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Abstract

Two potential fields undergo gauge transformations belonging to
the same group. In this case the concepts of gauge fixing and ghosts
are extended. A mixed propagator is obtained. A model that is renor

malizable but non-unitary is studied.
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I INTRODUCTION

Nature's flux manifest a continuous changing state. It moves
through interactions. We see it as a reborning act. From the
point of view of particle physics this continuous nature re—~
borning should be based on the interaction between its building
bilocks. In modern science this process is being described through
field theory. Therefore we think that the term in a Lagrangian
with physical meaning is the one which symbolizes the interac-

tion. For instance, in QED it would be
e A U (1)

Nevertheless the Maxwell equations are the only case where ex-~
periment guide the field equations. The common tendency is symmetry
dictated interactions. The proposition of this work is to build
up a dynamics with a symmetry that includes twc fields in
the same group. The physical insight must be contaihed in
the interacting part. Then, there are possibilities to associate
these fields either to same or to different matter fields. Con

sider the case

gAAuw and 9 Bucb (2)

where the gauge fields Aﬁ and Bi helong to the same group U, with
...a
t . . . .
U=e'v ta. (2) appears just as an attitude. In order to give life
to these fields it is necessary to know how they propagate.

Gauge symmetry is a tool for that. Gauge theories appear as a
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servomechanism 1in order to represent nature forces. The pre-

sence of two fields in the same group gives the transformations,

1 i 1

A > UA U + — (3 U)U (3)
u u g u

A
B » UB UL + 2 (5 u)yu-t (4)
u u u

9B

The gauge symmetry is extended through (3) and (4). The re-

spective covariant derivatives are

1}

i 5
DU(A) BU + lgAAu {5)

Dv(B) = Bv + lgB'Bv (6)

They define a covariant system as in Fig. 1. It 1is called
an extended gauge symmetry [l]. QCD is generated through one
of the basis. Different strenght tensors can be build up by

associating different basis. For instance,

Ay - By

Dy(8B)

Dy (A
Fig. 1

A Covariant basis

(3) and (4) transformations define a covariant system. Strength tensors
will be obtained by combining the basis. Depending also on the choice that
trace is taken, different gauge invariant Lagrangians can be generated.
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- 3 =
Gy = [Du(B)' D,(a)] (7)
Huv = [DU(A),Dv(B)] (8)
MUV = (AU—BU) (a -B) (9)
yielding
GZ\) = gABUAi—gB BvBi N ig,gy [BU,A\)]a (10)
Hiv = - Gju (11)
and also the Yang-Mills case
Aiv = BUAi-BvAS + igA[Au,Av]a (12)
Biv = BuBi-—SvBi + gy [BU,BV]a (13)

(10)=(12) give the possibility for different combinations to
build up gauge invariant Lagrangians. A second aspect that de
fines the extended gauge symmetry is in how the trace is taken.

The motivation of this work is to study the Lagrangian

__L g e
&6G = A Ga Guv (14)

that involves two fields. Although they are independent ' each
one influences the dynamics of the other. A different aspect

is introduced by a mixed propagator defined between different
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gauge fields. (3) and (4) allows a mass term in (14). This temm
will have physical influence. For instance, from dimensional

analysis a gauge propagator must have the form ;%. The mass
k 2
term generates a hope of obtaining a propagator of the type L

4
Adopting a static view of confinement the Fourier transform kof
the massive propagator can give a linear potential.

Section II discusses the presence in the same group of more
than one gauge field. Section IT presents, in order to gquantize,
the consequences of these fields in the gauge fixing and ghosts
terms. Section IV investigates the particles spectrum for (14).

Feynman rules and a non-absolute confinement discussion are

left for the Appendix.

I THE GAUGE FIELDS Ai AND Bi

Group theory allows the presence of mcocre than one field un-
der & group algebra. Consider the matter fields case. An example
would be the fermionic fields wi and Xi associated to different lepton or
guark families. Physically they would belong to the same group. Other
case would be in the twelve colourful stones [1]. The theory re
quires bosons and fermions to have the same colour. However
this work intends to study (14) as a pure gauge theory. There
is no matter interaction.

