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ABSTRACT

Within a real space renormalization group framework, we
study the g-state Potts model in square lattice assuming pos-
itive second-neighbor coupling constant and arbitrary sign for
the first-neighbor one. The g-evolution of the full phase
diagram as well as the thermal and magnetic critical exponents
is obtained. Whenever comparison with available results is

possible, the agreement is either exact or very satisfactory.



I - INTRODUCTION

The first- and second-neighbor square lattice is not a
strictly planar one, and the q-state Potts model exact phase di
agram is not yet available for any finite value of q. In what
concerns the critical exponents they are expected to be, for
positive second-neighbor coupling constant (i.e. no frustra-
tion), the same as for strictly planar lattices, presumably
the den Nijs conjecture [1] for the thermal critical exponent
Y and Nienhuis et al conjecture[ZJ for the magnetic one Vi
The q= 2 case (Ising model) has been treated[SJ within a
real space renormalization group (RG) framework which pro-
vided qualitatively (but not quantitatively) satisfactory re-
sults. ‘More recently good numerical estimates have been pro-
Vided[41 by high temperature series expansion; The q = 1 case
(bond percolation) has been.traﬂmd[s] within a RG formalism;
the corresponding critical line recovers in both extremities
(only first- or only second-neighbor bonds) the exact results;
the numerical estimates for both "thermal" and 'magnetic' crit
ical exponents are quite satisfactory. In what concerns the
exponent yy, advantage is therein taken from the fact that, in
the 1limit of vanishing first-neighbor coupling constant, two
simple square lattices are decoupled; this fact endﬂﬁsﬁis’@
the calculation of YH withoﬁt introducing any external field.

In the present paper we follow along the lines of Ref. Eﬂ
and, by using the.geometrical formulation of the Potts model
as introduced in Ref. [7], we extend, to all values of q < 4,
the discussion of the phase diagram and both Y and Yy expo-

nents for the first- and second-neighbor square lattice (on-



ly positive second-neighbor coupling constants are under con-
sideration). For q > 4 the transition is a first-order one and

is out of the scope of the present approach.

II - RENORMALIZATION GROUP
We consider the Hamiltonian

ch+)= -qJ, L S8 . . -qJ, ) & . _. (.= 1,2,...,q,Yi)
1Iln gi,0] Znnn gi,oj i
(1)

where the summations are over nearest-neighbor and next-nearest-
neighbor pairs respectively, and Jl and,J2 > 0 are the cou-
pling constants. Let us introduce convenient variables (here-

after referred to as transmissivities[7]) through the fol-

lowing definition:

_ .=qJ;/kpT
¢, =1 -e "V (i =1,2) (2)
1+ (q-1)e 4 i/kgT

Remark that the physical variation interval for t, is [0,1] if
J; 20, [—‘5%1, 0] if J, < 0and q > 1, and [-=,0] U [I%q,w]
if Ji £ 0 and q < 1.

The RG recursive relations are established by applying
the Break-collapse methodD:| on the family of cells indicated
in Fig. 1; we obtain

tl'= Rb(tl,tz)

t)' = Qlty.t,) (3)



These relations exhibit in the 0 < tZ < 1 physical region the
following fixed points (FP): (0,0) (fully stable; paramagnetic

FP), (0,1) and (1,0) (semi-stable), (1,1) (fully stable; fer-

romagnetic FP), (- a%T, 1) (fully stable; antiferromagnetic
EP), (/%+l, 0) (semi-stable; critical FP), (0, /%+1) (fully

unstable; critical FP) and (tf ,t;') (semi-stable; critical FP;

tf,s 0, Vq; t; =01if 0 £ q £ q* mx1t£f>()if<1> q*; q* ~ 2.386

~for b = 2 and q* & 2.482 for b = 3). The full b = 2 flux dia-
grams associated with q = 1,2,3,4 are presented in Fig. 2 (sim

ilar flux diagrams have also been obtained[SI for the honey-

comb lattice Ising model). The (7%11, 0) and (O, 7%:10 critical

FP (obtained for all values of b) recover the simple square

lattice exact resultLQ]. This is not so for the (tf ,t; )ciig
ical FP as the exact 1“¢sultL-1O:l corréspdnds to tf:= (VE-q -2)/(VE-q -2 +q)
and t2*= 0 for 0 < g <3 (i.e. q* = 3; remark that our values
for q*, respectively 2.386 and 2.482 for b = 2 and b = 3, pres

ent the correct tendency). Furthermore, within the RG formal-

ism, it is natural to expect that, for q > 3, tf = - G%T
1 i 1
and 0 < ty* < - =(- —

2 Jorl Also a semi-stable FP at (tlﬁi) ( q_1,0)
is desirable Vq; this situation is in fact encountered in the
present RG only for q = 2 (we find, on the t, = 0 axis, a semi-

