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1. Introduction

We are interested in applying more general algebras
to molecular calculations. We have already employed the u(2)
algebra to 4-electron cases [1]; we shall now use the U(3) one,
in 6-electron molecules, in order to calculate the = bond order
matrix P for certain states. These obey n, + n, =1 [27], where

n, is a diagonal matrix with half the occupation numbers of the

£
lowest energy levels, nh a diagonal matrix with half the occupa-
tion numbers of the associated highest energy levels, and I the
unit matrix. The even 7 system must possess a bynary symmetry
axis not passing through any m center. The SC bond orders are
obtained without calculating the MO's. The basis functions split
into two groups, one symmetric and thé other antisymmetric with
respect to the axis. The variational principle is thus applied
separately for each of both groups. Elecfron interaction is

. considered through a compromise Hamiltonian [:{] between the

- ground state and the excited states considered, on the same
ffooting [3].' . |

| Recenfly, the Clebsch-Gordan coefficients have been

utilized for setting up symmetry adapted linear Combinations of

atomic orbitals [47], revealing an increasing interest in this

kind of problems. .

For the moment, the consequences.of these applications
are not easy to predict. In the meantime, let us quote Feynman's

opinion: "... The formulation is mathematically equivalent to the

more usual formulations. There are, therefore, no fundamentally



new results. However, there is a pleasure in recognizing old

things from a new point of view." [5]
2. Formalism

The splitting of the basis functions leads to the

two matrix equations [1]:

Jp* = symmetric ; KPP~ = symmetric (1)
where |
i, ii ii
Juv =. w T Hp,N+1—v : Kuv T vy N+1-v ;v =§+nu Xy Xy
o . I (2).

. . . . . : - _ i,
H being the effective Hamiltonian, there are N electrons, xu is
the coefficient of atomic orbital p whose occupation number is

}(an),'and the + or - signs label respectively the symmetric or

-

>-antisymmetriéilevels.

Bond orders are.determined through Q matrices defined

as Qi = 2P* - I. These are N/2-dimensional, for P =pt P
Hv +

Hv uv
+ - -
and Pu,N+1—v = Puv - Puv (w,v=1...N/2), and satisfy
. - .
JQ = sym. - KQ = sym. (3)
+ + 3 -

3 -
Q) Q) (4)
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With electronic interaction, equations (3) take the

.form [1]:

[25+ (€1 + (€1 + (€' + € Q)" -

1
n
~
=S

(5)

C2k+ (€71 + (€' + (€Q") + (') Q" = sym.

The basic matrices of the U(3) group, through which
any 3 x3 real symmetric matrix may be expressed, are the unit
matrix and [6]:
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1 00 9 10 0
0-10 {; Fz = = 01 0 |; P3 =
0 00 /Y3100 -2
(6)
-+We shall follow‘thé Einstein convention in our for-

mulae, avoiding the summation sign. The F matrices satisfy the

anticommutation relations

- -4 '
AFy e Fid = 4B T3 8y (7

where dijk are totally symmetric coefficients, with values

d _2//3 ;4 d = -2/V/3

112 14 E 155 345 222
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d =2/V3i4  =-1/Y3id = -1//3 (8
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Aside from those obtained by symmetry, these are the only non-
zero coefficients.

Let us now define V . ‘ .



djj; = di5xq » 95 = 45595 5 d = dga; 5an = a;qy (9)
It is verified identically that
_ 4 2 o
| o _ 8 4 2 '
gnd dldjdljk = -g' d qk - "3' q dk (11)

| + : i .
Let us now write our Q  matrices (we shall write just

Q for shortness) under the form
Q=q +gq.F. =q + q°F (12)
D pie o _ _ 3 2 .1
In this case A = det(Q) = 4, -~ 9,9 *+ % d (13)

