
CBPF-NF-032/95

Cavity Size Distribution in Lattice Liquids

C. Anteneodo1 and F.M.C. Vieira2

1Centro Brasileiro de Pesquisas F́ısicas - CBPF

Rua Dr. Xavier Sigaud, 150

22290-180 - Rio de Janeiro-RJ, Brasil

2 Universidade Federal de Rio de Janeiro, Instituto de Biof́ısica

Ilha do Fundão, Rio de Janeiro-RJ, 21949-900, Brasil

abstract

We investigate a lattice model for liquids. The average cavity size dependence on

the molecular size is analyzed. Our results confirm the idea that larger molecules lead

to greater average cavity size. This feature of liquids has been recently interpreted as

the reason for solubility differences between water and other liquids. We also study

the percolation problem for empty sites. Critical densities and the critical exponents of

correlation length and average cavity size are estimated.
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The study of the assembly of structures in solvents is relevant to understand processes

such as the formation of micelles and membranes and the folding or association of pro-

teins. Among the non-covalent interactions responsible for these processes, the so called

“hydrophobic” are predominant.

Hydrocarbon molecules are more soluble in organic solvents than in water, i.e., the

chemical potential of the solution is more negative in the case of water and the difference

of chemical potentials is proportional to the area of hydrophobic solute in contact with

water. It is commonly accepted[1-3] that the structure of the aqueous medium surround-

ing the hydrocarbon molecule is altered by interruption of the lattice of hydrogen bonds

between water molecules. It is supposed that water molecules form a cage-like structure

around the solute. However, recent studies on the solubilities of inert gases[4-6] and or-

ganic compounds[7] in liquids have led to the suggestion that the characteristic differences

between nonaqueous solvents and liquid water are not due to the hydrogen bonding or-

ganization in water. Instead, those differences would be mainly due to the comparatively

small size of the water molecule, leading to cavities of smaller size in water, which would

be finally reflected in a greater chemical potential of the solution.

Many calculations have been done based on a statistical mechanics model for liquids[5,

7], the so called “scaled particle theory”[8]. This theory has been developed to analyze

a hard sphere model of liquids, which has a natural counterpart in a lattice model. To

consider some features of this lattice model is the aim of the present letter.

Here, we employ a simple 2-D lattice model to investigate the cavity size distribution

for arrangements of linear n-mers, with n = 1 to 10. Only excluded volume effects

are considered, that means, the n-mers are impenetrable and immobile, and geometrical

restriction is the only source of interaction among them.

We consider a square lattice of L× L sites in which each site may be either empty or

occupied by a monomer belonging to a linear polymer of size n. We use periodic boundary

conditions. The density ρ is defined as the fraction of occupied sites. For n = 1 the sites

are occupied randomly. For n > 1 polymers correspond to random self-avoiding walks:

we choose a random site that will correspond to one end of the polymer, then we choose

(randomly) an empty first neighbor of the last chosen monomer. If the polymer is not
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complete and all first neighbors of the last chosen monomer are full, then this incomplete

polymer is discarded. Figs. 1(a) and 1(b), show typical configurations for n = 1 and

n = 10, respectively.

We define a cavity as a cluster of empty sites that can be reached by nearest neighbor

steps from one site to another. As we will see, larger cavities are more probably found

for increasing values of n. Let pi,n be the probability that a given empty site belongs to

a cavity of size i when the lattice is filled by polymers of size n. The average cavity size

for a lattice filled with polymers of size n, Sn, is defined as[9, 10]:

Sn =
∞∑

i=1

i.pi,n.

For high densities (0.7 < ρ ≤ 1) the cavity size distribution is not significantly de-

pendent on the dimensions of the lattice, since now only finite cavities appear with high

probability. Of course, one should take n � L × L to average among representative con-

figurations of polymer arrangements. Size distributions were obtained by averaging over

500 configurations for each different condition. Average cavity size S (from here on we

ommit the subscript n) is almost independent on lattice size if density ρ is much greater

than ρc. For ρ = 0.7 and 1 ≤ n ≤ 10 a limit value is reached for L ∼ 40 within the 5%

error range. For higher densities, this dependence on L is expected to be even smaller.

Furthermore, in this range of densities (ρ > 0.7), the fraction of 1-site cavities (p1,n) is

independent on the lattice size for L ≥ 10.

Cavity size distributions for n = 1 (i.e. pi,1 vs. i) and different values of ρ are presented

in Fig. 2(a). In the case of n = 1 the size distribution may be obtained analytically. This

is basically the well known lattice animals and perimeter polynomials calculation[11-13].

The first equations for p1,n are given in table I. Values from simulations coincide with

analytical values for pi,1 within the standard deviation of the simulation values as shown

in Fig. 2(a). It should be noted that the analytical calculation of pi,n for n = 2 is related

to the so called complete dimer problem[14-16] which is still an open hard problem. This

should be also the case for n > 2.

Fig. 2(b) shows size distributions for n = 10 and the same values of ρ as in Fig. 2(a),

for comparison. It is already clear that with greater values of n the probability of finding
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larger cavities increases.