In a first approach we have to understand the relations be-
tween Ai and Bi. It is going to be explored through three dif
ferent methods. In order to simplify arguments we are going to

adopt just one coupling constant. The first aspect is based on



gauge invariance. This means that the gauge transformations in-
corporate the fields identities. The non-abelian transforma-
tions generate a tensor with the form
a e a . a
Yog = 9Yg = 35Y, + 19 [y vyl (1)
From (3) and (4), the question is how to write the fields y§
a . a a . . : .
and yp in terms of Au(v) and Bu(v) yielding for (15) a covariant
transformation. Thus consider that (3) and (4) carry in truth just
a semantic difference. Consequently the tensor
a a a . a
LUV = BUA\) - avAU + ig [BU'A\)] (1¢)
should be covariant. 'Calculating éLiv this property is not ve

rified. Another method to distinguish these fields is through

conserved currents. It gives,

.a 1l a b .c

jp(A) = 5 SN Av(ﬂn) (17)

.a 1 a b .c

J]J(B) = ——2" C be B\) GUV (18)

and

H..a . _

0 [J“(A) +JU(B)] =0 (19)
Observe that in (19) the conservation is not isola-

tedely. It is consistent with the presence of two fields in

the same group. It yields,
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a _La cova o, v a a
D(AU+BU)—3U8'(A+B) +1ig 9 [BU'AV] +hU=O

where hz is such that auhua =0 (20)

(20) can be satisfied with Ai;éBi. An example with group U(1)

is given in the Appendix A.

Another aspect it would be to loock for gauge transformations between

these fields. Consider the relation,

¢ = UFIP and DU(B)¢ = UFDU(A)w (21)

it gives the non abelian relation

-1 -
BU = UI‘ AUUF +

é (2,0p) yt (22)

(22) in (10) gives a gauge dependent tensor. Consider an abelian

case
B = A - A
Bu (23)
(10) is invariant with the condition
CBUA A = 0 (24)
In gauge theories the strength tensor is the contact with re
ality. Thus it might happen a necessity of having this tensor

with some property. Therefore it can be useful to separate (10)

in its symmetric and antisymmetric pieces,
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a a a
Giv = Sy * Cruv
where
G2 =L c® s E?

[wvl 7 3 VTV

a
G(uv) -

N

a a
[G = H,l (25)
Take for instance, a case with some charge distribution where
the currents conserve separatedely. It will be described by

G Another possibility is to consider the dual tenan:éuv.

[uvl”®

TOI GAUGE FIXING AND GHOST TERMS

The gauge symmetry is realized by choosing some gauge refer
ence system. Physics is constructed through the numbers ob-
tained from this framework - the gauge fixing. It leads to a
better defined partition function and reduces by one the num-
ber of degrees of freedom. However in our case there are two
gauge~field families associated to the same group. Thus they
will share a common family of group parameters, w?(x). Conse-
quently, one can expect the existence of a correlation between
the gauge fixing terms considering each family either = sepa-
rately or not.

In giving a separate treatment for the fields we will have
the gauge fixing functionals g[Au] =0 or g[Bu] = 0. Another case

which deserves our attention is the gauge fixing functional
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mixing Au and Bu, g[Au;Bu] = 0. We should however bear in mind

that the criterium for choosing a good gauge fixing is that it

must lead to the presence of just one set of group parameters
a

w (x).

Take the cases,

- _ oM _ aM
i) g[Au] = 3°A) ,g[Bu] = 9 BU (26)

. . u
ii) g[AU,BU] 3 (AU+ Bu) (27)

fl

. . U _
lll)g[AU'BH] d (Au BU) (28)

Working out (26)

(30 (x)) AS (x)
C

w?(y) = —gz[d“x G, (x-y) cab (29)
with a similar equation for B;. It seems to be very restric-
tive to impose both conditions at same time. The field confiqu
rations wouldnot be independent due to the relation wa[Au;y]=uF[Bu;y].
For instance, for SU(2) we would have six equations and three
variables (the parameters w'). However either g[Au] or g{Bu]
may very well be used as the gauge fixing functionals. (27) al
so selects a family of group parameters wa(y) given by
a _ a2l gt _ a u.b a c

w (y) = -g jd xtso(x y) C bc(a w (x))(Au(x)-yBu(x)) (30)

