the low temperature limit,

K~ L(K. .+ -/K%, +K2_-K. . K..)

12% 237 R12%23 >>1) (6)

(K9 7%y3
which can be compared with the low temperature limit series com
position law for the classical Heisenberg model (Stinchcombe

1979a)

class _ F12%23
K

(K, 1Ky 5>>1) (7)

23
12+%23

By using both Egs. (6) and (7) we can verify that K ﬁéﬂass

notonously increases from 3/4 (h(S) for arbitrary spin size S,
where h(1/2)=3/4 and h(x)=1) to 1 while K23/K12 increases from
0 to 1,

An interesting quantum effect present in Eq. (4) is the
following: while for classical systems such asthespin—l Ising,

2
S»» Heisenberg and g-state Potts (see Tsallis and Levy 1981)

models, we verify that Il(lm+°° K (Klz’ ) = Klz’ 'VKlz, for
23
the S=1/2 Heisenberg case we verify that lim I((K12,23)_nK12,
K ->00
23

where n monotonously increases from 2/3 (g(S) in general, with

g(l/2)=2/3 and g(«)=1) to 3/4 (h(S) in general) while K12 in-

creases from 0 to infinity.

Let us now consider a parallel array of two bonds with

coupling constants K12 and K13 (see Fig. 1.b). It is clear that



the equivalent coupling constant is given by

K =K..+ K. . =K (K

p 12 13 p 12%3) (8)

To construct the RG we follow along the lines of Stinchcombe
1979b by using the Migdal-Kadanoff procedure (Migdal 1976, Kadanoff
1976) which combines decimation and bond shifting as illustrated
in Fig. 2 for an arbitrary set of coupling constants. Consequently

the use of algorithms (4) and (8) leads to
K = KS(Kl,Kz)-fKS(K3,K4)-+KS(K5,K6) +KS(K7,K8) (9)

which is the central formula for constructing the RG. If to every
bond of Fig. 2.a we associate the probability law (2), then the
renormalised bonds (indicated in Fig. 2.c) are to be associated
with
15 8-~n_n -
Po(Kyj) = 1 M (1-p) s T 6 (K -K ) (10)
r=1
where the exponents {nr}, weights {Mr} and coupling constants
{ﬁr} are given in Table I. It is clear that the present opera-
tions do not preserve the binary form of the initial distribu-
tion (2). It is possible, in principle, to follow the evolution
of the distribution along the successive renormalisations. How-
ever a simpler, and nevertheless reasonable (see Stinchcombe 1979,
Levy et al 1980 and references therein) procedure can be adopted,

namely to approximate distribution (10) by the following binary

one:
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P'(K; ) = (L-p') (K, -K) + p'6(K;;~K)') (11)

where p', Kl' and K2' are chosen to preserve three convenient

moments. By naturally extending Stinchcombe 1979b we impose

p' = l—(l-—pz)4 ("zeroth" moment) (12.a)
<Kij>P' = <Kij>PG (first moment) (12.b)
<K?,>., = <K?.» (second moment) (12.c)

ij’ P ij°P,

which completely determine the RG recursive relations in the
(p,Kl,Kz)—space. The results are indicated in Fig. 3. The two
physically distinct non trivial fixed points are the pure Heisenberg
(lLocated at KC=O.3439, to be compared with the series result
0.30 (Ritchie and ¥Fisher '1972)) and the bond percola-
tion (located at pC==O.2818, to be compared with the se-
ries result 0.25 (Sykes et al 1976)) ones. The present values for
KC and p, as well as the associated correlation length critical
exponents (ngl.4O and vp%l.23) reproduce those appearing in
Stinchcombe 1979b. Within the critical surface (see Fig. 3.a),
the RG flow is towards the pure Heisenberg fixed point, i.e. the
criticality of the whole surface (excepting of course the strict
percolation point) coincides with that of the pure case. How-
ever one should be precautious on these grounds as Eq. (l12.a)
strongly (and to a certain extent artificially) drives in that
direction. Some other anomalies are present in the RG deter-
mined by Egs. (12), such as small unphysical bumps in the RG

flow in the neighbourhood of the percolation point. These and



other minor points can be improved by (i) matching, instead of
the "zeroth", first and second moments of Kij’ the first, second
and third moments of a quantity f(Kij) to be defined and sat-
isfying £(0)=0 and f(»)=1; and (ii) using bigger and/or more con
venient clusters (this is in principle feasible by following the

general procedure outlined in the Appendix). This type of more

sophisticated RG's have proved to be possible in other occasions
(see, for instance, Levy et al 1980 for the Ising model); work
along this line will be published elsewhere.

