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ABSTRACT

A new type of effective field theory that has recently been used
with success for many applications concerning the Ising model is
through the generalization of Callen identities, herein extended to
the g-state Potts model. Although mathematically simple, it yields
results quite superior +to those currently obtained within the Mole
cular Field Approximation. In order to test its reliability we check
the followimg properties: (a) the critical temperature Tc associated
with a linear chain vanishes for all g; (b) the value of TC associ-
ated with a z - coordinated lattice (z > 2) exhibits a g-dependence
qualitatively (and to a certain extent. quantitatively) satisfactory;
(c) the z » » limit reproduces the exact value for Tc; (d) for fixed
z, all values of g > 2 provide first order phase transitions, which
is exact for 4 > 4. Furthermore the procedures for obtaining, as func
tions of temperature and for any values of q and z, the order para-
meter, internal energy and specific heat are outlined, and some typ

ical illustrations are presented.



I -~ INTRODUCTION

[1]

Recently Honmura and Kaneyoshi have introduced a new type of

effective field treatment of the Ising model. This theory is based
on the use of a convenient differential operator into Callen iden-
tities[zland has been applied with success in many different situ-

ations such as pure[3—5], site—random[6], bond-random . * 8}

19,10}

.Ising
bulk properties as well as surface ones . Although mathemati-
cally simple, this type of approach has proved to be quite superior
to the standard Mean Field Approximation (MFA); it leads to vanish
ing critical temperature Tc for one-dimensional systems, provides
a non vanishing "tail" for the specific heat above Tc for higher-
dimensional systems and exhibits subtle and physically desirable
non uniform convergences associated with various crossovers in ran
dom magnetism (see Ref.[8] and references therein).

The g-state Potts model[ll](for an excellent review see .Ref.
[12]) contains the spin - % Ising one as its g=2 particular case;
furthermore it is[l3], in the limit q » 1, isomorphic to bond per-
colation. The richness of its thermal properties as well as its nu
merous applications makes worthy the effort to develop frameworks
within which this model can be studied. Herein we extend to the
Potts model the effective field approximation we mentioned before.
This is done for the pure Potts ferromagnet but, following along
Ref. [8], could easily cover also random magnets, including those
in which competitive interactions are present. The results will

prove, as already mentioned for the Ising case,to be superior to

those currently obtained within the MFA (see Refs. [14,15]).



We present in Section II the formalism, including the generaliza-
tion of Callen's first identity as well as the equation determining,
for all g, the order parameter as a function of temperature and exter
nal field; in Section IIT we discuss several important particular ca-
ses; finally in Section IV we outline, through the extension of
Callen's second identity, the procedure for calculating the internal

energy and specific heat as functions of temperature.

IT - FORMALISM

II. 1 - Model and generalized Callen first identity

We consider the following Hamiltonian:

H=-qgz%J,.6 - g2 h,§ (1)
i ij oroj i 1 ci,O
where o; = 0,1,2,...,9-1, ¥ i, 60 s denotes Kronecker's delta func-
i’73
tion and hiao. The order parameter m = < m > € [0,1] associated with

this model is determined by

qg 6 -1
o Ok,O (2)
K =
qg-1
Let us decompose Hamiltonian (1) into two parts:
H = HO + HF (3)
where
H = _qgz1J. gh, § (4a)
0 ki O 10 k ck,O
and
H' = - g z'$ - g L'h,§$ (4b)
i3 Oi,Oj i 1 oi,O



where I' excludes the k-th site. If we consider now an arbitrary

function f(ck) of the random variable Ok we obtain:

Tr £(0)) B g+ ')

{Gi}

< f(ck)> =
Tr e_B(H0+ oY)
{oi}

= : (5)

where B = l/kBT , K and L, = thk.

ki - PAIyy k

By choosing now f(ck) = 46 into Eqg. (5) we obtain
ok,O



qs > = (6)

which generalizes the site Callen identity to all values of g. Noti-

ce also that the following sum rule is satisfied:

g-1
60 o z 60 G .= l, ¥ o. (7)
Ty 0 =1 k'] ]
hence
<60,Oj> + (g-1)< 61’6j> =1, ¥ Gj (7")

It is straightforward to verify that the use of Egs. (6) and (7) yields,

for g=2, the standard Callen identity

<m > =< tanhB(ngjmj + hk)> (8)