(30) satisfies the gauge fixing condition because the univoque

relation established between the gauge fields and the group



CBPF-NF-032/84

parameters. This does not happen for the case (28). It yields

the relation
a u b C LCy _
c bc(a w (x))(A“ Bu) =0 (31)

Another way to observe the gauge fixing condition is through

the following criteria for a field xu.

i) If Xu satisfies the equation g[xu] =0, then there is no
non-trivial U for which g[XU] =0
ii) Given any Xu which does not satisfy g[x“] =0 then there

exists an U such that g[xu] =0.

Let us apply it for (28). Suppose that AU(X) and Bu(x) are
given such that AU—BU has a compact support. Further that it

satisfies the gauge condition
s¥(a -B ) = 0 (32)
nou
Then from BU(AU-BU),
V!
=1 -1 H
3" U A -B A -B =
( ) ( u u) U+U = ( " u) 3"U=0 (33)

(33) does not satisfy the condition i), because U can be dif-
ferent from one.

In order to gquantize non-abelian gauge theories is being ne-
cessary to introduce the Faddeev-Popov fields. Introducing two
gauge fields in the same group does not change qualitatively in

the functional the ghost factor. It is given by
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iOGhost - jd“x 0t x) 2L () (34)

In the covariant gauge (26), ghosts would interact with just
one gauge field. For (27), both fields will interact with ghosts.

In the abelian case and for axial gauge they are decoupled.

IV HAMILTONIAN AND DEGREES OF FREEDOM

It is necessary to understand the spectrum corresponding to
(l4). Therefore we are going start by studying the dynamical

variables in the theory. The canonical momenta are

]
9

WU(A) (35)

ou

]
1
]

ﬂu(B) (36)

ou

There are seven degrees of freedom. The momentum-energy tensor

is given by

1 2 1 ot a a
T = - G -
wo =7 Juv > 97 GupSuza T €ou8eva) (37)
Defining
cko _ gk , Gok _ Ek , clij =_4@jkBk (38)

vields
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]_ +2 ;2 +2
T = = (-3G% +E?+E? B (39)
00 4 o0

For AO=.BO= 0 the negative term disappears satisfying (3) and

{4). In a further work the conditions for to be bounded by be-
low will be studied. Therefore Feynman rules are developed in

Appendix B. The supersymmetric version avoids the negative ha-

miltonian discussion.

Nevertheless it is in terms of the physical fields Cu and Dv

that the spectrum of the theory is better understood. Rewriting

(14) for abelian case gives,

% 1 . 2 1 2 2~2
= - = C C - = -
G p (8u vt BV U) p (auDv avDu) +mCu
where p? - a2 a

H u By

(40)

The field Cu carries four degrees of freedom. In order to in-

terpret them observe the Klein Gordon egquation

' 2
O+ ) scH =0 (41)
2 H
and the propagator
1303
_gHv * 2 2
<Tm§vp>= 2k’ - m (42)
k2 —m?

It appears that one degree of freedom is given by a scalar
particle. In order to observe this consideration it is propi-

tious to separate the field Cp

C. =C. + CL (43)
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The transversal field will have three degrees of freedom and
there is no problem with negative hamiltonian. The longitudi-
nal part carries the other degree of freedom. The respective

propagators are

<T(QTC$)> = - 1 U (44)
U k2_m2 M
k. k
carctelys = 2 (n - —HVy (45)
[SERY 2 HV 2
m kz_.IP_.
2

Observe the propagators pole. They are different. The longitu
dinal case shows a scalar particle with mass L. 1t is con-
sistent with what was obtained in (41).
A solution for the case could be in freezing the longitudi-
nal part. Consider it in the following piece of the Lagrangian
ck¥ (3,3, mznw) ctvy i(a.c)z (46)
where (26) or (27) contributes to the gauge fixing term. For
the value o =-1 the longitudinal part will not propagate.Thus
the contribution of longitudinal part would be only in the
mass term. Then it can be integrated over and (46) just con-

tributes to the infinite constant.
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V  CONCLUSION

