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ABSTRACT

Calculation of Wilson Loops (WL) to second order, are per
formed for different shapes of the path, using dimensional reg-
ularization techniques. Some useful formulae are developped.
In particular a discussion is given on the influence of points
of contact, cusps and intersections, on the residue of the re-

sultant pole. For smooth curves WLs are finite,



1. INTRODUCTION

It is now clear that the Wilson Loop Functional (WL)
is a good candidate to act as a gauge invariant dynam-
ical variable, containing all information about the gauge
fields. Attempts are being made to find its equations of mo-
tion[]]. However, the appearances of infinities in the actual
computations somehow obscure its meaning and interpreta-
1;1'onl-—21 ’[3] ’[4] ’[5] , (6] . The dimensional regularization method [7]
thus appear as an appropriate tool for treating those infin
ities and clarify the meaning of the singular equations that

are presently being consideredL]]. The quantized WL is de-

fined as
U
W(C) = <TrPe§A“dX > (1)
In second order, we have
W2 c)= - - Lax®ddy®p (x-y) (2
2 ? ? Y PagtXy )

For simplicity we shall 1limit the discussion to planar
curves in v dimensional spaces. We shall also condider for
mulae of the type of eq.(2) in which C is not necessarily
closed. For open curves, we shall use the notation V(c).

The propagator is:

\Y g k k .
DOLB(X-.V) = f d k\) { o - A o B }e1k°x
(2m) k? k"

(3)



where A is a gauge fixing constant,

In configuration space (3) leads to 8]

r(¥54) \ .
D g{X-y) = TSI {9a3|X'YI2'“' 747 Bgaélx-yl V)
(4)
From which we get:
r(¥%54) , .
0= - — ] o ey B e P ()

a,b being the end points of C., Obviously W(C)(a=b) is gauge
independent. For reasons which will become clear later (see

below, form. (11), (12)) we shall choose

2 . .
A= —T5 (dimensional gauge) (6)

Sometimes it is convenient to compute V(C) in momentum

space. By defining the linear functional over C

£ (k)= j etk X gy® (7)
C
We have
1 v gOLB ZkakB o B*
v(e) = - —— | % - £ (k) FE* (k 8
(© - - b | == (s_v)kj LK) (8)

Suppose now that the curve C is contained in some subspace
with n dimensions. We can decompose then, the vector k as:

k. =k

u

| - -
T+ k h i j i
i L where ku is the projection of ku over the sub



_L ~
space containing C, and k is the orthogonal component to k.

Obviously

L
One can readily perform the integration over k in form

(8): with
N v=-n-1 I LU
T Al (KD) G van (k2) 2 r(a- %)
Q(\)-n) J n — = T 2.— )
0 (K 2+k2)° I'(a) (10)

where Q(v-n) comes from the (v-n) angular integration., Using
(10) in (8) and since fc(k) only depends on k, we get

A A

vieye - ) Jdnz(ﬁz)‘ﬁf"1 [ _ 2-v4n kake']fadbfe*(g)
2V+]ﬂ2%ﬂ 98 3-v {2 ctt’c

(11)

We see that for n=1, the choice (6) for the gauge constant makes

the integrand identically zero.i.e. for any segment

V(C)=0 (12)

From now on we drop the hat over k and shall consider curves

only with n=2,

Note that
b
a_ 1 ikx 1 ik.b _ik.
kaf = = deaaae ='?—(e e’ a) (13)
a

|k f*|2= 4sen? k.(b-2a) (14)



For a=b:
k.f= 0 (for any closed curve) (15)

Using (14) and (11) (for n=2) and

+ oo

8 ey T3
Jdkz(k%+k§)_7_= (k3)7 2" ) (16)
- ")
T v-4
V-5 ky(a-b) I(v-4)cos(X=)m
! 7
dk,(k3) 2~ z = - (17)
{ 'I( 'I) Sen ——T—— \)-4
- 00 (b_a)
the following result is obtained
4-v +oo0 +co
21 ( r v-4 _ oAy
w(c)= - ————:%;?— j dkq | dkp(K§+k3) 72 || %+ (v 32!a b}]
(47T )T -0 - 00 (411_)'—2—1_, (12__)

(18)
For closed planar curves for which (15) is valid 2 (k) will be

of the form:

Fh= e*By f (19)

Now we proceed as follows

e“Bka“= K2f= § dxaeaBkBeik'x

and using Gauss theorem

k?f= ffdc aa(kae1k’x)= ikzj[doe1k'x (20)
X %

i.e. (21) f= ijjdoeik'x
z
where I is the surface enclosed by C.



2., APPLICATIONS

a) We shall first consider a circle. Using (19)and (21) we

find
R o .
f= 11 rdr | do o' KTCOS0- SLLLENE NG (22)
! k
fOFX = 4n?R%J7 (kR) (23)

Inserting (23) in (18), with a=b

I-.(4-\)) o \)"‘3
W(circle)= - e——:%;? 16m3R? j dk (k2)—7~d%(kR) (24)
(4m)" 2 0
and, from [9] p.692
4-v 3-v v
R I (=) I'(=)
W(circle)= - vtg— Z (25)
2V 7 r(é%ﬁ)
which, for v=4 gives:
W(Z)(circ1e) = {}- (26)

(25) shows that N(Z) for a circle is zero for even v>4 and has
a pole for odd v. The pole for v=3 is a "physical" one,
as w(z) represents then the self inductance of an infinijtesi
mally thin circular ring.