II.2 - Differential operator and order parameter

By introducing the differential operator DnE a/axn

(n=0,1,2, ..., g-1l) we verify

oDy
e "f(XO’Xl’ ey Xr’ .oy Xq—l)
where f({Xn}) is any analytic function. Consequently Eqg.(6) can be

rewritten as follows:



L, +X

g-1 DngKk,jGn,O, e k™0
k' n=0 Lp+%o  d- X
n

e + I e
n=1
[x,}=0
By using now the property
D K .6 D K, .
kN, 0g _q (e PRI (11)

e n,cj

as well as the sum rule given by Eq. (7a) we can finally rewrite Eq. (10)

as follows:

Lk+X0
ag-1 D_K, . e
<8y o7 =<l [ 75 e kI $n,0.” ’ (12)
k'’ j n=0 'S Lk+X0 ag-1 X
e + L e N
=1 =
n {Xn} 0

Up to this point there has been no approximation and Eq. (l12) is exact;
unfortunately its further development seems untractable and consequen-
tly we shall introduce an approximate decoupling (see [8] and references

therein for the g=2 case) and rewrite Eqg.(12) as follows:

g-1 D K, . k 70
< 8 > = l |< 2 e DKJ 6, 5.7 c (13)

{xn}=0

Let us from now on consider first-neighbour interactions(with cou-
pling constant Kk . = K) in a z-coordinated regular lattice (z=2d for
7

the d-dimensional hypercubic lattices); Eq. (13) becomes



2
L, +X
q-1 D_K o k'O
< § > = I e §
o, ,0 - n,o
k’ n=0 3 L +X, -1 X
n
e + I e
n=1 {X }=0
n
z X
: +
DK L=< 60.,0> -1 DK eLk 0
={ e < 60 0 > 4 J L e (14)
i’ -1 n=1 +X -1 v
q Ik 0 g Xn
e + X e
n=1 {Xn}=0
By using Eqg. (2) we obtain the equation of states:
z +X
1 DK q-1 DK eLk 0
1+ (g~1)m = e [ 1+(g-V)m] + (1-m) X e (15)
qz—l n=1 Lk+X0 g-1 Xh
e + X e
n=l 3
{XnJ-O

And finally by developing, through the Leibnitz formula, the z-power

and performing the differential operations we obtain, for Lk=0’ the

equation of states:

n.K
1 21 o ZMy e’
1+ (g-1)m=—"-— % [1+(g-1)m] ~ (1~m)
z—1 nol nlg...n —l! 9 q_l n.K
{ni} g T e™

i=0

(16)

where the sum runs over all the partitions {ni} satisfying the condi-

tion 1

¥ n, = 2 (17)

q



In the neighborhood of the critical temperature TC (i.e. m - 0)

Eg. (16) provides

m ~ Am + Bm2 (18)

where we have used the fact that, for all K,

nOK
z! e z-1
% z =g ’ (19)
ny!n,!...n ! g-1 n.kK
{ni} 071 g-1 s e
i=0
1 2! enOK (20)
A = ) (qno—z)
- 1 ! - .K
(q—l)qz 1 {ni} nO! nl""nq—l' qzl . n,
i=0
and where
1 z!
B = — ) ; : : %
(q—l)qz 1 {ni} no. nl.. 'nq—l°
2 n.K
n,(n.,-1) (g-1)" + (z-n,) (z=n,-1) 0
[ 070 0 0 _ nO(Z—no)(q—lH e (21)
2 g-1 n,K
r e 1
i=0

The critical temperature TC associated with a second order phase tran-

sition satisfies

A(Tc)=l (22)

Typical values of Tc are presented in Fig.l. We can verify that if
B(Tc) < 0 the transition is a second order one and m vanishes linearly

with T (dm/dT o < 0);if B=0 the transition still is a second order
c



one and m vanishes not less abruptly than (TC—T)1/2; if B > 0 the
phase transition is a first order one and the transition occurs in

fact at a temperature T, > Tc' We verify also that B=0 for g=2 and

0

all values of z > 2 (z=2 corresponds to a linear chain).