Physically the experimental gauge bosons are free to be un-
derstood with any approach. The motivation of this work is to
incorporate two gauge fields in the same group. However it 1is
necessary’to show that these fields belong to the same groupand
that they are different. Three criteria were selected to cha-
racterize the presence of a same group in the theory. They are
the gauge fixing condition, the presence of . an interacting term
as in (49) and the mass term as in (B9). Each of them is suf-
ficient to determine the presence of a same group. lLet us analyse  them

Gauge theories bring a non-well-defined gauge field. However,
in order to perform calculations it 1is necessary to select a
particular field configuration among the whole class of infi-
nite gauge equivalent configurations. It is just the same as
having Poincaré invariance and being forced to choose a parti-
cular reference frame to do phyéics. Thus being forced to se-
lect a certain field configuration to do calculations, a gauge-
fixing term must be added which explicitly breaks the gauge in-

variance and satisfies certain basic requirements, namely:

(i) it allows the determination of the group parameters,

w®(x), as functionals of the chosen field configurations

w?(x) = wa[xU;X] (47)

(47) means that the path integral defining the generating func

tional of the Green function of the theory is better defined.
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(ii) it permits the calculation of propagators for the gauge
fields. This means that the operator Kig appearing in the bi-~
linear piece of the Lagrangian is invertable after the gauge
fixing term has been introduced.

In our case the condition (47) must be generalized to ' two
gauge fields. As we saw (26) and (27) establish this condition
univocally. The condition (ii) has appeared when we tried to
invert the block matrices in the text. Physically the gauge
fixing importance is in terms that it is associated to the lon
gitudinal part propagation. Therefore the mechanism that controls
the longitudinal part will be enlarged through (26) and (27)

Take the minimum gauge invariant massive Lagrangian studied

in ref. [1]. It is
‘ _ 1 a a,? 1l _, .a  ua
ofoc = -Z{auc\)+g[xu,c\)] } +- m’C C (48)
where Xy is any gauge field that transforms like (3). Condi-
tions (26) and (27) can avoid the propagation of Cﬁ.Thus if

it is associated to a conserved current the longitudinal field
can be integrated over.

The second criteria concerns the gauge field relations. When
each gauge field is associated to a different group, these
fields are generated independently. Therefore they do not in-
teract between themselves. However (14) yields the three-gauge-

-boson vertex

AN a
2 9%a, [B,,A) (49)
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where the fields are interacting. Feynman rules are in Appendix
B. Other aspect for this model 1is in the of a mixing nropagator
between the gauge fields as in Fig. 3. The origin for such prop
agator is in transformations in the same group. Observe in Ap-
pendix B that in general Pﬁ;A £ PiCB .

Group theory does not restrict the number of fields that can
participate on its transformations. However in order to associ
ate particles it is necessary to understand 'the distinguibility
of these fields. The massless case is studied in section II. The
third condition is related to the mass term. As we know, a
gauge theory just based on one field does not allow us to in-
troduce mass. Our motivation is to realize it through (B9). More
over to the gauge symmetry to be preserved these fields must be
long to the same group. The presence of a mass term defines the
physical fields. Then (Au’Bv) should be identified as current
fields while (Du’cv) are the physical fields.

In terms of gauge theories one must specify vyet which type
of vector field Ci is. From equations (40) one sees that Ci

transforms like

(50)

Rigourously (50) does not represent the usual gauge transforma
tion. However a definition must be based in terms of physical
and mathematical properties. Observe that (50) brings the con-
text of Bohm-Aharanov discussion for Ci field, although it is
not valid for the U(l) case. There the transformation is static,

therefore the first tendency is to identify Ci just as a Proca
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field. However here it contributes to gauge theories proper-
ties : it has consequences in the gauge fixing terms (26)-(27),
and it can interact with ghosts. The Slavnov-Taylor identities
also depend on it. Another aspect is that it is not isolated
from the Di figld, i.e, a mixing propagator with this fields
can be calculated.

