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abstract

We propose a model for generating “artificial” nucleotide sequences and, by the method

of mapping those sequences onto a “DNA-walk”, we analyze the presence of correlation

between nucleotides. We show that long-range correlations may be favored by the occur-

rence of intrastrand interactions which give a non-linear characteristic to the sequence.
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Introduction

Since the evolutionary history is registered in the genetic material of modern organisms,

some of that history could be reconstructed from the analysis of the nucleotide sequences.

Therefore, the study of the characteristics of existing genomes may enlighten our under-

standing about the processes by which they have evolved. In order to study the stochastic

properties of nucleotide sequences, it has been recently proposed the method of “DNA

walks” (Peng et al., 1992), basically consisting in the association of a random-walk to a

given sequence. This method allows to study the fluctuations of the nucleotide content and

to obtain a quantitative measure of the degree of correlation between nucleotides, given

by a power exponent α which characterizes the dependence of the correlation function on

the distance along the sequence, being α = 0.5 for uncorrelated sequences.

Many sequences of genes and cDNA have already been mapped onto unidimensional

“DNA-walks” (Peng et al., 1992; Peng et al., 1993; Buldyrev et al., 1993; Uberbacher and

Mural, 1991) and long-range power law correlations were found in several of the analyzed

DNA sequences. These long-range correlations have also been detected through alter-

native approaches (Li and Kaneko, 1992; Voss, 1992). However, a controversy has been

generated about the characterization of the sequences exhibiting such long-range correla-

tions. Although coding and noncoding regions of DNA seem to have different statistical

characteristics: coding sequences usually consist of a few regions of different strand bias

while noncoding sequences present more complex fluctuations, some authors (Nee, 1992;

Prabhu and Claverle, 1992; Chatzidimitriou-Dreismann and Larhammar, 1993) found no

consistent differences in the α exponent for coding and noncoding sequences and also

showed that a well-defined fractal exponent does not always exist for a given sequence.

On the other hand, other authors (Peng et al., 1992) found long-range correlations in

intron-containing genes but not in complementary DNA sequences or intron-less genes,

having recently been shown that the correlation properties allow the identification of

coding regions in DNA (Ossadnik et al., 1994).

Anyway, whether these correlations have arisen by pure chance or by some nonran-

dom process remains an open problem (Nee, 1992; Karlin and Brendel, 1993). Consid-
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ering that there are patterns found more or less frequently than would be expected from

random occurrence (Tavaré and Giddings, 1989), it seems that a nonrandom process is

involved. Tavaré (Tavaré and Giddings, 1989) who has estimated the order of DNA se-

quences treated as Markov chains, where a chain is of order k if the probability of finding

a given nucleotide at a site is determined by the previous k nucleotides, found that most

sequences exhibit orders of dependence higher than zero which corresponds to the case of

independence. From the point of view of molecular mechanisms, base-stacking interac-

tions was shown to constitute a dominant factor in nucleic acid stability and to be highly

sequence dependent (Aida and Nagata, 1986). Moreover, non-covalent forces, namely, hy-

drophobic, hydrogen bonding, van der Waals and electrostatic, are also responsible for the

conformational stability of any chain molecule, in particular nucleic acids (Ponnuswamy

and Gromiha, 1994). These forces between residues within the polymer itself, give place,

at least locally, to well-defined three dimensional structures found not only in RNA, but

also in single-strands of DNA (Sanger et al., 1982). Taking into account these features

and in the tentative of finding an explanation for the observed statistical properties of

nucleotide sequences, we develop, in the present work, a simple model for generating artifi-

cial sequences. The model consists, basically, in discrete Markov chains possessing a finite

state space, in which short-range nucleotide interactions are introduced, being relevant

the interactions between first neighours and those between more distant neighbours.