ITT - PARTICULAR CASES

ITI.1 - Ising model (g=2)

For g=2 and all values of z the critical temperature TC sa-
tisfies
[2z-3-(-1)%1/4
z

zi(z=24) 0 z=28 ( (23)

2 i=0 il (z-i)! t

where we have used Egs. (20) and (22) and

t = = : (24)

[7,8]

For z=2,3,4 and 6 we recover previous results ; Eg.(23) is a

simplified form of Eg.(22) of Ref.[7].

From Eq.(16) we obtain the full equation of states, which is

given by

1 [2z-3-(-1) %1 /4 21
m=— 3 . x
z i=0 it (z-i)!

. . . . . (25)
[(1-m) Y (1+m)Z™Y - (1+m) Y (1-m) %~ 1] tann 2221




This expression recovers, for z=2,3,4 and 6, previous results[7’8];

it admits, for all values of z > 2, the triwial solution m = 0 (pa-
ramagnetic phase) and a non trivial one for T < TC (ferromagnetic

phase), the transition being a second order one.

III.2 - Linear Chain (z=2)

For z=2 and all values of g, Eqg.(16) yields

m = Am + Bm2 (26)
with
2K _ K_
Az 2 (e -1 . (g-2) (e"~1) 1 (27)
ek, (g-1) 26" + (g-2)
and
K 2
B = (g-2) (e” - 1) | (28)
[ e®®iig-11 [ 2e5+(g-2)1

The analysis of Eq.(26) shows that, for g > 2, m vanishes at any fi-
nite temperature, therefore Tc=0, which is the exact result (not re-
producible within the MFA). For g < 2, bothm = 0 and m # 0 solutions
exist, however the discussion of the free energy should show that

m # 0 is an unstable solution.

ITITI.3 - Infinite-range forces (z - )

We consider herein that each spin interacts with a bigger

and bigger number z of other spins, through a reduce exchange K
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which is smaller and smaller in such a way that Kz remains finite
(this ensures the extensivity of quantities such as the free and
internal energies). We go back to Egq. (15) with Lk=0, and consider

the operator which appears therein:

-1
1 DyK 1-m q D K
~—[1+(g~1l)mle + L e
q q n=1
DK a-1 p g
= exp z 1ln ~l—[l+(q—l)m]e 0 + i-m r e ™
d d n=1
l+(g-1)m l1-m g-1
~ exp z ln [1+ ——— KD0 + K I Dn]
q d n=1
1+(g-1)m l-m g-1
~exp {7z [ ———— KDy + —— K nil D] (29)
By replacing this operator into Eq. (15) we obtain
ZX [14+(g-1)m]
qge A
1 + (g=1l)m ~ (30)
2K [1+(g-1)m] 25 (1-m)
e 9 + (g-1) e
hence
-zZKm
e “ 1-m (31)
l+(g-1)m

This equation is precisely that obtained in Ref.[14] within a MFA

framework, i.e. the present approach is equivalent to a MFA for all



-1]-

values of q and z - « . Eq.(31) provides, for q < 2 (g > 2),

o . -1
second (first) order phase transition occuring at KC

- Z/q
-1 . {12]
(Kc > z/q); see Fig.2. These results are known

to be exact

IIT.4 - Typical cases (z > 2; g > 2)

In order to present typical curves we extract from Eqg. (16)
a few cases, namely (q

= 3; 2 = 4,6) and (g = 4;

= z = 4).
For q = 3 and z = 4 we obtain:
m = Am + Bm® + Cm> + Dm" (32)
where
, K
A= 11-4 2 s e+ 6 3 . 2 (33)
e4K+2 e3K+eK+l 2e2K+l eK+2
K
B = 6-6 2 + le - > ' (34)
e4K+2 e3K+ eK+l 2e2K+1
K
C = -24-24 1 - e -3 (35)
e4K+2 e3K+ eK+l eK+2
5 8 eXy12 3 24
D =8 - 2 - h + + (36)
2 K
e K+2 e3K+ eK+l 2e2K+l e 42
For g = 4 and z =