It appears that the question if (50) represents or not a gauge
field depends of a nomenclature extension. Considering that by
gauge field should be any field taking values in the Lie alge-
bra of the group we would call Di as a pure gauge field and Ci
as a gauge field.

Other observation to be understood is the mapping between cur
rent fields (Au’Bv) and the physical fields (Cu’Dv)' Take for ins

tance, the following gauge invariant Lagrangians

_ Uva Hva _ ~HVa uva
by =n Bya +BYVEB  =cMVic wDMD (51)

_ _ ~lva _ L Mva
and ,{;G_A Buya= C 0 C - D" D (52)

Adding and subtracting (51) and (52) yields that either ci or
Di will not propagate. Parallely it is not the same with Ai
and Bi. There both propagate and there is also a mixing propa-
gator contributing. This shows that there is no direct mapping
between the propagations. It is not trivial that some physical
conditions as renormalizability and unitarity are independent
of the set choice. In a further work these aspects will be studied.

In ref.[l] a gauge model for families is motivated. Take the

fermionic example. There the electron and muon with ist neu-
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trinos are associated to the gauge fields Au and Bv respective
ly, Other case is the twelve colourful stones model where gauge
fields are associated to spin half and zero families respecti-
vely. For this context, the physical meaning for the mixing prop
agator is to represent a type of interaction between the fami-
lies as in Fig. 2. The Fourier transform of this propagator gives
the potential between families for the static case. A we know
the asymptotic freedom property is motivated from the three-gauge-
~boson vertex. Thus its origin is also from the interaction be
tween different families as in Fig. 4. This common fact creates
a relationship between such potential and asymptotic freedom.
Although the graphs have an origin in different terms of the
Lagrangian their physical insight is the same. It is to relate
families with different nature. If the potential calculated is
linear, this model relates confinement and asymptotic freedom.
One could have thought why not to associate a quantum member

to the vector fields Az and Bi in such a way to distinguish.them

(a) (b)

Fig., 2

Mixing Propagator

In (a) it connects electron and muon families. For the twelve colourful
stones case, fermions and bosons can interact through (b),
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from each other explicitly. In principle this can be achieved
by introducing the group Z2 where Ai and Bi would be its two
elements. We have not considered .this case here. Anyway one
can also think that radiative corrections could break this in
variance.

The motivation of this work is to develop the extended gauge
symmetry [1]. (14) had basic situation to be explored. Other si
tuations propagating different massive fields will be developed.
Our propose is to add other types of graphs through gauge the
ories; For instance, the evolution from abelian to non-abelian
theories 1s in the appearance of a three-gauge boson vertex.
The covariant basis as in Fig. 1 allows us to extend different
combinations for this vertex. Cases where one (two) massless

field interacts with two (one) massive fields, or when three

massive fields interact between themselves, can be extended.
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APPENDIX A: GROUP U(1)
The two fields AU and Bv transfom like
A > A -3 A
H Hou
B -+ B _3 A (A1)
u UM
yielding that the tensor
G = auA -93.B (A2)
is invariant under (Al). Suppose the electron and its neutri-
no belonging to the same group. They are written by the fer-
mionic fields ¢ and x respectively. Using the condition (2)
and (A2) for the gauge field Lagrangian we get

a“[ju(m + 3,001 =0 (A3)

and that the fields AU and Bu are independent.
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APPENDIX B: FEYNMAN RULES

Propagators and vertices for (14) are studied. (26) and (27)
give different possibilities for the gauge fixing term. A mas

sive term can be included. Consider

%G - -1 62 "V« 1 (5.a%)2 (B1)
4 HV 2 20

and observing that the fields are zero at infinity, it gives for the

Fourier transform of the action free part,

A (k)
gFREE _ 1 Jd‘*k [A (<k), B (-k)] M*V |V
4 U H B (k)
v
where
IRV G L
20 » '
VI (B2)
kMY k2nHV oL kMY
20,