- It is easily verified that

2 _ .. L1
(q-F) qifiquj - 5939, {F;

and (q-F)3 = (q-F)2 q*F = —% qzo'F + —% d*F q°F = %% qzq'F +

2 1 : 4
+ - d.q.{F.,F.} = = . — : — =
4 1q){F1’FJ} 3 44 Fo+ 4 1q3( 1Jkrk T3 6ij)
= 2 4%, 1 1
3 A4aF+ 3 didijFj + = d

and by (10)



@pd=2ta+ ta®+ Fadar=-5da+q%F a9

So that

3 2 2 2.1
q° * 39 q'F + 3q (5 q" + 5 dF)+

0

3

2 - 3
Q = (qo-q\- q.F)3 = q03 + 3C{OZQ'F + 3q0 (q.F) + (qu) =

d + q’q-F (16)

Aﬁd if Q3 =»Q,>the coefficients in (16) must be equal to those

of (12), which leads to

2 1 2

0

We have therefore the two equations

‘ 2 2
d =3, (1-q7 - 2q97)

2 2 2.
qui = =@ - 397 - q7)aq

We are faced with three cases.

I - The trivial solutions [ 7] are q; =0,q,
T - I1f qo =0, it musf be- }jd = 0| and q2 =1
that A = 0)

IIT - If q # 0, by (19) we may write d; = Agqy

It is clear that, by (10), if we multiply.(21) by di"

_ 3 , _ 3 2
q, =q; * 29,9 *+ 3;‘d S P Sq@ qi'+7z q,d; *a7q; 17)

(18)

(19)

+ 1 (Q=0,£1)

(it turns out

(20)

(21)

J



we obtain

(22)

In order for (21) to satisfy (18) and (19), it must be:

From (24) we

2 2
(1-3q,-q7)

2 2 2
Aq” = 3q (1-q " -2q7)
- 2
Aqo T3
obtain
- . A
9, ~ ; ¢

I+

1
]

2
q

(23)

(24)

Replacing in (23) and simplifying, the possible solutions are:

4

1
3

Q.

Equation (21)

4 2
5 (A=2-%) 1 q,

_QV
]

b

VA = 2 ;

4
3 0

takes the form

1
3

A,
]

2 1
1 A== + q =%
2
22 -1
A== >q =3
A A =4/5 > q,
7 .
A=-4/3 + q,
2 -
- -z (8=0)

o}

T

or +

whv QJN

- 1/3

+ 1/3

93 and the former sdlution changed in sign

(26)



or also:

(6=1) @2
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obtained putting q; = 2q

, which is the last one

RIES

] -._._4.; . =
There is too di = T 4; 5 Q

fl
1
p—

with q; changing sign, and has A

Due to the identities in the dijk cogfficients, these
equations do not determine qj aside from case I, which is knqwn
"a priori". Physically, this is due to the fact that we have not
yet introduced the system's Hamiltonian. This is what we do next,

leading to the missing mathematical conditions. -

' We shall write all the equations for J, being understood
that there will be exactly similar equations for K. The matrix J

L;being symmetric, it may be written under the form

J =5 + j.F | (28)

In order to find the numbers j0 , ji’ we shall use the following

properties
Tr(F,) =0 ; Tr(F.F.) = < Tr({E..F j) L e m et sy =
i " it 2 i3’ 2 ijk’k 3 7ij
=1 .4 =
=g 3 85 Tr(1) = 28, _ (29)



Therefore
. - 1 . 2 - ’ .
i, = 3 Tr (J) e Tr(FiJ) : (30)

As [Q, 0] =0 [17], [:q *F , j*F] = 0. This in general implies

that q-F is a function of j.F

a, (3-B" . (31)
0

q-F

1
Nt~ 8

n

' ' . _ . _ —_ _ : : . n
We shgll now define Dij = diijk’ Di = Di£32 : D = DiJi. In (j-F)
for n=1 Fi appears with ji; for n=2 (see (14) with j instead of
q) Fi is associated to Di; for n=3 (see (15)) Fi appears again
with ji’ etc. Hence, in the summation of (31), Fi appears only

associated to ji or to Di' We may then write q-F = Alj-F+A2D'F, or
= 3 . i
q. Apd; * A D, | (32)

