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ABSTRACT

It is shown that the potential (and field) of a non-abelian gauge
theory is not well determined when it has a singular point. When
this is the case, it is important to specify the regularization
procedure used to give a precise definition of physical quantities
at the singularity at any stage of the computation. We discuss the
fact that a certain AU (associated with the given regularization)
represents the vacuum when Fuv is a zero distribution not only

on the global space but also in all its projectionsto arbitrary
subspaces.The example used as a base for the discussion is

A=1i gﬁ;. For this example we show that different regularizations
give th; same field in the global space but they give different

distributions when projected to subspaces containing the singular

point.
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INTRODUCTION

We have shown in a previous paper[l]that whenever the potential
of a non-abelian gauge field is singular in a two dimensional
surface, the field itself is not well defined unless a
regularization procedure is given. Different regularization schemes
may lead to pysically different potentials and fields.

A similar situation appears when the singular surface shrinks
to a point. Although in this case we will show that the ambigllities
are hidden in subspaces of lesser number of dimensions.

For example, it is usually considered in gauge theories (and

for sound reasons), that the potential
(1) A =g 3. g (g = g(x) is a group element)

corresponds to a null field and consequently it represents the
vacuum. However this is not strictly true when g has singular points,

which is the case, for instance, when

. t
(2) g=-¢e* arcotg —— O, _ —%— (t - io . 1), x2 = r2+t2,

1
o‘ o cm— . r
r ¢ 9% *

The corresponding vacuum potential (1) is :

Guvxv
(3) AU= "'21 ———'2-— H (X4 = t)
X
with
(4) C,. = 1 € o 0, ,= —=— O
ij 2 ijk "k ' “i4 2 i°

The potential (3) has a point singularity which is related to the

lack of definition of 0. at the origin (cf. (2) )
We shall discuss the fact that as a consequence of this

singularity, the resulting field Fuvcannot, strictly speaking (see



also Reference [2], §III) be considered to represent the vacuum
unless the singularity at the origin is conveniently dealt with.
In order to simplify the discussion, we shall take the three

dimensional projection (t + 0) of (2), namely:

(5) g = e ==-1io0_,

which gives the "vacuum" potential:

o fNCT

6) 2= o Vo =i

We shall show in different ways, that it is possible to exhibit
a peculiar singularity of the field at the origin. In §2 we do it
through nafve application of Stokes theorem. In §3 and 4 we extend
the discussion applying methods of distribution theory, in particular
analytic regularization. In §5 we use another way to regularize,
which we call "instanton-like" method. Neither of the regularizations
presented in the above mentioned sections give a true vacugm. In §6
we study a regularized version of (6) which is a true vacuum potential,
The implication of these results for the four dimensional fields (2)
and (3) is obvious, as (5) and (6) are respectively their values in

the hyperplane t=0.

2~ Use of Stokes Theorem

If we compute V A A and A A A from (6), outside the origin, we

find:

(7) F=VARA+AMNA=O r£0 .

~

But both.Y A A and A A A present problems at the origin which require

further discussion.

Let us first take the vector field:



(8) B =V AA.

If we consider a circle of radius R in the 2=0 plane, with

center at the origin, the flux of B through that surface is given by:

(9) Il~3.d~s=[(21\2~\)3ds=§z~\.d~l

where the last step follows from a nalve application of Stokes
theorem and the line integral is extended to the circunference of
radius R.

It is easy to see that

o Arx
A.dl=1—?———.rg¢=103d¢

Then, from (9)
(10) JB.ds=ia3§d¢=2‘uic3 .

Equation (10) shows that when B is considered as a distribution
in a two dimensional subspace, it has a § - type singularity at the

origin, which is not obvious when looking at B as a three dimensional

function.
Let us now consider the term A NA. Formally, we could say that
we have
AANA==2i —3 r and

(11) (A ABR4=0 (z=0) .

So A A A will not contribute to the flux of F across the above

mentioned circle. On the other hand, in the plane Z=0, the product of



(6) times itself is not well defined (in two dimensions) according to
the rules of generalized functions.