1 1
stable FP located at t, > T-q for 0 < q <1, at ty < - a:Iibr
1 <q< 2, at ty > - E%T for 2 < q < q*; for q > q* this FP
collapses with the (tlf,tz*) FP and leave the t, = 0 axis) . This
fact prevents, for q# 2, the ty=- H%T axis from being self-
renormalized as desirable (see Figs. 2.c and 2.d). In spite of

these small inadequacies, the results, whenever canbe checked,
are numerically  very satisfactory even for b =2



as indicated in Fig. 3. Remark also that the q = 2 flux dia-
gram (Fig. 2.b) is, as it should, completely symmetric with

respect to the t, = 0 axis. The critical lines compare very well

1
with that obtained by series expansionL4J (available only for

q=2), along the Jl, J2 plane. For J1= &Jz, for example, we

obtained the value Jl/kBTC= 0,25 very close to the one presented
in Ref. [47], namely 0,2628.
Let us finally recall that the Jacobian matrix

Btl ot

1
Btl 8t2
M = (4)
3t2 Btz
Btl Btz
. 1 ‘
calculated in the ( , 0), (0, ) and (t,* ,t.,*) FP pro-
/q+1 /q+1 1o

vides useful information concerning limiting slopes and criti
cal exponents. These quantities will be discussed in Sections

IIT and 1IV.
ITI - PARA-FERRO PHASE TRANSITION

In order to clarify the discussion of the results we have
obtained concerning the para-ferro critical line, we shall

present them in the following order: the Jl = 0 case, theJé =

0 one and finally the J, = J, one.

1 2

I1II.1 - The Jl=() case

1

/q+1
the Jacobian matrix M (Eq. (4)) is diagonal with both eigen-

In the fixed point (tl’tz) = (0, ) (exact critical point)

values Al = (Btl'/atl) and AZ = (Btz'/atz) larger than wunity

(furthermore A, > A Vq); the corresponding eigenvectors are

1 2’



(1,0) and (0,1). The correlation length critical exponent is
given by v = 1/yT = &nb/ﬁnkz; the RG results herein obtained
(Fig. 4a and Table I) are precisely those of Ref. [7]  where
t; was assumed vanishing from the very beginning of the prob-
lem (remark that, in the limit ty > 0, the graph of Fig. 1.c
coincides with that presented in Fig. 1l.a of Ref. [7]; this

property is in fact valid for all values of b). The crossover

exponent ¢ (defined by 1. t, = t11/¢) is given by ¢ =
/q+1

anl/znkz; by following along the lines of the argument

presented in Appendix of Ref. [5] (which holds for any value

[11] of the

of q if we take into account the cluster 'image
Potts model), one can easily prove that ¢ = y where y 1is the
standard susceptibility critical exponent (we recall that
df =2 -n-= Z(yH—l) = y/v = Enkl/ﬂnb where n is the stan-
dard correlation function critical exponent); the RG results
herein obtained (Fig. 4b and Table I) recover, forq-=1, those
of Ref. [5]. |

Let us mention a technical point: the b = 3 and b = 4 df
calculations were not performed through the complete knowl -

edge of the recursive relations (3) but through that of the

ty - 0 leading terms. For example, for b = 3 we obtain, at the
1
/q+1

point (tl,tz) = (0, ), that

: = 2 2 .
A 6tA + 4tB + 4tAtC + ZtAtD * 2tpte + ZtBtD toots+ 2taty + ts (5)
where tA,tB,tC and tD are the transmissivities of the graphs

indicated in Fig. 5.



II1.2 - The J, =0 case

In the fixed point (tl,tz)f= ( 0) (exact critical point)

1
Vq+1’
the Jacobian matrix M (Eq. (4)) is given by

M = (6)

The eigenvalues are )\1()\1>1,Vq) and AZ'(for b=2, >\2<1 if qz 1 and

Ay > 1if q g 1); the corresponding eigenvectors are (1,0) and

(—Alz,kl—kz) and the limiting slope of the critical line is
= - = - E .753,0.640,0.561

dtz/dtl (Az Kl)/klz (for b 2, dtz/dt1 equals 0

and 0.505 forq=1,2,3, and 4 respectively). The exponent v is given

by v = Znb/Lni and the RG results we obtain (see Fig.4.a and

1
Table I) are precisely those of Ref. [12} (for example, in the
limit t, » 0, the graph of Fig. 1.d coincides with that of

Fig. 1l.c of Ref. [12]).

I1II.3 - The Jl’=J2 case

Although the exact critical point corresponding to the
Jl = Jz case 1is still unknown, good estimates are avaﬂableDs]
for q > 1: the comparison is performed in Table II. Remark
that the RG results improve for increasing q: this is easy
to understand . if we take into account that for a given b-sized

ccll the RG error comes from the periphery of the cell,



and should therefore decrease for increasing b (bq is pro-
portional, in the limit b »+ «, to the ratio of the number df
bulk configurations to the number of peripheric ones).