Let us conclude by stressing that, without introducing great
mathematical complexities, the present treatment has provided
reliable results concerning the critical temperatures (see Fig. 3.b)
of a bond-mixed quantum Heisenberg ferromagnet in three-dimen-
sional lattice (in particular the errors in the pure Heisenberg
and bond percolation critical points are less than 15% and 13%
respectively).

Two of us (CT and RBS) are indebted to RJ Elliott for in
teresting remarks. CT also acknowledges relevant comments and
valuable computational assistance from A O Caride, G Schwachheim
and E M F Curado; he benefited as well from warm hospitality at
the Theoretical Physics Department/Oxford and from the financial

support of a Guggenheim Fellowship.
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Appendix

Let us consider the array of bonds appearing in Fig. l.c.

Its dimensionless Hamiltonian is given by

-> : > > > >
WMi,3 = K, 8,8, +K,38,.8, + K5 .5, (A.1)

and can be rewritten as follows:

Pigg = 2Hppg — (K #K, 54Ky ) (A.2)
where
Higg = KypHyp +KygHy g + K 0K 4 (2.3)
with
_ > >
HlJ = -2—(l+Sl.SJ) (A.4)

For spins 1/2, Hij is the exchange operator (it exchanges the
states of the i-th and j-th spins) and its eigenvalues are +*1.
5 .

therefore J and M are good quantum numbers (J=3/2, 1/2 and

123 commutates with both S? and s? where §EE§1+§2+§

M=J,J-1,...,-J). The representation associated with J=3/2 ap-
pears only once and generates 4 projections (M=x3/2,%*1/2); the
representation associated with J=1/2 appears twice, and each of
them generates 2 projections (M=%*1/2); hence the full represen-

tation is associated with 1x4+2x2=2> states. In the present pro



cedure we shall always work on the states subspace associated
with M equal to the minimal value of J (M=1/2 for an odd num-
ber n of spins, and M=0 for an even number of spins) because

every state is contained within. For the present n=3 case, J=3/2

contributes with a 1xl1 matrix; and J=1/2 with a 2x2 one; as a
whole we will have to deal with a 3x3 matrix. For the general
case with n spins connected through n(n-1l)/2 two-body coupling
constants {Kij}’ the array will be a (n-1l)-dimensional hyper-
tetrahedron (the 2-dimensional hypertetrahedron being the tri-
angle), and the Hamiltonian }412..'n will commutate with 82
and S? where _S>E'r211 §i (J=n/2, n/2-1,..., /2 or 0; M=J, J-1,...,-J).
i=

The representation associated with a particular value of J ap-

pears N(n,J) times with

n

N(n,J) =| . 2(29+1) (A.5)

- J | n+2(J+1)

and each of them generates (2J+1) projections. We can verify

that

y (23+1) N(n,J) = 2"
(A.6)

Within the states subspace we mentioned before, a particular value
of J contributes with a N(n,J) xN(n,J) matrix; consequently, we

have to deal as a whole with a Nx N matrix where

—_ . n!/(%!)2 (n even)
Nz) N(n,J) = (
J= 2,2 1, !
2 2 }
n!/(%l-)!(—n;—l)! (n odd)

(A.7)



Let us go back to our present n=3 case, and introduce the

. z zZ Z
notation [S], S7, S5

said before, it suffices to work in the subspace associated with

> to denote the states of the array. As we

M=1/2 and introduce

o, = [v t 4>
¢, = [t ¥ 4>
o5 = [+ 4 4>

(if we had n spins, we would have to introduce N ¢'s). It is

straightfoward to verify the following relations:

Hi 0y =9,
H12¢2 = ¢1 (A.8)
CHygbs = 04
hence
€1 €y
— 1
Hy, e, |=| & (v el,ez,e3) (A.8")
€3 €3
|
Analogously we obtain
e
. 1 €1 1 €3
93 e2 = | e, and H13 e, | = e,
e e
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We can immediately verify that the symmetric form ¢ = ¢1¥¢2+¢3

satisfies

(A.9)

(r.9")

and corresponds, assuming all {Kij} are positive, to the fundamen
N
with

tal state (in general ¢§§1 s satisfies H,,  ¢=1;¢,
Alz(iij) Kij where (ij) runs over the n(n-1)/2 couplings and where
H12...n5(§j)Kinij)'The matrix LE<¢k|H12.-.nl¢k'>=(ggfﬁj<¢leijl¢k'> is

given, in our n=3 case, by

23
(A.10)