. Ay . A, being functions of j. Therefore

dij = i = i3 (Tt AD) = AgDy5#a,d; 50 Dy
dy = 3500, = (AD;,%35d; D) (g5 p+A,0))

=% D, ,5, + 222D, 2 D

= A Diede t 2 * 102 * Ay 45100y

_ L2 4 .2, 2,8 . 4 .2
di = A Dy * x5 375 + A (5 DIy - 37D;)

using (10} and (11) with j instead of q



2

_ 4 .22, 8 : 25
d, = (A = =5 37D+ (A, 37 DAZ)_Ji (33)

Finally d = diqi_= d; (035 * 2,050, .

a = 0F -3 3722 (apea,DeD) + -§3—(A1)\2j2+D>\§).()\1j2+>\2D) (38
Besides

% = (A3+3,D.) (A3 +A,D.) - A%j_2+21112D+A§D-D (35)
In (33), (34) and (35), Al and AZ are unknown, but the coefficients

are functions of j, all easily calculated through the corfesponding

g 2
definitions. Let us remark that, by (10), DD = DiDi = %%(jz) .

3. Solving the equations

I. The three trivial solutions always exist, and are in-
. dependent from the Hamiltonian [77].
II. The equation d=0 (eq. (34)) is a homogeneous, cubic
equation in Al sz, with known coefficients. It may hence only
5. (3)

determine the quotient r, = 1(a)‘ (a =1,2,3), r, being the three

\p:

solutions of the cubic eduation (34). For each solution L the

substitution Al(a) =1 _A (a) in (35) equalized to one, gives a

a2 )
simple quadratic equation with two values for AZ’ + Az(a). There-

fore, Al = & ralz(a); These are then six solutions.
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III. The equation‘di = %% aj is solved through (32) and
(33)
2 _ 8 .20 .2
5 Al = S(Alkzj + AZD) (356)
2 a _af - 305t (37)
3 2 1
From (36):
aml , |
M T T - (38)
1-4j Az

Replacing (38) in (37), a cubic equation with known coefficients

in xz is obtained. The three‘corresponding solutions introduced
in (38), together with q, = %% or - %%, and eq. (32), give six

solutions. Changing signs in ll , Az and q,. we get six more
solutions.

111 . Jf in the first three Al ,Aé of 111 we méke the subs-

titution Ay g éxl 2 » @ Ay is obtained which corresponds to
,;di = %% q; - This must be associated with q, = - -% (three solu-

~tions). Chaﬂéing signs of a; and q, give other three solutions.
» Both in III and III' all solutions are automatically
normalized, to q2 = -% (I11) and q2,= %% (III').

We have in all 27 solutions. Actuaily, in general
there will be 27 for Q+~and 27 for Q (or for ¥ and P7). As
explained in [17], the coupling is limited within the same case.

It 1s no more possible, in the 6-electron case, a

direct solution of the SC bond orders when electron interaction

is introduced through the compromise Hamiltonian [1]. But we
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may iterate using the Q matrices, not neceding the calculation of
"MO's.
A further condition must be introduced, however, so

as to preserve the non—crdssing rule between levels belcnging to

the same symmetry. Those of different symmetry, of course, are
completely free to mix in any way. As we do not calculate the
MO's, we must ensure that on iterating we choose, among the cubic

equations solutions, those which reproduce the same case. This is
i
. e ; . ; + .
not hard to fix, keeping in mind that n are the eigenvalues of

+
P*. |
We have, from (14) applied to j, that

D-F = 2(-P)% - 3 5 (39)

and as (j+F)® = (J-j ) (J-j) and q-F = Q-a, , q*F = A j-F+A,D-F

becomes:

| . 2 . .2 4 . .2
- Q-q, = A, (J=5 I+2x,(J%-25 J+j ) - = A,J o (40)

]
.

