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I - INTRODUCTION

There are very few quantum systems on which exact quanti-
tative knowledge is available. In what concerns 'the “energy
eigenvalues, since the 1979”Turséhnet'paper[1], we can pres-
ently include among them single oscillatdr.assoéiated with the

Hamiltonian

'4 v+ 2 | : |
W - = {pz ) IXI"} (a,v > 0) ¢

Approximate calculations of the CSQreSponding eigenvalugs
have been performed for v = 4[2’31 and v =’6,8[4] (for com-
parison purposes, wé ébme back onto these works later on),The

exact result is nOW'availableflj; however Turschner provided
it in a form which is noi. appropriate for operatiqnalpuqmseé.
In the'pr;seﬂt ﬁork wé further elabo%ate his result and a-
chieve an operationally chQenient explicit form, as well . as
useful recursive relations. This is done in Section II.

Once the.exact ‘'energy spectrum is known, it is natural to
seek for the calculation of the partition function and conse-
quently the specific heatl'As matte: of fact, for v = 4, the
exact high temperature (T+=) limiting value of specific heat
C is already known [5-8] and is given by C/ky =3/4 (k= Boltzmann
constant); this resuit‘is trivially exteﬁdedng'lzl to any val
‘tue of v(C/kB = 1/2 #* 1/vj. In what concerns the leading cor-
rection to this limiting value it has been  shown to be a
1/T(1+2/v) term; however we shall see herein that the numerical

coefficient provided by the approximaté putitkm.ﬂxmthxf”’ab~



pearing in Ref. [10] is asymptotically exact oniz in the neigh
bourhood of v = 2. For the low temperature region (T + 0) a

good approximation to the specific heat is available[sl for

v = 4; we intend to present herein the exact T + 0 asymptotic

behavior for all values of v.Also we numerically calculate, for

typical values of v, the specific heat for arbitrary values

of T. All the specific heat analysis is presented in Section III.

I1 - ENERGY EIGENVALUES

The exact eigenvalues of Hamiltonian (1) were foundil]'to

be

n n n i
"B, (v)=B(V) (;1,.‘) ddsn [(2"5%\) ] (n=0,1,2...) (2
s(*5e7) ) |

where
' - 1 2v/ (v+2
B(v) E'ﬁw(v)[n/z [ dq (l-qv)l/z] v/ )F(1+é%%) (3)
)
and
V=24 ’
o(v) = 2> {nm] | (4)

Through straightforward mathematical processing we can rewrite

expression (3) ws follows:.



Zv

r(—)r(—+~) I “ | .
B(v) = 'ﬁw(v)[ (“) ] T(l + m - (3"
\Y . ,

The form (2) (together with (3') and (4)) is not a convenient
one from the operational standpoint 55, to obtain the n-th
level, one needs to calculate all the preceding ones, and each
of them envolves tedious derivative processing. Let us exhibit
how these inconveniences can.be overcome. Equation (2) can be

rewritten as follows:

n .
E_(A) = B(A){L——l—: . zzo [(D2* fﬁ (s““’b‘k'l)»sﬂ= 2] }
cagaen® B () § oioiom] (o6, )+ 4o
2 !
_B(y B IOwse) | L ®

214X o020 T(2+1)T(n~-2+1)T(A+2+1-n)

where we have introduced a convenient variable X = 2vy/(v+2) €(0,2)
and where by En(l) and B(A) we strictly mean En(V(K)) and
B(v(2)) (coherently with this convention we shall from now on

use w(A) instead of w(v(A)). Remark that

S B
E, (A) 1 (6)
2 - .
and that En(k)/EO(A) is a polynomial in X of the n-th degree.
In the limit X + 0 the potential becomes an infinitely

narrow well with depth g%, and an infinite degeneracy ap-



pears as all the energy levels are given by En(O) = é%

(in
other words, we are in the limit of a free particle where all
bound states disappear)}. For X = 1 we recover the well known
harmonic oscillator spectrum, i.e. En(1)= ﬁm(l) (n+ %—) (w(1)=a/m).
In the limit X » 2 the potential becomes an infinite square