13

which is symmetric (hence the eigenvalues are real) and presents

a cyclic structure. Its eigenvalues are Al given by Eq. (A.9'),

A, given by

2
(A.11)

_ 2 2 2 - - -
Xy = VR p+K)3+K)3=K K, 3=K) JK, 3=K 0K) )

and A3=—A2. The corresponding eigenvectors are respectively

lp,> = (A.12.a)

i
i
o
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[v,> = | K q=K,q+ (A.12.b)

Ky3=Kip*h,

Through Eg. (A.2) we see that the eigenvectors of}&lz are

3
those of Hi,s and its eigenvalues are given by
€, = Al (A.13.a)
€, = _A1+2x2 (A.13.Db)
€y = —A1—2A2 (A.13.c)

(in general it will be e,;=A;= ) Ry; and g=-A+2h  (k=2,3,...,N)).

1

(i3)
\ . . i . 123
Now that we have diagonalized Mle let us deal with e .
The expansion of this quantity leads to
e 23 _.4a +a .3 .8 +a,.8 .5, +a .8 .8 (A.14)

where the a's are coefficients to be found as functions of

{Kij}' If we had n spins, the expansion would be



- 12 -

> >

a..S8..3. + a..kﬂ(gi.§.u§{§£)
(ij) Mt 1 = (key I ]

—>—>—>—>+-¥
(S..Sj)(Sk.SK)(Sm.Sn)+...

a. .
(ii)# (kL) #(m,n) 13 rkL mn i

For example

H |
e 123% _ 3 a4 %3 .8 + a .8 .8,+a,8.8 +a,.8.8

> > > > > > >
+a,, 82'84 + a5, 83'84 + a12'34(51.82)(s3.84)
> > > > >
tayg 94(581-55)(8,.8,) +ay, 54(5,.5,)(5,.54)
(A.14")

Let us go back to our n=3 case and rewrite Eq. (A.1l4) as fol-
lows:

&X123
e

= (ao—a -a a.,) + 2(a

127823723 1281248930y +a 58, 5)

(A.14'")

where we have used definition (A.4). We intend to establish now
4 equations in order to determine agr @150 34 and a,qe By ap-
plying Tr on both sides of equality (A.14) we obtain

Al —x1+2A2_ —A1-2k2

4 e +2 e +2e = 8ao

hence
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A, =A
a = X(e '+e ‘lcosh2x.) (A.15)
0 2
2
Furthermore [e 123 b3123 , therefore (by using Egs. (A.2)and
(A.14'""))
a;,Ky3-ay3K ), +a,.K 5 ~aKyg+a, 4K, -a;,K 4 =0 (A.16)

where we have used the fact that [HlZ,H23]=[H23, ][H 12]O
We can also apply <¢|...|6> on both sides of Eg. (A.14'") and ob-

tain
e =a_+a,,+a,, +a (A.17)

Finally we apply both sides of Eq. (A.14'"') on any eigenvector
different from ¢, let us say |w2>, and obtain equalities be-
tween the three components of both sides. We choose any of thenm,

let us say the first one, and obtain

-x1+2x2 _
e (Ky,=Ky3) = (a -a;,+a,3-a;4) (K ,-K

13)

(A.18)
+ 2a13(K13—K23+X2) + 2a13(K23—K12—X )

All the other equalities are automatically satisfied. Eg. (A.15)

gives a, , and Egs. (A.16)-(A.18) completely determine the {aij}

as functions of the {K.

1j}' For the particular case K13=0 the
solutions are given by Eq. (A.15) and
A -A 2K -\
1 1 1 :
a = =(e “-e cosh 2A,) + ——JJL—-%E e 1sinh.2>\ (A.19a)
12 6 2 6 2

2
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A -A 2K, . -K -A

a =L e leosnaa ) + —23 12 ¢ lginn2x,  (A.19.b)
23 2 2
6 6
2
A = A -A
a = L(e 1—e 1cosh2>\ )———L-e lsinh2>\ (A.19.c)
13 2 2
6
2
with
xl = K12 +K23 (A.20.a)
- 3 T
xz = /K12+K23 K12K23 (A.20.b)

If we apply now Tr on both sides of Eq. (A.l4) we obtain
2

&&123

Tr e
2

1}

+
2(a +ay, §1.53)

)

2(ao—a13)-+4 a (A.21)

13H13
where we have used definition (A.4). In the case of n spins,
this equation is generalized into

. n

2 '2(a0+a $..3.)