Let us finally mention that, because of the exclusion of
certain peripheric bonds (see caption of Fig. 1 and Refs. [5,6]).
an error is introduced into our RG. As a consequence:-of this

error a spurious semi-stable FP appears, for sufficiently small
1

/q+1
b=2 and q=1, its location is (0.486, 0.010); see Fig. 2.a);

q (q£1) in the vicinity of the ( , 0) FP (for example, for
the inexistence of this spurious FP for larger values of ¢q
(g3 1) comes oncemore from the improvement associated with

the b9 » » 1limit.

IV - PARA-ANTIFERRO PHASE TRANSITION

The para-antiferro critical 1line is clearly controlled by

» 1
th 0, —
e (0, =23

the associated Jacobian matrix has already been discussed in

) and (tf ,t; ) FP. In what concerns the former,

Section III.1. In particular the para-antiferro critical line
is, as the para-ferro one and for the same reason, tangencial
to the ty =0 axis for all q. Furthermore both Y and YH crit-
ical exponents are the same; we believe this holds for the com
plete J,20 critical region.

The location of the (tf ,t;) FP has been discussed in
Section II (see also Fig. 3). The associated Jacobian matrix

M (Eq. (4)) has the same form presented in Eq. (6) with A 1

1
and A2< 1 for q<q*. The limiting t2-+0 slope of the critical

line 1is dtz/dt1 =0.752 for q=1; we recall that, for q=2, the



para-ferro and para-antiferro critical lines are symmetric.
For q>q* the vector (1,0) is no longer an eigenvector, which
is a desirable fact from the physical standpoint (see discus-
sion in Section II); unfortunately, the other eigen-
vector is not (0,1) (this is related to the fact that the
(tf‘,t; ) FP is not located at the ty = - H%T axis) as physi-
cally expected. Because of this reason the values for v asso-

ciauxlwiﬂlthe(tf,tzf)FP are not numerically satisfactory.

V - NEGATIVE VALUES FOR J2

If we allow J, to take both negative and positive  values,

2
the q =2 phase diagram is knownESl to be of the type schemat-
ically indicated in Fig. 6.a: four phases are possible, name
ly the para-(P), ferro-(F), antiferro-(AF) and super antifer-
romagnetic (SAF) ones (see Fig. 6). The g-evolution of this
phase diagram is, to the best of our knowledge, still unknown;
in particular it is not excluded that, for q> 2, the phase
diagram becomes even richer than indicated in Fig. 6.a. The
study of this problem should be very interesting; unfortunately
computer limitations prevented us from performing it. The pur
pose of this section is to present the RG cells we propose for
this study. These cells are indicated in Fig. 7, and they should
be convenient in spite of the fact that, in the J, <0 region,
frustration is present. One of theRG recursive relations 1is ob-~
tained by using the A '"entrances' and the B "exits" of the
cells; the other one is obtained by replacing the B 'exits"

by the C ones,



In order to understand the process which proyided the cells
indicated in Fig. 7, let us first analyze the T=0 configura-
tions presented in Fig. 6. We remark that the a-sublattice
(see Fig. 6.b) of the AF configuration (Fig. 6.d) precisely re
produces the F configuration (Fig. 6.c) of the whole lattice.
Furthermorethe(wsubkuiiuaof the SAF configuration (Fig. 6.e¢)
precisely reproduces the AF configuration (Fig. 6.d) of the
whole lattice. We use these topological properties for construc
ting the RG cells of Fig. 7. The b =2 cell used in the previous
sections (see Fig. 1l.c) was constructed by superimposing two
H- -shaped cells (very convenient[7] for the simple square lat
tice, as they provide the exact critical point for all q), one
for each sublattice (o and B), and connecting them thrdugh new
first-neighbor bonds. Analogously the cell of Fig. 7.b . was
constructed by superimposing two cells of the kind presented
in Fig. l.c (where only the dashed bonds were retained), one

for each sublattice, and connecting them by new first-neighbor

bonds (now dashed in Fig. 7.b)

VI - CONCLUSION

We have discussed, within a real space renormalization
group framework, the gq-state Potts model in first- and second-
neighbor square lattice by allowing both signs for the first-

neighbor coupling constant J but only positive sign for the

l b
second—neighbor J2 one. The gq-evolution of the full phase dia-

gram was obtained and the results are both qualitatively and
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quantitatively satisfactory; in particular the exact result
is obtained for Jl= 0 as well as for J2= 0 and J1> 0; ﬂan2=0

and J, <0 the result is quite close to the exact one (for q=0

1
and 9 = 2 is precisely the exact one). Also the J1=.J2 results
compare well with previous ones.