well with width 2/v/a and the spectrum is given by

2
En(z) = E;%ELQL (n2+n+%)

. 24 2
= 102 (n?ened) (7)
8m 2

It is interesting to remark that the spectrum of the present

"square well'" is different from the standard one for which
g = Tfifa
n Sm

(n+1)* (n = 0,1,2,...). This is a non uniform con

vergence consequence: within the present procedure we take the limit v-e

in the spectrum associated with a continuous potential (propor-

tional to |x|’)whereas within the standard procedurezid13con-
tinuous infinite square well is considered from the very begin
ning of the problen.

In Fig. 1 we pfesent the evolutions, as a function of A
of the first six energy levels. For a pedagogical discussion
of the wave functions corresponding to the txiv~type potential
see Ref. [13].

Expression (5) is a quite convenient one for let us say
spectroscopy~like purposes where particular levelé have to be
considered. But if we are interested in the knowledge of the
whole spectrum (to perform thermal statistical averages  for

example) then recursive relations can be very useful. By using



the original expression (2) it is straightforwa;d_toeStablish

(for n = 0,1,2,...) that

E (1) [En+1(k) n-x En) ]

= + (8)
E,O+1) M1 E, (V) n+l E_(A)
and its inverse
En-t-l(}‘),= n-A [n+1 E (A+1) - Epe1 (A ] (9)
E (}) A*1in-2 E_(A+1)  E (A+1)

where we have used that ZEO(A+1)/EO(A) = B(A+1)/B(7). These
relations show that it sufficient to discuss the interval
0 A < 1 as the interval 1 < X £ 2 can be trivially deduced
from the former. By combining Eqs. (8) and (9) we flnally ob-
tain the following operationally useful recursive relation

(for n = 1,2,...)
E (A = H%T [(2A+1)En(k) + an_l(A)] | (10)

In Table I we compare, for typical values of n, the exact
results for the energy eigenvalues associated with v =4,6,8,
to the approximate ones previously obtained[2'4]: we verify
that their degree of confidence increases with n.

It is‘interesting for many purposes to know the asymptotic
behaviour of En(A) for n >> 1. To exhibit this let us go back

to expression (5) and present it as follows:

- F(n+1;k) T(n+)) . I'(n-1+2)
E () Eo(*)[r(1)1~(x+1)r(n+1) " T@TMIm  TIA-DIED ]

(1D



By using the fact that,.in the limit z + =, T'(z+#1)/TI(z) ~ 2 E
: bt . . I g

and also that 3 T[T+ T(A-2+1)] = 28, we ;
=0

can rewrite Eq. (11) as follows §
E (M) = E_ () ;zigi_ [1 +,2L‘+.Aﬁli;ll + ...] q (12) %

n o TGwD) I 1zn , i

or even é

2Aenslyr B P _
En(A) = EO(A) __EEZQZ__ [1 +_A(A'13(2A'1) +';..] -~ (13)
T ey

The leading term 6f the last expression coingides[bqrwith‘ﬁhe
well known WKB approximation, which is in fact exact for X = )
0,1; if we also take into account the secpgd le#dihg: term,“j
- then expression (13) is exact for‘x = 2 as well (as a matter
of fact the error, for the most unfagorable values of A, is
less than 4% for n = 1, less than 2% for n== 2, and quickly

decreases for increasing n).

IT1 - SPECIFIC HEAT

The canonical partition function of thepresent .anhatmonic

oscillator is given by

-]

2= § e En(A/kgT - e
n=0 :

whose knowledge immediately provides the specific heat:through

the relation , 7 e

lvh‘ﬂ:fm’:‘ v



c :, y 9.8nz \ . 1 n 2
T° =57 et~ < - <h>*>  (15)
Eg aT( ST 0T gy &P Y

where <...> denotes mean thermal value.