We see that unless % A g has a §-singularity at the origin, we
cannot compensate the singularity in Y A § and F does not vanish
everywhere.

So, the whole problem has to be looked at from the point of
view of distribution theory[3]not only in the global space, but also

in projections to smaller number of dimensions.

Distribution methods

The use of Stoke's theorem in the precedent paragraph is not
canonically correct, as the integrand is singular at the origin. So,
we shall compute the third component in the plane Z=0 using the rules
for derivatives of distributions.

Let ¢(x,y) be a trial function in the plane z=0. The curl of

the distribution A is defined by[3].

(12)

<1
>
o
~
e
il
by
=
<
s
fl

J A ANV ¢ dx dy

and we have, specifically for the 3rd component.

o A T

(@A &g.0)=(an,50) = 4 f [:——5——/\ Y ¢]dx dy

r

((x A 2500 )= if ax oy 5[5 (.0 o-0. D o |
. L.y

R

. V¢
= —io, [ dx dy 5 :

r
as in Z=0 the term proportional to r has its third component equal
to zero. The last integral contains only the radial derivative of

the trial function. Using, for simplicity, axially simmetric ¢, we

have (polar coordinates p,jb



(13) (7 Am,.0) = -2m i oy ! pdp == -2 = 21 i o, $(0)

Which explicitly exhibits the singularity:

(14) B3 = (Y A %)3= 2R i o4 §(x) S(y) (in Z2=0)

Or, for an arbitrary plane through the origin with normal n,

with p = (x',y',0):

(155 n.vAa=io0.n -8 _ogiomse sy .

x'y' being the coordinates in that plane .

Use of analytic regularization

In the previous paragraph we discussed the singularity of curl

A. In order to treat also the product A A A, it is better to analyze

simultaneously both terms contained in the definition of the field g.
For that aim it is convenient to use the analytic regularization
method (see references[4][5]c6])in the definition of the potential.
Thus, instead of (6) we may write:

(16) A=ioc Ar re®

which coincides with (6) for a= -1, but is regular at the origin for
positive a.

Of course (16) is not a pure gauge potential, but we may expect
that the regularized limit for o + -1 will be a vacuum.

From (7) and (16) we have:

(17) F = 21 [(l+a)r2 6 - o.xr (x'%ax )r} )



We will now consider a plane through the origin (with normal n).
On this plane, the normal component of F is a two-dimensional

distribution given: by:

(18) F .n= 2i(l+a) p2a . n ;p= (x',vy',0).

Note that the contribution of A A A drops out due tor . n = 2' = 0.
Equation (18) is not zero for o = -1, as the bidimensional

distribution pzq(see reference t6] ) has a simple pole at a =-1,

with residue N §(x') §(y') . The correct limit is then

(19) F .n =2 Mi S(x")S8(y')o . n s (p) ; (Z2'=0)
T ja=-1 ¥ ~ P

Therefore the singularity of F . n (in the above mentioned plane)
is entirely due to n.V A A (cf. (15) ), confirming again (10) and
(11) . Thus we have proved that the regularized potential (16) is

not an actual vacuum potential for o = -1.

Instanton-like reqularization

The discussion of the previous sections can be repeated if we

define A as the limit for A-+0, of the imstanton vector potential at

73 1is]

the surface X,= 0. In fact the instanton four-potential is:[

(see (3) and (4) )

(20) A =-24i BV
X"+ A

The"space" components of (20), at the surface x,=0, give the

4
vector potential:

rQ
P
a

(21) A=1i

=
+
>



From which we obtain:

Az o
(22) F=21i =

(r2+ A2)2

Indeed (22) seems to show that the limit 12+ 0 corresponds to
the vacuum. However (21) and (22) lead to a situation similar to
that of the preceding paragraphs. As a matter of facts, it is well

known that:

2
(23) lim A =78 (38 (y)=30); o =(x24 y?)