4 we obtain once more Eq.(32) where



-12-

1 K K 6 3
Az 3 .\ 2e +6 be +
-2
e4K+3 e3K+ eK+2 e2K+ 2eK+1 2e K+2
. K B K 1
B = 3.3 1 2e"+2 2e -2
e4K+3 e3K+ eK+2 e2K+2 eK+l 2e2K+2
K K
- 3 3
C = 8- 7 _ 2e" =2 _ 0e +6 -
K
e4K+3 e3K+ eK+2 e2K+ 2eK+l 2e +2
. 5  6e"414 186”46 3
X3 3K, Ko 2Ky 2K 262K, 2
For g = 3 and z = 6 we obtain:
m = Am + Bm2 + Cm3 + Dm4 + Em5 + Fm
where
6K 5K K 4K
A= 487 - 6 2e =2 . 18e™"-6 e =12 30e - 30
efX, o K, X1 e ki1
K K
, _30% 30 oK , _20e>% 20 60e>F_60 e
e4K+ eK 2e3K+l 2K+ eK

(37)

(38)

(39)

(40)

(41)

(42)
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6K 5K 4K 2K

- 12 30
180-15 4e " +2 N 24e” 7 +12 N 18e e T+
e6K+2 e5K+ eK+l e4K+ 82K+l
18¢ %% ge X _ 20 24e°F,4802F (43)
+ — —
e4K+2eK 2e3K+l e3K+ e2K+ eK
8e®X _ 2 24e°F,6eX - 12 12% _6e2K, 30
~ 120-20 ' -
e6K+2 e5K+eK+l e4K+ e2K+l
_12e*F _30ef 226420 66e3F - 246K _ 60ef
e4K+2eK 2e3K+l e3K+ e2k+ eK
(44)
16e°K,2 12eX _ 12 18e%¥ _ 182K _ 30
270-15 - _
e6K+2 e5K+ eK+l e4K+ e2K+l
_ 180 i60e® | 16e¥i20 | 48e¥i7262K _1206K (45)
e4K+2eK 2e3K+l e3K+ e2K+ eK
2606 32e°% -2 96e® _18eFi12 6030
e6K+2 e5K+ eK+l e4K+ e2K+l
K 3K |
. 90e . _80e _20  240e3F _ 240e%Ki180eF (46)
4K . K . |
e " +2e 2e3K+l e3K+ e2K+ eK
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6K 5K K 4K 2K
F = -120— 6de " +2 _ 384e” " +24e - 12 N 480e " +120e”+30
e6K+2 e5K+ eK+l e4K+ e2K+l
(47)
180e*® _ 120X 320e¥ _ 20 960e3* _480e2Ks240eK
e4K+2eK 2e3K+l e3K+ e2K+ eK
(47)

We notice that all three cases (see Egs. (32) and (41)) admit the para-
magnetic m=0 solution as well as the non trivial ferromagnetic one;
we present in Fig.3 the curves corresponding to g=3,4 and z=4, together
with those associated with (g=2; z=4,6) for comparison.

. Let us finally remark that the present theory, as the MFA[14] ,
yields, for all values of z (i.e. for all dimensionalities d), first

(second) order phase transitions for g > 2 (g < 2); this is correct

for d 7 4 but wrong for d < 4 (see for example Ref.[12]).

IV - INTERNAL ENERGY AND SPECIFIC HEAT

IV.1 - Generalized Callen second identity

Let us consider an arbitrary two-site function f (Ok,GQ) and

use Hamiltonian H into canonical thermal averages:

i Tr f(ck,o&)e_BH

< f(Uk,O‘(z)> =

Tr e—BH
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g-1 L,S + L K
Tr L flo,n) e j
t931%9) nog

T 5 e £ n,0 je& o.,n e BH
{0.}#0, n=0
i 2
g-1 L,$ + Z K., 6§
2°n,0 je o, n -BH
Tr § f(ck,n) e J J, e
- Llén,O + X szég n e
Tr X e e
n=0
g-1 L,§ + L K..6§
5 £(o.,n) e £°n,0 3 32 oj,n
k
n=0
= (48)
q-1 Ledn,0 * 2 K509 n
z e
n=0

This expression extends to all values of g the Callen second identity

for the Ising model.

IV.2 - Internal energy and specific heat

We consider from now on L2=0. By making use of Eq. (48) we

may write.