By representing p1,n as a function of 1/n for different values of ρ, straight lines can

be fitted to the data corresponding to n > 2 (inset of Fig. 3). From these fits we may

conclude that in the limit n → ∞ the probability of finding 1-site cavities tends to a finite

value p1,∞, which increases with increasing density. In Fig. 3, we show p1,∞ vs. ρ and,

for comparison, also p1,n vs. ρ for n = 1, 2, 10.

Below critical values of occupied sites density ρc there is site percolation of unoccupied

sites, that means, in the thermodynamic limit L → ∞ there appear cavities of infinite size.

For ρ < ρc and in the neighbourhood of ρc, the calculation of the cavity size distribution is

highly affected by the lattice size, and one should correct the finite size effects to calculate

any relevant feature of the model.

In order to investigate percolation of the empty sites close to the critical density ρc,

we studied the behavior of average cavity size S. To obtain estimates of ρc, curve fittings

were carried out using the following expression for dS/dρ[9, 17]:

dS

dρ
= k1 exp[−k2(ρ − ρc(L))

2]

where ρc(L) is the critical size as a function of L, and k1 and k2 are not dependent on ρ.

Figure 4 shows ρc(L) as a function of the lattice size L. For n = 1 we obtained

ρc = 0.407±0.005. The best estimate for this density is ρc = 0.407 2540±0.000 0005[18].

We can also observe (see inset of Fig. 4) that the critical density seems to be slightly

dependent on n.

The correlation length ξ is related to the critical density through:

ξ ∝ (ρ − ρc)
−ν

When ρ = ρc(L), the correlation length ξ reaches the linear dimension L of the lattice.

In that case we have[17]:

ρc(L)− ρc ∝ L−1/ν

The value of ν for n = 1 is supposed to be 4/3 according to conformal invariance

calculations[19]. Our results indicate that for increasing values of n there is no significant

departure from the critical exponent ν corresponding to n = 1.
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According to scaling hypotheses, the average cavity size is related to the density

through[9, 10]

S ∝ (ρ − ρc)
−γ

To evaluate γ we must take into account finite-size effects. According to finite-size

scaling theory[9, 20, 21] we should obtain a straight line fitting for the log− log plot of

S/Lγ/ν × (ρ/ρc(L)− 1)L1/ν

Figure 5 shows the finite-size scaling plots for n = 1. In the inset of Fig. 5 we show

the values of γ obtained for different n. We observe a significant increase of this value

for greater values of n. The increase of γ seems to be related to the increase in average

cavity size for greater values of n.

Larger cavities are found with higher probabilities as n increases. Thus, assemblies of

larger polymers are more able to accommodate a large structure than a water lattice is.

This may be at least one of the ingredients responsible for hydrophobic solubilities. This

agrees with the finding than the solubilities of inert gases are greater in organic solvents

than in water[4]. In spite that the fractional free volume is greater for water, i.e., organic

solvents are denser than liquid water, the free volume is distributed in smaller packets in

the latter case. Our simple model considering only geometric features with no reference

to thermal effects, allows an understanding of a general aspect on the hydrophobic effect.

The results obtained here for percolation of empty sites indicate no significant change

of the critical density ρc nor correlation length exponent ν as n increases. On the other

hand, the critical exponent for average cavity size γ shows a significant increase with n.

The relevance of percolation problems is well known. Nevertheless, the problems we treat

here have not appeared in the literature before, as far as we know. It seems that a new

class of percolation problems has been observed.
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Figure Captions

Figure 1: Typical configurations of polymers with length (a) n = 1 and (b) n = 10 in a

40 × 40 lattice with periodic boundary conditions. In both cases the polymer density is

ρ = 0.8.

Figure 2: Cavity size distributions for: (a) monomers (n = 1). Open circles show ana-

lytical values (from Table I). (b) polymers of length n = 10. In all cases data correspond

to the average and error bars to the standard deviation of the values corresponding to

500 different configurations in 40× 40 lattices. Densities are indicated in the figure.

Figure 3: Probability of finding 1-site cavities p1,n vs. polymer density ρ, for n = 1(◦),
2(�), 10(�) and n → ∞(•). Dotted lines are guides to the eyes. The full line correspond

to the function p1,1 = ρ4.

Inset: p1,n as a function of 1/n for different values of ρ. Full lines correspond to linear

fittings.

Figure 4: Dependence of ρc(L) on L−1 for some values of n. The slope is related to

exponent ν.

Inset: critical density ρc (ρc = ρc(∞)) vs. n. The dotted line is a guide to the eyes.

Figure 5: Finite-size scaling plot for n = 1. The scaling is quite good resulting in a value

of γ = 2.24, compare to the possibly exact value γ = 43/18.

Inset: values of γ as a function of n for the empty sites percolation. Again, the dotted

line is a guide to the eyes.

Table Caption

Table I: Probability pi,1 that a given empty site belongs to a cavity of size i when the

lattice is filled by monomers, with density ρ.
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