1371°73

H
]
®
|

-2 n-1

2" ay4 0y, (A.21")

(ad-a ) + 2

13

where we have used expansion (A.14').

Let us now introduce the Hamiltonian

W.o,=-xr+x.8% .8
13 7 To 13°1°°3 (A.22)
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which satisfies

M, M
e 13 _oqp e 12--- (A.23)
2,3, ...,n-1

This equality can be rewritten (through use of Egs. (A.4) and (A.21'))

as follows:

(K'-K..') + 2K, 'H
o} 13 13713 n-2 n-1
e = 2 (ao—a13) + 2 a13H13 (A.24)
which implies
Kl + Kl
o] 13 n-2
e = 2 (ao+al3) (A.25.a)
K' - 3K!
o] 13 n-2
= 2 (ao—3al3) (A.25.D0)
where we have used the fact that the eigenvalues of H13 are *l1.
Egs. (A.25) lead to
4K '
0 _ ,4(n-2) 3
e = 2 (ao+a13) (ao—3a13) (A.26.a)
' a_+a
ki3 - 0 13 (A.26.b)
a,-3a; 4

which close the problem. For the particular case n=3 and K 0

13°
we can replace Egs. (A.1l5) and (A.19.c) into Egs. (A.26) and ob

tain
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4K ' ‘e"}‘l
e = 4(2)\zcosh2>\2+)\1$1nh2}\2)
81 A
2
AL - A 3
x(4k2e +2A2e cosh.2k2—kle 511ﬂ12A2) (A.27.a)
and
2x1
4K! 4X e +2X,cosh 2A,_=-A_.sinh 22X
e 13 _ __2 2 2 1 2 (A.27.b)
3(2X2cosh2A2+x151nh2A2)
This last expression provides, by identifying K', =K , Eg. (4)

13 s
of the body of the present paper.
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CAPTION FOR FIGURES AND TABLE

Fig. 1 - Simple arrays of spins 1/2 interacting through the
Heisenberg coupling constants {Kij} and their equiva-
lent bonds (0 and @ respectively denote terminal and
internal nodes; the partition function 1is preserved
through tracing on the internal nodes).

Fig. 2 - Migdal-Kadanoff-like b=2 scaling for the simple-cubic
lattice (we have ommited to indicate in (b) and (c)

the constants K3, K4, K. and K6).

5

Fig. 3 - Critical surface separating the para(P)-and ferro(F)-
magnetic phases (® denotes the bond percolation fixed
point). (a) This figure is only indicative and the axes
Ki/(Ki+l) have been freely chosen for the surface to
be contained in the unitary cube; all three straight

segments K =K2, ¥p, K =Kc, p=1l, VK

1

9 and K =Kc, p=0,

1’ 1

VKZ, correspond to the pure Heisenberg fixed point, we
recall that the present RG has been devised to describe

only the region K,>K., (the region K,<K, can be obtained

1 271
through the transformation (p,Kl,Kz)z (l—p,Kz,Kl). (b)

2

Critical lines (in_scale) associated with typical values
of ocEKl/KZ:Jl/J2 (a=1 corresponds to the pure Heisenberg
fixed point).

Table I- Elements of the renormalised distribution law PG(Kij)
(Eg. (10) of the text).
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r Mr 'ﬁr

1 1 4 Ks(Kl’Kl) |

2 8 3 K (K ,K) +K_(K{,K,)

3 4 3 K (K ,K;) +K_(K,,K,)

4 24 2 K_(K; ,K;) + 2KS(K1,K2)

5 24 2 KS(Kl,Kl) +KS(K1,K2) +KS(K2,K2)
—6 32 K, (K ,K;) +3K_(K),K,)

7 6 2 K (K ,Kj) + 2K (K,,K))

8 48 K, (K ,K)) + 2K (K ,K,) + K_(K,,K,)
9 16 4 K_ (K, ,K,)

10 32 3 K, (K ,K,) +K_(K,,K,)

11 24 KS(Kl,Kl)-+KS(K1,K2)4—2KS(K2,K2)
12 | 24 2 K_(K,,K,) +2K_ (K ,K,)

13 4 R, (K ,K;) + 3K_(K,,K,)

14 | 8 K (Ky,K,) +3K_(K,,K,)

15 | 1

4 KS(KZ,KZ)

TABLE I
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