A straightforward calculation leads, in the limit T + 0, to

2)0E_(A)72 2)E (x)] I
C
kg " [*EE%'“_}' o {- ~?§%_- (16)

We did not succeed in analytically performing the sumJ14)
for arbitrary valiues of X and T. Therefore we turned onto
a numerical treatment and the reéults are exhibited in Fig. 2
and Table II; for low values of A and high values of T a
great quantity of levels has to be considered in order - to

" obtain satisfactory accufécy (for instance the knowledge of
3 sigﬁificative figures-in the discrepancy [g; - 1](kBT)2/A
for A = 2/5 and kpT/fw(A) : 4 demands to go up to levels cor
fesponding ton =6 x 10%). ‘

Let us now dlSCUSS “the hlgh temperature region: it canbe

shown that, in the limit T -+ e,

2/ |
§~m {1-RUJF%¥%% / } (17)

B B

&

where R(A) is a pure number whose analytic expression is still
wnknown. The present numerical results for C/kB we mentioned
in,the-previous paragraph enable us to calculate R(A): see
Fig. 3 and Tabls III. |

In:what follows we shall deduce an anlytical- approxi-

mation for R(A) which is extremely accurate for A X 2/5.



We substitute into Eq. (14), the exact spectrum by its asymptotic
exp:essiOn (12) and then, th:ough the Eule:-MacLau:in summa-
tion formula[lsl, we transform the sum into an integral, thus

obtaining

. _{Eo“) 2*n? [1+2 205D ]}
. Zn +

Z [ dn el ka* T(A+1) 12n? 3
o
> BN 22 E (A) A\
- T KT T(AD) _ o 2"n AL AR
o ‘

+

2 .
1[5 a0 a2, .1
2 EBT T(A*D)|  4n? Tt 2

1
F(1+3) { B () } X[, . eb@-nra- 4 [ E () ]2/"
2 T (A+1)kpT o 6r(Le1) rOwDkgr 4

} , | (18)

This expression immediately leads, through Eq. (15), to Eq. (17)

+

where R(A) i$ approximated as follows

(-1 -0 @-nra- 3 (Ffra/m
12 - | 2272 32 p(3+1/2)*
| (19)

R(A) 2

Typical numerical results are presented in Fig. 3 and Table.
III. Eq. (19) represents a great improvement in1jm‘pfeviousiy
available work, namely that of WitschelIloJ where ~ the

Wigner-Kirkwood semiclassical partition function formalisn@uﬂ
is used to obtain a leading correction term with respect to



the classical partition function.. Starting from the approxi
mate partition function‘p:esented in Réf.;[lQ] it is easy to

deduce Eq. (17) with R(A) given by the following approximation:

R(A) ~
() 3 a2 242 2-01(5 -3)

For comparison purposes typical results calculated with this

expression are presented in Fig. 3 and Table III.

IV - CONCLUSION

We have discussed the energy spectrum as well as the spe-
cific heat of a quantum single oscillator associated with a
potential proportional to |x|Y (v > 0). The exact eigenvalues
available from Turschner resent'vl/ork“{l] have been fu:_:’theri elaborated
in order -to achieve: (a) operationally convenient expression
{namely Eq. (5)); (b) useful recursive . trelation$ (namely
Egqs. (8)-(10)); (c) quite accurate asymptotic expressions in
the limit n » « (namely Egs. (12) and (13)).

In what concerns the speczflc heat we have obtalned (a)
the exact asymptotic behaviour in the limit T =+ 0. (namely
Eq. (16}); (b) numerical resulis for typical values of v and
T (Fig. 2 and Table I1I); (c) the correct asymptotic form in
the limit T -+ =, To be more precise concerning the last pdint
let us say that, for T + =, C/kB saturates at (—*w and the
leading correction is a 1/T1 v ~herm whose numerical ﬂ‘coeffi

cient has been both numerically calculated (Fig. 3 and Table
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III) and analytically approximated (Eq. (19)).
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Guggenheim Foundation.
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CAPTION FOR TABLES AND FIGURES

Table I - Selected levels of the approximate and exact energy
spectra for typical values of. v((a) v=4; (b) v=6; (c) v=8).