Z K., 6§
g-1 4 J2 oj,n
) Z Kkléak,n e
5K, 8 n=0 k
k& o, ,0 =

k k"2 T s

a-1 > K% ,n

z J 3’
n=0
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-1 Xn
g-1 n z Kj260 n EO Xn e
= ll e
B g-1 X (49)
n=0 s e D
n=0 {Xn}=0

where we have introduced, in the last step, the differential operators

{Dn}. By using Egs.(7) and (11), this identity can be rewritten as

follows:
o g-1 X
q-1 DnKjSL % Xn e 1
Z K 6 _ II I e S n=0 (50)
x KX Ok’02> *\ "' n-o Oy/0 ) GTT X
J r e ©
n=0
By decoupling as before (i.e. <IT ... > ~ 1 < ... >) and using Egs.
J j
(2) and (7') we obtain
D.K. D K.
£ K _,6 I'l+(q—l)m L L T noJ%
Kk k% 079, = e + L e X
Jj [: d q n=1
g-1 X
)X Xne n
n=0
g-1 X
5 e ™
n=0 {Xn}=0 (51)
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By assuming first-neighbor interactions (KjQEK) in a z-coordinated
regular lattice of N sites and taking into account Hamiltonian (1)

(with hi=0 and where each couple (i,j) is counted only once), we can

write the internal energy E = <H > as follows:
g-1 X
zZ n
ag-1 L X e
E kBT l+(g-1)m DOK l-m DnK n=0 "
= - > e + r e 1% (52)
N g q n=1 a- n
L e
n=0 {Xn}=0

By performing the same steps we followed in order to establish Eq. (16)

from Eq. (15), we finally obtain:

‘ kT n Z-n
E |
HN =-_B X Z° - [ 1+(g=-1)m] O(l—m) 0 X
z .
2q {nl} ny! n,! ...nq_l!
g-1 niK
 n.Ke
i=0 (53)
g-1 n.K
L e
i=0

where condition (17) is satisfied. Eq.(53) gives E as a function of
9,2z, kBT/J and m(q,z,kBT/J); consequently it also determines the spe-
cific heat C = dE/AT in both para- and ferro-magnetic phases. The type
of results that Eq. (53) provides for g=2 and z > 2 can be seen hiﬁef.ﬂﬁ]
(where the diluted Ising model has been discussed); the type of results

that it provides for g > 2 and z > 2 are depicted in Fig 4.
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V - CONCLUSION

In the present paper the single~-site and two-site identities
originally established by Callen for the Ising model have been
extended to any g-state Potts model. By making use of them
and taking advantage of convenient differential operators, an
effective field theory is developed, within which the order para-
meter, internal energy and specific heat can be calculated for
all temperatures (the calculation of the susceptibility is also
feasible; it :is however out of the scope of the present work)
This theory, without introducing mathematical complexities, provi
des results which are quite superior to those obtained within
the standard Mean Field Approximation (MFA): a) it provides Tc= 0
for the linear chain; b) a "tail" in the paramagnetic specific
heat is observed; c) the g- and z- dependences of Tc are satis-
factory and numerically closer to the exact (or almost exact) ones
than the values provided by MFA. It shares with MFA the classical
values for the critical exponents, the fact that the transition
is obtained to be of the first (second) order for q > 2 (q < 2) ,
which is,qorrect for d 3 4, as well as the equation of states for
z » « and any value of g. The present type of theory has had some
success in the discussion of complex Ising systems; the same is
expected for analogous Potts models.
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CAPTION FOR FIGURES

Fig. 1 - Critical temperatures Tc(z,q) for the g-state Potts fer

Fig.

Fig.

Fig.

2 -

3 -

4 -

romagnet in a z-coordinated lattice (the dashed lines are
possible analytic extensions for arbitrary z). kBTC(4ﬁD/J
equals 3,0892 to be compared with the MFA result 4 and
with the exact one 2.27...

Thermal dependence of the reduced spontaneous magnetiza-
tion associated with the z+» g-state Potts ferromagnet.
Themal dependence of the reduced spontaneous magnetiza-
tion associated with typical values of (z,q). The dashed
lines are to stress the fact that the transitions herein
provided for g>2 are first order ones (hence m is discon
tinuous).

Typical thermal dependences of the specific heat C and
internal energy E corresponding to g>2. TO (Tc) is the
critical (disordered phase metastability limit) tempera-
ture. The dashed line indicates the thermodynamically un

favorable analytical extension of the curve.
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FIG.2
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FIG. 4