Model and Results

We assume a finite linear chain in which each site i (i = 0, 1, . . . , L) is occupied by a binary

random variable {Si}. If Si = +1, a monomer which base component is a pyrimidine

(either cytosine or tymine) occurs at position i, whereas if Si = −1, a purine (either

adenine or guanine) occurs at that position. We construct the linear chain assuming that

Si+1 will be equal to Sj with probability p and different of Sj with probability (1 − p),

where j = i with probability q and j �= i with probability (1−q), for i > j. By convention,

we assume that S◦ = 1.
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The probability distribution of the variable Si is given by:

Si(x) = pi δ(x − 1) + (1− pi) δ(x + 1), (1)

where pi is the probability of Si being equal to +1. It is easy to find that it obeys the

following recursive relation:

pi = (2p − 1)
[

q pi−1 + (1− q) pi−j

]
+ 1− p 1 ≤ i ≤ L, (2)

with p◦ = 1. The variable q ∈ [0,1] weights the correlation between first neighbours. Since

intrastrand interactions may take place through the formation of loops and the probability

of finding a loop of length j in a very long linear polymer is P (j) ∝ j−µ for j ≥ lc, with µ a

positive real number and lc an integer which represents a lower cut-off distance (Buldyrev

et al., 1993), then, j is chosen according to this distribution of probabilities.

The variable which represents the excess of pyrimidines over purines in a sub-chain of

length l is:

Y (l) ≡
l∑

i=1

Si. (3)

Its mean value 〈Y (l)〉, equivalent to the mean net displacement after l steps in a random-

walk, is:

〈Y (l)〉 = 2
l∑

i=1

pi − l. (4)

A measure of the correlation of the constructed sequence is provided by the square

root of the mean quadratic fluctuation (Peng et al., 1992):

F 2(l) ≡
[
∆Y (l)−∆Y (l)

]2

, (5)

where ∆Y (l) ≡ Y (l + l◦) − Y (l◦) and the bar indicates average computed for all the

positions l◦ in the sequence (1 ≤ l◦ ≤ L − l).

In the particular case q = 1, the exact solution of the recurrence equation (2) is:

pi =
(2p − 1)i + 1

2
. (6)

From Eq. 5 and using Eq. 6, we calculated 〈F 2(l)〉 which is equivalent to an average

over a large number of statistically independent realizations of the model sequence. We

find the following asymptotic behaviour (1 � l � L):
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√
〈F 2(l)〉 ∼




0 if p = 1

( p l
1−p

)1/2 if 0 < p < 1

0 if p = 0, l even

1 if p = 0, l odd

(7)

From the asymptotic behaviour, we conclude that there is no long-range correlation.

The plots α (local slope of
√〈F 2(l)〉) vs. l start from a value close to p and decrease

sigmoidally down to α = 0.5. Thus, for q = 1 the model does not reproduce the behaviour

of α observed experimentally for highly correlated nucleotide sequences. Since, in this

case, the direction of each step depends on the history of the walker, there exits an effect

of memory produced in the construction of the chain for p �= 1/2. However, it may

be noted, from Eq. 6, that, for 0 < p < 1, the process corresponds to a stationary

process (Dougherty, 1990) in which lim
i→∞

pi = 1/2, so, for long distances the memory effect

vanishes.

Let us consider now the more general case (q �= 1) and compare artificially generated

sequences with actual ones. In Figs. 1.a and 1.c we show the “dna-walks” of two real

sequences: human β-cardiac myosin heavy chain gene and human antithrombin III gene,

respectively. In Figs. 1.b and 1.d we show typical walks obtained for different values of

the model parameters (p, q and µ). Artificial sequences were generated with the same

length as the real sequences to which they are compared. The mappings 1.a and 1.b

show similar fluctuations, as well as the mappings 1.c and 1.d. The plots of the local

slope of the fluctuation function vs. the logarithm of the distance along the sequence,

for the sequences in Fig. 1, are presented in Fig. 2: sequences 1.a and 1.b are analyzed

in Fig. 2.a, while sequences 1.c and 1.d are analyzed in Fig. 2.b. There is also a great

similarity between the plots obtained from artificial sequences and those obtained from

real sequences. It may be noted that many real sequences, as those showed here, smoothly

decrease for small values of l up to a value close to 5, which, in our model, corresponds

approximately to the value of parameter lc.
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Discussion

The presence of short-range correlations between first neighbours is not sufficient to give

place to long-range correlations, as shown by the analysis of the case q = 1. On the other

hand, when short-range interactions between more distant neighbors are introduced, long-

range correlations may arise.