Table II - Specific heat (exact) for selected values of the tem
perature T and v.

Table III - Exact and approximate values of the high-temperature
coefficient R(A) (see eq. (17)) for selected valuesof

A= 2v/(v+2).

Fig.1 - Fundamental and excited levels of the energy spectrum
(exact) as a function of A =z 2v/(v+2)

Fig. 2 - Thermal dependence of the exact specific heat corre-
sponding to selected values of v.

‘Fig. 3 - The high-temperature coefficient R(A) (see eq. (17))
as function of A = 2v/(v+2). Continuous: exact (numer-
'ica'l), it attains its maximum value in the neighbourhood
of A = 4/3; dot-dashed: First analytic proposai (eq.
(19),itvd§wng§$ at A = 1/3; dashed: Second  analytic
proﬁosal (eq. (20) deduced by us from [10]), it di-
verges at A = 2/5. |



TABLE 1

En(v=4) / fw(v=4) (a)
n
HIOE(1975) * BANERJEE (1978) EXACT
0.530181 0.530181 0.516229...
1 1.899837 1.899837 1.892838...
10 25.121335 25.128127 25.127242...
50 203.934508 203.937182 203.936825. ..
100 510.493269 510.494996 510.494769...
1700 | 10932.630648 10932.631059 10932.631010...
10000 | 235395.146537 235395.147214 235395.147202...
En(v=6) / ftw (v=6) (b)
n
HIOE(1876) EXACT
3 0.572404 0.532288...
1 2.169303 2.129151...
2 4.536544 4.524447. ..
3 7.467589 . . 7.452030...
4 10.857066 10.845365. ..
5 14.649761 14.637916. ..
En(v=8)/’ﬁw(v=8) . (c)
” HIOE(1976) EXACT
0 ' 0.612911 0.544641. ..
1 2.377909 2.287492, ..
2 5.122494 5.076054, ..,
3 - 8.671641 8.631471. ..
1 12.905042 12.870085. ..
5 17.749655 17.716048. ..

* .
These values were calculated by using Eqgs.(IV.15) and (IV.16) of Ref. [2].



TABLE 717
i C/kg
x

T/ M (V) v = 1/2 v o= ] v o= 2 Vo= 4 Vo
0.2 1.150874 0.505332 | 0.170742 0.048489 0.000668
0.4 2.309754 1.13329¢ 0.608890 0.376005 0.0792352
6.6 2.451448 1.345011 0.797441 0.558937 0.268633
0.8 2.483854 1.423335 0.879366 0.633495 0.405654
1.0 2.493504 1.457285 0.920674 0.669246 0.467745
1.2 2.487000 1.474010 0.944085 0.689473 0.490114
1.4 2.498465 1.483099 0.958546 0.702307 0.497182
1.6 2.499150 1.488428 0.968074 0.711103 0.499237
1.8 2.499499 1.491746 0.974672 0.717465 0.499801
2.0 2.499689 1.493914 0.979425 0.722251 0.499550

b\"lﬂ

62 exp(6)

{exp(@}—l}z

*The analytic expression corresponding to Vv =

in

2 is given by[lﬁj

/ w(u 2) \




TABLE III

A R(A)

Exact Eq.(19) | Eq. (20)

0.4 | 0.006...| 0.008 | =

2/3 | 0.034...| 0.034 | 0.042
0.8 | 0.055...] 0.055 | 0.058
1.0 | 1/12 0.833 | 0.833
1.2 | 0.101...] 0.101 | 0.106
4/3 | 0.104...] 0.104 | 0.119
1.4 | 0.103...] 0.103 | 0.126
1.6 | 0.087...| 0.087 | 0.142
1.8 | 0.053...] 0.053 | 0.155
2.0 | 0 | 0 0.167
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