Propagators will be obtained by calculating the inverse
of M"Y. A mixed propagator coming from the non-diagonal terms

appears as in Fig. 3. It gives the general form

Fig.3. (14) brings two types of propagators. They are between the same
fields (a) or different fields (b).
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k k
Y L S 53
A_>'A kZ U k2
k k
PPV o oL - Y (B4)
BB k2 M k2
THRY
v kMK (B5)
A>B k?
and pH¥ = pW (B6)
B>A A->B
For (B1),
r=1-2a , s = =20 , t==20 (B7)
For -—— (3.B%)2 condition,
2B
r=-28 , s=1-28 , t=-28 (B8)

A MASSIVE PROPAGATOR

It was observed in {1] that (3) and (4) yield an expres-

sion that transforms covariantly,

-1
A ~-B > U(A -B U
,~B, > U(a,-B) | (B9)

It yields for (27),
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_ 1 Y u u
S = p Jd x [A" (x), BT (x)] Nuv(X)[AV(X)]

Bvbd
where
O+m?) n + = 39 A" 5 —m? 1 |
o v ThaY v
o
Nuv(X) = (B10)
A'9 3 - m?n (A%20 +m®) n P
uov v SO Tt
>\=gB/gA;X'=O— and O:—]-:—
20,

A method to calculate the inverse of (Bl10) is developed. It

is a case where all elements are invertible. It gives

pr¥Y A 4B 'y (B11)
A>A 1 uv 1 k2
k k
pMrHv A, ., *+B, MY (B12)
BB H k2
k k
M,uv _ VR
Pavp T Ry My *B3 (B13)
and
M,uv _ M,uv
Ppia = Pl (B14)
where
_ )\ 2k2 2
A, = A_K” +m (B15)
A2k*-m?k2 (A2+1)
_ ~k? + m?
A2 = (B16)

APk em?k? (A241)
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A = n (B17)

A2k = (A%+1)m?k?

The gauge depend term for L [5.(a+B)1? is
8a

alk6 + x1m2kL+ + ylm“k2 + zlm6 ,

= B18
5 k® + g, k® +r k" +s_k? ( !
Py 1 1 1

6 2, 4 b 2 6

B, - azk + X,Mm k +y,m k +2Z,m (B19)
8 27,6 b, b 61,2
p2k +d,m k® + r,m k +8,m k

x. k" + y3m2k2+z m*

6 21,4 2
p3k + q,m k" + r,m k
where
a, = (1-0)A°-20A° i Py = ~(OA® 4201 %+00 ")

X, =2)%+ (0=2) A% + 4o )3

~e

qy = A%+2(0+1) A%+ (30+1) A" + 40 A° + 20 A2

~e

y, = 423 + A2 - 202 r, = A842)° + (0+3) A ¥+ (20+2) A3+ (2042) A 24200 +0

2, = 2A PoS)= (A2+1) 2 (A%+21+1) (B21)
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a, = —(30-1) ; Py = ~[(L+0) A" + (30-1)A?
X, = 50 ; p, = (3+20) A% + (70+2)A? +30 -1
y, = -(20+3) ; r, = (A%+1)*(1+0) + (A2+1) (20+1+2)%) + 2)*
z, = 2 P S, = 4(2%+1) (B22)
X, = —(o=-1)A? ; Py = (o+1) A% + A3 + 022?
vy = (374 (20412 5 Py = —[(140) A" + 2(1+0) A% + (20+3) A%+ 0]
zy = 2X ; r, = AY o+ 2A°% ¢ 2A% + 20 4+ 1 (B23)
1. 2
For -—[23.A]1°,
8a
x. k* +y,m?k? + z_m"
Bl = : 6 - 27,4 14 2 (B24)
qlk +r;m k +s;m k
a k® +x. m’k" +y,m*'k? + z
B, = 28 22 : 2q : 26 2 (B25)
pzk +g,m k +I,m k +8,Mm k
x,m’k" +y.m*k? + z_ m®
B3 = 8 > 21,6 > Y 4 > 61, 2 (B26)
ka + q,m k +r3mk +s3mk
X, = (o-1) A" : a, = ot
Y; = -[223+ (20-1)2%1 ; r, = ~[(o+1) A" + 203 + (20+1) A?]
z, = 0 + 2A ; s, = AT +20% £ (0+2)A% 4+ 20+ 0+ 1 (B27)
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a, = AS i p, = -2 (o+1) 28]