The J, ~0 crossover behavior (corresponding to the de-

1
coupling of the lattice into two-  independent simple square
sublattices) enables us to calculate, besides the thermal crit
ical exponent Yo the magnetic critical one Yy without intro-
ducing any external magnetic field (neither ghost sites). The
q-dependence of both YT and Yy compare well with the possibly
exact available proposals.

Finally we propose a new kind of renormalization group cells
which presumably are quite convenient for including into the
present discussion the J2< 0 region, where a new phase (name-
ly the superantiferromagnetic one) hopefully exists.

One of us (C.T.) aknowledges a Fellowship from the Guggenheim

Foundation.
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TABLE CAPTIONS

1.

Table I - Values of the critical exponent:s d-(at (t ,t = 0,
and v a at t , T = 'O, -_) b at —, 0

The values b =3/2 (b = 4/3) correspond to renormalizing

the b = 3 (b = 4) cell into the b = 2 (b = 3) one-.

Table II - Values of the b=2 critical transmissivities for the

J1 = J2 case, compared with conjectural estimates]:lsj .



TABLE I
=1 q=2 =3 q=4
.299 2.063 .907 1.788
b= 2 428 1.149 .024 0.948
.042 0.864 .785 0.738
.180 1.955 .807 1.693
.380 1.109 .988 0.916
b = 3
.099 0.899 .811 0.758
121 1.919 779 1.668
b = 4
.363 1.095 .975 0.903
.976 1.769 635 1.530
b = 3/2 .305 1.048 .933 0.865
.212 0.967 .859 0.794
.896 1.781 672 1.576
b = 4/3
.302 1.043 .928 0.859
[1,2] .791...] 1.75 733,  1.75
exact
iectural
(conjectural) 333... 1 .833..4 0666 ..
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TABLE II
q = 1 q = 2 q = 3 q = 4
RG
0.210 0.171 0.148 0.133
(b = 2)
conjecturall*3 0,249+ 0.011 10,188+ 0.006 | 0.157 £0.006 |0.137+0.006
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FIGURE CAPTIONS

Fig. 1 - Cells (and corresponding graphs) used for the RG cal
culations. The arrows indicate the entrances and exits.
o and B represent the sublattices decoupled in the
limit of vanishing first-neighbor interaction. In the
graphs, full (open) circles correspond to internal (ter
minal) points.(a) Renormalized second-neighbor trans-

missivity t.'; (b) renormalized first-neighbor trans-

2 b
missivity t,'; (c) original second-neighbor transmis-
sivity tz;(d) original first-neighbor transmissivity

t In(a) and(c), the upper dashed bonds are excluded

1
from the corresponding graphs in order to preserve the

symmetry between the o and B sublatticests’él

Fig. 2 - Flux diagrams for b=2.(a)q=1, (tf ,t; ) = (-0.325,0);
(b) q=2, (t* ,t;') = (1-v/2,0); (c)g= 3,(ty" .t ) = (-0.375, 0.150);
(d q=4, (tf ,t; ) = (-0.260,0.221). The open circle
is the fully unstable FP, the full circles are the
semi-stable FP, and the squares are stable FP. The arrows . in
dicate the local flow direction. P, F and AF represents

the para-, ferro-and antiferromagnetic phases, respec-

tively.

Fig. 3 - g-evolution of the phase diagram for the simple square
lattice (t2==0). The dashed line represents the exact
resul‘cDO:l , and the full line. corresponds to the present

RG calculation for b=2. The exact and RG (for all

b) curves coincide for Jl> 0 and also for Jl< 0 at
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the points q~+ 0 and q = 2. The J14 -© asymptotic values

of g* are indicated for b=2 and b= 3.

Fig. 4 - q-evolution of the critical exponents v = 1/yT (a) and

Fig.

Fig.

Fig.

5

7

dfz 2(y,,-1) (b). Dashed lines correspond to the conjec
H _ =
tures of den Nijs[-l--‘l for Y and of Nienhuis et a1[2]

for Yy In part (a) the curves 1 and 2 are obtained

1
, 0
Vg+l )

3 = ____];___ ' =. X
at the points (tl,tz) = (0, fq+1) for b =-4, and (

for b=23 respectively.

Cells and graphs used for calculating Al(Eq. (5))

in the b =3 case.

(a) Schematic phase diagram for the first-and second-neighbor
square lattice Ising model (q=2);(b) Sublattices a and B in
which the whole lattice is decoupled in the J; =01limit;
(c) T=0 configuration of the ferromagnetic (F) Ising
phase; (d) T=0 configuration of the antiferromagnetic
(AF) Ising phase;(e) T=0 configuration of the ‘super

antiferromagnetic (SAF) Ising phase.

Proposed RG cells for the study of the whole
phase diagram (including J2< 0) of the first-and
second-neighbor square lattice g-state Potts model.

(a) Renormalized cell;(b) original cell.
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