Bearing in mind that pf = i%vTY'P+ ='N"'/6, applying this operator
. 1 .
to x © gives

-+ i A ‘ i
2p7-1-2p7 + T]x *={(A;-45,2,09+ 20,0520, (2-% 55 - a5 0x *

i . i 2 2 i

1 +
+ + . 2.2 . +
+2A2(E ) +2A2(30—7§J )-Aljo}x

N 1, .
[2n "-1-%+1] x T={(x =43 2,)E

i + i i, 2 '
+ N _ . + + .2 2 .2
2n -3 = (A —4JOAZ)E + ZAZ(E ) +2A2(30—i§ j7) - A (41)

1 1jo
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i
E " being the eingenvalues of J.-

The iteration is carried out in the following way:

1) The solutions without interaction ére'first found as
starting points. This is straightforward. )

2) The equations are set again, replacing J and K by
the expressions between square brackets of (5), and working with
them in the same.way as before. Of the.possible Qolutions‘arising
from the cubic equations in each case, and tﬁe alternatives in the

A's signs, only one will verify eqs. (41) or their analogous for

the antisymmetric basis. This is not difficult to program.

The serious trouble in some of these superexcited
states (superexcited meaning excitations usually greater than the
first ionization potential [:Q]) is the well-known convergence
-problem. This deserves much more attention, aﬁd we deal with it
elsewhere [ 5]. As far as it concerns this paper, we shall just
mention that wevovercome it by introducing a convergence parameter
;E'in the compromise Hamiltonian:.

Huv = Huv + £ ?quuv (42)
This seems a neater apbroach than the damping proce-
dures or energy-shift methods which appear in the literature for

somewhat limited applicatiohs [9,10,11].
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4, Example

We apply the above formalism to the pyridazine mole-
cule, with the atom labelling of Fig. 1. The Hiickel starting para-

meters are

which (see table 1) give in the ground state a 7 contribution of
1.69 D to the dipole moment, in agreement with the 1.79 D value
obtained by Pukanic et al. [1Z] with a modified PPP treatment.
The Coulomb integrals between u and v atoms appearing in Cuv are .
picked from the Pariser-Parr table {}31. For shortness, instead
of usiﬁg spectroscopic notation, we shéll refer to the symmetric
eigenvalues.asrsl, SZ’ S3 énd"to the antisfmmetric ones as Al’
AZ’ AS' |
We aré dealing with the open-shell cases in the same
;way as the closed-shell ones, that is we are using the half-
Electron apprgximation (14,15]. For the moment, our goal is simply
the obtention of SC bonﬁiorders avoiding the MO calculation, but
" we shall return.in detail elsewhere to this problem [97].

The table shows the SC Puv results for neighbouring
atoms (those for non—neighbouging atoms are available under
request), and the £ parameter. |

.Case I does not depend on the & value [7]; the three
solutions correspond respectively to: ﬁ+ = N,N =0; every n, = -%

, i
(Hall's standard reference state [16]); N~ = N,N+ = 0.
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Case II implies N = N , that is nt =1 ,-% or 0.

In Case III, N # N™. The half-occﬁpational numbers
3 !
n' may be 1, ;%»or 0, being limited to 1 and 0 for the III case.
In shoft, the application of general groups algebra

permits a different approach to the problem of the direct calcu-
lation of the SC m bond order matrix. |

Finglly, let us remark than when passing from the 4-
electron to the 6-electron case, the condition n, + n, = I makes
the 9 solutions become 27 solutions. The U(4) development leads

N/2

to 3 = 34 = 81 solutions. A two 7w electron system has thus as

. ) . .
unique solutions the three particular ones.
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State } P I Pys ’ Pag l Pyy i Pys , Pay, ' Plie l £