X, = 2(A5=2") P4, = 5% =217 + (40%+3)2°

Y, = =(4N°=A%) 5 r, = -8A% - (40%42)2"
- ) _ b3

z, = 2) s, = 4(A"on7) (B28)
= 3 . — 16_15

Xy = A ; Py = A A

Yy = AP+(0-1)A%-A —[2X%+(2=0) A% = 21 3]

-8

o)
w

0

c + 2) H r, = [(A2+l)(2%”—2X3+(3—O)X2—2X)-+2A3+OX2]

N
]

- (A%+1) [(2X+0) + (A 2+41)] (B29)

2]
I

(14) vields two type of vertice. The first one is

Hz¢ 03

(B30)

The other yields

b b
<O|T(Bi(x)Bv(y)A;(z)lO> = —<OIT(AzbdAdeB§hﬂ|0>(B3U
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The four gauge-boson-vertex gives

a,a,a,a . 2 WU, Uou
ir e = - (ca af a,aft Ca £%. a f)g ' 3g i (B32)
HiHa Mgy, 2 132% 243, 1345 383

corresponding to the graph

B1oy Hzo2
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APPENDIX C: POWER COUNTING AND PRIMITIVE DIVERGENCE

In order to determine whether a certain graph, in a theory
with a cutoff, depends strongly or weakly on the cutoff the as
ymptotic behaviour of the integrand has to be determined. Thus
power counting is a necessary criterium for (14) renormaliza-
bility. The primitive divergencés are expected to depend on
the number of space dimensions, on the type of vertices and on
the order in perturbation theory. Consider a primitively di-
vergent graph with E external legs, I internal lines, and I

AB

mixing propagators. The total number of vertices is V and V3
is the number of three gauge boson vertices. The superficial

divergence will be given by

SUPERFICIAL

6GRAPH = ZI—ZIAB-4(V—1) +V3 (Cl)
The topological relation between legs and vertices is
E+2I = 3V, + 4V, (c2)
(Cl) in (C2) gives
.SUPERFICIAL
8 GrAPH = 4-E-2I,, (C3)

We can therefore see that there is only a finite number of
kinds of primitively divergent graphs as the above formula does
not depend on the order in perturbation theory. The conclusion

is that the present theory is renormalizable. As an example, some
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graphs are analysed in Fig. 4. The first case behave as £n A,

the others are convergent.

Fig. 4. Superficial divergence analysis. In Fig. (a), E=2, IAB= 1
and so, §=0. In Fig. (b), §=-5. In Fig. (c), 8§=-1.
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APPENDIX D: A MODEL FOR THE TWELVE COLOURFUL STONES

A colourful model should have the confinement property. A
building block model the asymptotic freedom property. Therefore
a Lagrangian with colour must show such situations. (14) vyields
three gauge boson graphs for asymptotic freedom as in Fig. 5.
Consider confinement in terms of static potential. Following {2]
the separation energy is given by the difference between the
self energy and the interquark potential

1 K.T

W(r) = Jdiu-ei ) P (k?) (D1)
(2,”)3 00

where POO is the propagator time-time dependent part. Substituing

(B15) in (Dl) give

[1+e T (D2)

=

H

I
N |-
K |

(B16) in (D1),

W, (x) L1 _gmry (D3)
2

AR

Expanding for mr <1 the energy separation is

2
Wl(r) —>-:-L- _._:!'__mr

X r=0 4 4

+0(r?) (D4)

m 2 .
Wz(r) + —1r+0(r?) (D5)
4
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In terms of the proton radius this expansion is valid for a
gauge boson mass m< 0.2 GeV. Observe that (D5) confines, but
(D4) does not. It is a naive approach. We notice it just as a
first representation. Our intention is to observe how gauge
boson mass becomes a parameter for linear potential. In the a
bove case confinement has a non-absolute aspect.