We tested other alternative rules for generating the artificial sequences. Besides the

first neighbour, we have also taken into account either 1) a mean over all the other

precedent nucleotides or 2) a precedent nucleotide at a fixed distance. For no set of the

parameters of these two alternative models we were able to obtain α(l) with a behaviour

similar to that of highly correlated actual sequences. Thus, we conclude that a broad

distribution of the distance to the second interacting neighbour is required for the uprising

of long range correlations.

From the analysis of the case q = 1 we also observe that, as in actual sequences, the

exponent α is not a constant over all the range of values of l, but it does not mean that

there can not be a well-defined exponent, corresponding to the asymptotic behaviour of

F , which may be significantly different from the local values of α. On the other hand,

exponents different from 0.5 at finite distances indicate some kind of long-range correla-

tions but do not necessarily mean infinite long-range correlations. Since real sequences

are finite, then we can only say that the observed long-range correlations are of the order

of polynucleotide chain length and not infinite.

The mosaic character of DNA, consisting of biased subsequences, could account for

apparent long-range correlations. Thus, we should also consider the possibility that cor-

relation arises from the occurrence of statistically different regions, since the presence of

biased subdomains also give rise to exponents greater than 0.5 (Nee, 1992). The behaviour

of real sequences could result from the combination of some “patching” mechanism and a

process such as described in this work. There is also a possibility that long-range correla-

tions observed in real sequences arise purely from short-range interactions between distant

neighbors, as shown in the present work. Correlated units may occur in actual sequences

by interactions such as hydrogen bonding, hydrophobic, van der Waals or electrostatic
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which determine the chain properties and, particularly, its stability (Aida and Nagata,

1986; Ponnuswamy and Gromiha, 1994). Besides, mechanisms, such as recombination,

involved in the formation of new genetic material, are associated to the formation of loops

which favor the interaction between distant neighbours. The set up of these intrastrand

links at some stage of the evolution of a nucleotide sequence, either creation of a new

sequence or growing up of a preexisting one may have promoted the observed long-range

correlations. On the other hand, it seems that looped structures are more frequent in

noncoding regions of DNA, such as intergenic regions, as found for λ bacteriophage DNA

(Sanger et al. 1982). Thus, as already pointed (Grosberg et al., 1993), there seem to be a

correlation between spatial arrangement and fractal properties which would explain why

coding/noncoding regions are statistically different, with higher correlations in noncoding

regions. Our model is consistent with these considerations. The present work develops

a simple model which exhibits the same type of effects as real sequences. In comparison

with previous models (Ossadnik et al., 1994; Buldyrev et al., 1993) which also account for

some of the features observed in real sequences, our model, because of its simplicity, puts

into evidence a possible factor (the basic ingredient of the model: interaction between

distant units) responsible for the observed correlations, which is not easily evidenced in

models with more ingredients. Thus, the exploration of the present model may contribute

to a better understanding of the statistical properties exhibited by regions of nucleic acids

and of the mechanisms which originate them.
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Captions for figures

Figure 1: DNA-walk displacement y(l) (excess of purines over pyrimidines) vs. nu-

cleotide distance l for: (a) human β-cardiac myosin heavy chain gene (GenBank name:

HUMBMYH7); (b) an artificial sequence generated with parameters: p = 0.85, q = 0.25,

µ = 1.65 and lc = 4; (c) human antithrombin III gene (GenBank name: HSAT3) and (d)

an artificial sequence generated with parameters: p = 0.77, q = 0.37, µ = 1.5 and lc = 2

(d).

Figure 2: Plots of the local slope of the square root mean quadratic fluctuation (α(l))

vs. log l for the sequences in Fig. 1. (a) corresponds to sequences 1.a and 1.c; (b) corre-

sponds to sequences 1.b and 1.d. Full lines correspond to real sequences and dotted lines

to artificial ones.
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