Case . Particular Solutions

(51)2(5«2)2(53)2 1 1 1 0 0 1 1
;:2152A253A3 1 1 1 o 0 oA. 0
(A1)2(A2)2(A3)2 1 1 I 0 0 -1 -1
- Case 11. N" = N’ ' .
(s)%(a)?s,n, | 1138 | 0.936 | o.s25 | o0.732 | 0.597 | o0.035 | 0.261 1
S](A])2(52)2A3 0.970 | 0,933 | 1.091 | 0.405 | 0.350 | 0.354 | 0.115 0.8
(SI)ZA.‘(AZ)ZS3 1,181 g.921 0.888 0.470 0.110 -0.522 0.222 0.8
A‘(SZ)ZSB(A3)2 {0720 | 1onb 1.166 | -0.4k) | -0.122 | 0.505 | -0.215 | -0.8
~51(A2)2(S3)2A3 0.977 | 1.053 | 0.92k | -0.428 | -0.3%1 | -0.317 | -0.048 -1
52A2(53)2(A3)2V 0.776 | 1.104 1.122 | -0.724 | -0.592 | -0.043 |--0.255 -1
—

- Case lit. N # N

(sp%(s)%s, | 1065 | 0.961 | o974 | o325 | 0.316 | 0.856 | 0.839 1
(s,)zszr\lAzs3 1.13t | o0.947 | 0.922 | 0.383 | 0.238 | 0.183 | 0.507 1
(51)252(53)2A2 1.143 | 0.972 | 0.885 [ o0.040 | -0.100 | 0.333 0.696 | 0.8
Sj(Al)zszAzAB 1.082. | 0.955 | 0.963 | 0.350 | 0.323 | -0.169 | -0.209° 1

| 51(52)2A‘53A3 0.804 | o0.964 | 1.232 | 0.127 | oc.085 | 6.413 | 0.278 1
(ap%s (a)%, | 1926 | 0.948 |"0.928 | 0.387 | o0.290 | -0.782 | -0.606 1
s,(s,)%,(s)% |o.800 | 1085 | t.ms |-0.35 | -0.280 | 0.783 | 0.589 -1

. sIA1§3(A2)2A3 1456 | 1.072 | 0772 | -0.137 | -0n084 | -0.392 | -0.220 -1

; 5152A2(A3)253 0.862 | 1.078 | 1.060 |-0.353 | -0.309 | o0.162 | 0.239 -1
s,(a)%n, ()% | 0.806 | 1.031 | 1.163 | o0.000 | 0.081 | -0.347 | -0.700 -0.8

15,A,R,5,(8,)2 0.783 | 1.085 | 1.126 | -0.360 | -0.241 | -0.203 | -0.500 -1

? A]SB(AZ)z(AB)Z 0.889 1.068 | 1.043 | -0.333 | -0.303 | -0.861 | -0.811 -1

| Case 111", " # N and n, = 10r0

: (51)2(52)2(/\1)2 1.103 0.943 0.954 0.674 0.647 0.685 0.649 1
(sT)Z(Ax)Z(AZ)2 1.154 0.928 0.918 0.825 0.491 | ~0.674 | -0.070 1

s pfpisp? | 1300 | o9 | o755 | o.owt | =o.158 | -0.284 | 0.355 0.4
(s)%ap?a)? | o6ss | 1058 | 1287 |-0.00s | 0.7 | 0280 | -0.375 | -0.4
(s )77 [omme | vz | s [-0.807 | -ohsh | o.663 | o072 | -
()25 )%(a? | 0.829 | 1096 | 1.075 | -0.684 | -0.630 | -c.694 | ~0.616 -1

* TABLE 1. SC bond orders Puv between atoms y and v for the.27 solutions of pyridazine, following
the atom {abelling of F§§.11. Bond orders are shown only for neighbouring atoms. §E is

the coavergence parameter.
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