The main motivation is to understand the asymmetry between
fermions and bosons. Expressions as in (D4) and (D5) should
work as an initial laboratory. Consider the twelve colourful stones
model as building blocks for bosonic and fermionic quarks and
leptons [3]. There gauge theories are developed in terms of
bosonic and fermionic families. (D4) would represent same fa-
milies interaction. This means that the bosonic case would not
be a bound state made by a linear potential. However fermionic
quarks and leptons would be composed by a confining potential
due to (D5). Therefore, inside of this naive and restrict mod
el, a motivation for having more fermionic than bosonic com-

posite structures appears.

Fig. 5. Three-gauge-boson vertex generated by (14). It will contri-
bute for the asymptotic freedom property of the theory.
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APPENDIX E: THE PROPAGATOR DIAGONIZATION

In order to avoid mixed propagators we are going to redefine

the fields,

A »rA' +sB' : B »-tA'+uB' (E1)
u u u u u u

where r, s, t, and u are variables to be fixed by the diagonali

zation procedure. Consider the ortogonal form

A cosoB senb Al
uy H (E2)
B ~-senb cosb B!
u u
The diagonalization method seeks a Lagrangian
£ _ ' ' HV 1
¢ ~ (Au'Bu) (Y) Av
Bl
v
VRV .
where (Y) is diagonal (E3)

A list with the Lagrangians studied in terms of the new fields

AL and B& is written below:

(a) For ofG=-iG3vG};" s L va )z Lo(a¥p )2 (E4)
4 8o H 88 H

yields,
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uv 1 uv A kMY
Patsar = 5 I+ — :
k? 1-A  k?
v 1 . v Ar kMY
PB"*BI = "'—[ — ]
k? 1-2' k?
1 2 1 2 2
where A = — cos“6 + — sen<6 + sen‘9o
20 28
A= L sen?s + & sen?6 - sen?o (E5)
28 20
and cot?g 26 = 1 (.]:._l)
4 o B
(b) Including in (E4) the mass term 1 mZ(AS—Bi)2 gives,
2
uv 1 TRV kukv
PAI_>AI - [n _p
cos?6 (k?2-m?) [ (cos?0+p)k?-cos?6m?]
R 1 UV ' kukv
PB“*B' = [TI - P
cos?6 (k?2~m?) [ (cos?8+p'")k?-—cos?0 m?]
where p = cos?6 + (cos?6-sen?h) — + (cos?6+sen?o) 1
4o : 4o,
o'= cos?8 + (cos?B+sen?d) —=— + (cos26-2sen?p) ——
40 48
and (-]—'—-—) sen?6 = 0 (E6)
o

As discussed in the text,

either making o+ or B+ =,

(c) For ib = —i

a

GU\)

"V + L [o¥(a%.B?) )2
a pou

(E5) and (E6) get a physical meaning

(E7)
8a
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yields,
pHV _ 1 (MY 1 +sen?6(2a-1) kM k" ]
Atepar S T, ,
k (1-20) [1-sen26] k
pHY | __};[nuv . l-sen?6 (20-1) kukv]
BB k2 (1-20) (1+sen28) k2
with (2%=1) (cos?6-sen?6) = 0 (E8)
20,

(d) Including in (E7) the mass term as (E6)

k k
Puv _ 1 [nuv . wov ]
1 | S
ATAT 2, m? (1+sen?6) —[(+L) +(1- 1) sen20]k%+ m? (1+sen?6)
20 20
k k
v 1 [}V) TR
PB'+B' = [n * 1 1 2 2 2 2 ]
-k?+m? (1-sen?6) -[(1=-—) +(1-—)sen®6]k?+m? (1-sen?0)
20 20
with (1-2a) cos?6 =0 (E9)

The diagonalization procedure will avoid the mixing propaga
tor but changes the interacting part. Observe that physically

a massive field can not be transformed as in (E2).
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