A0 (x2+ y2+A2)2 20

1/2

Then again, the normal component of (22), in any plane through the

origin, reduces to (19) for A2-+0.

6- A true vacuum potential

If we take the group element given by (2), in which we choose

t=A =constant # 0 (instead of t=0, as in (5) ), we get:

(24) g =
r2+ A

From which it follows

-1 o Arx o]
(25) A =g V g=1 = = - iA —=
r?+ 22 r2+ 22
(26). F=VAA+ANA=O0 (ie, vaccum for any X )

However, (6) is not-strictly speaking - the limit of (25) for A~»0 as

A
(27) lim '_2——-—7 = If (S(X) .
A0 X7+ A



This means that along any line passing through the origin, the
second term in (25) will give (for A+ 0) a distribution of the

form

(28) -i %368 (x)

where x is the coordinate along the line. Thus

J Axdx = —iﬂg{ .

Nevertheless the field £‘derived from (25) is identically zero
for any)x;éo. Of course, the limit for )—)0 is then also a vacuum.
Note that the additional term in (25) (cf. with 21)
responsible of (28) is necessary to garantee F=0 at any stage of the

process and "a fortiori” at A0 .

DISCUSSION -

The previous paragraphs show that the potential (6) does not
represent the vacuum, in a strict sense, as its projection on a
plane through the origin presentsg singularities.

The restrictions (to sub-spacesof lesser number of dimensions)
appear in a natural way when one wants to compute fluxes or line
integrals.

In particular, when one is interested in a potential of the
vacuum, it is clear that not only the field intensity (in the
global space) must be zero, but at the same time this must also
happen with all its restrictions (or projections) to arbitrary
sub-spaces. The potential (6) does not satisfy this criterium.
Furthermore, whenever a singularity is present a method should be
given on how to handle it; ie a regularization procedure should

be included. It so happens that different regularization schemes



lead to different type of singularities.

In order to show clearly the relation between the different
methods, we shall give a table where we show the projections to two
and one dimension (containing the origin) for the regularizations
introduced in sections 4,5 and 6. For all of them the potential for

. three dimensions reduces to iSLA7£ and the field’g to zero.

r
. 20,
Method I (§4) A=3icAr «r (a> -1)
~ T g A op
a) In 2-dimensions (2=0) , A=i 3——51—
p
ﬂ'cl
Fl= - i — (2a+l) §(x)S8(y)
2(a+l)
T o singular.
F2= - i —— (2a+1) 6&(x)8(y)
2 (a+l) )

F3= 2i WS (x) & (Y)c3

bj In l-dimension [[—l—]=vp L )
X X

Method II(§5)

P
tQ
=
|2H

(A=0)

i
+
>

a) d=2

a=i208 ro2iwsmsw o .
Y
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F = iﬁ §(x) 0 (singular for Ai=0) .,

Method III (§6)
o A rx A g

A= j ——"5— - i
r2+ Az r2+ A

b) d=1

A= -i Moy 8(x), BAy=i oy [}%{] - i Mg, (%)

mn
o
.

. ‘ 1 .
A3= -io, [3?] - i ﬁcé 8 (%) ; F

For these results we have used, when appropiate, the formulae:

2m-n L (m-—E—) .
lim A ='n'2 r 2 6(5:')), m> 2
> 2 .2.m 2
(r”+ \7) T (m)
k ->
% N Qn AT 8(x) N [%—n-Zk]
a+ -n-2k 2K k! 1.n.(n+2)...(n+2k-2) (a+n+2Kk)
1
2

where n is the number of dimensions and = 21
Y
2

Thus we found that method III (§6) isi -the only regularization

procedure among those examined here, that produces a true vacuum

(E‘EO) .

We also found that although

A=1lim ——= and
A>0 r+ A

g
It

L o L. .
lim i o Ar r2 coincide in three, two and one
o>



- 11 -

dimensions, the corresponding fields F coincid@ only in three
dimensions.
It should also be mentioned that these problems are not

exclusive of "vacuum" solutions but appear whenever the potential

has a singular point.
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