For v=2 (27) w(z)(chxﬂe)=- %%-HRZ (area law)

b) E1lipse with semiaxis, a, b.

If we change variables in (7)



ax1 x] bx]= x2 we obtain,

1

. - gl .
Fery (kys kp)= a5, (akysbky)
2 2
fell(kl; kz)= b'%ir (ak1;bk2)

substituting in (18) and with a new change of variables

k= ak kl= bk, one is led to

1 1 2 2
w2l w(2) (ro1) . (a b)"ﬂ‘gp a2+h? (28)
el1™ "cir -2 M=z (A58

where Pa is a Lengendre function ([9],p.384)

In particular,

4 ylz). _aZeb? _ [(2)_ _ mab
vE A gt v=2 Mo’ = -7 —

As we Know[sj that an infinitely elongated WL is associa=
ted with the force law in the transverse direction, we shall

. R T . . .
write b= = s 2% 5 T+o, The asymptotic expression obtained

is
(22T (v-1)
w(;')= -z > (29)
e V)
V1 r(%\—’) T(’\Q)‘) RV~ 3
For v=4
2 '] T .
DI (30)

One should note that (29) is the Coulomb tlaw in (v-1)



dimensions. The proportiona]ity constant depends on the shape
of the contour.
c) Rectangle
In the dimensional gauge, the self interaction of each
segment is zero. For the mutual interaction we first calcu-
late from (7) the f% corresponding to each of the segments.
The total f& will be the sum of the four.

Replacing it in (18) and performing the integration, the

result is
-4
I (=) 2
(2) _ 2 Ay . 1. v-4 1, L
W EH(C) = ———— (L F(- 5 —5=ias L;)+
4 7 2
4 1 41 L5 2 4-y 4
-V . V- A _ V- Y =V
thy Pl 775 -5 )= 573 (L “+ly 7))

If we take the limit L]+m, we get as dominant term;

-3
r(L2) L
(2) . 2
W=7 (C) 5= =3 > T R
Gy 2 2

We see that form (32) reproduces,up to a constant, the

results of form (29) and (30).

3. SINGULAR POINTS

We are interested in the computation of the effect of in-
tersections. To simplify the discussion we first consider the
case of an infinite straight 1ine with a circle. From (7) we

have for the line



fi= 2ms(ky)  fl= 0 (33)

and for a circle whose center is shifted a distance D from

the line

£0_ 2miR €uBk e1k2DJ

(kR) (34)
© Ik ? ‘

Adding (33) and (34) we obtain for the interaction

4-v e
2RT (=) -
Wint™ —vs J dk, 1k, V7% sen kyDod (1K, R)  (35)
(4r) 2 0

There are three cases to be considered. (See [9]p.747)

a) D>R The circle does not intersect the line,

r(42) r2p®"Y r v-1v-2 , R?
W= == F(v-2)sen—(v-2)F(—»=532;57 )(36)
(4m) 2~

b) D=R The circle just touches the Tline,.

4=y F<7-2V)T(Vé])

_ 1 R 2
w'i_ _2—- \)-'3 1—.(5'\)) T(G“\) (37)
T 2 2 )
c) D<R The circle intersects the line
4-v\,v=-3,3-v
yo o e TRT rcly pesl ve33 L B (38)
i 2 ‘2 ] 2 s 2 L] R2

v=-2 5
(41)"Z ()

For v=4(36)and (37) have no pole, while (38) has one with residue

—%— cotga (39)



Analogously, for a segment and a straight Tine we have the re

sult (Ref [9] p.422)

4-v v=3
I' (=) {~>) -
V;= -cotga :?; 2 0’ Lsgna + D)4 v,
g2 T(25)
+ ILsena _ D]4'ngn( Lseno _ D)} (40)

where L is the length of the segment and D is the distance from
the line to the middle of the segment. Again for v=4, we have

three cases

a) Lseno D

< D. There is no pole.

b) L;enu =D
line.There is a pole with residue:

. The segment just touches the straight

_ 1
R= ——MT‘—' Cotg@ (41)

¢) Lsgna > D.
is a pole with residue

The segment crosses the 1ine and there

_
R= B cotga (42)

Compare (42) with (39) and note that there, there are
two intersting points.

From the previous discussion we have seen that a crossing
generates a pole. We shall now see that the same happens when
the path has a cusp (or angle). To that end, we shall first
consider an angle formed by two segments.,

The interaction between them, according with the general



- 10 -

formalism, is

Sp— (43)

Performing now the changes of variables:

X1= Ecosa
] dedyB= cosodgdy
x2= £sino

n= (y-x)= >\X'|

Integrating over £ we obtain a pole at v=4 whose residue is

given by:
: ,  S9n(cosa)x :
- CO0S o C g 2 1" ]
R T77 senZa J dx (A%cte?a+ 1) '+ s (44)

-1

with the result: (Cf.|4}|)

R= (m=-a)ctgotl (45)
4r2

Note that this result is valid when one of the arrows enter
and the other leaves the vertex. In other cases, the overall
sign must be changed.

By joining smoothly the two segments we get a loop with a
cusp. The residue at the pole of this loop is given by (45).
(See [2]). 0f course, if a»m (smooth curve) Rrzero. For a rec-

tangle, we must multiply (45) (for a= %}) by four,as it has



four cusps, with the result: R= —%7 which coincides with the

residue of (31) at v=4. Proceeding in analogous way it is easy
to prove that for one segment just touching another (not at

the end points), we have

_ cotga
R = -LQtde (46)
o being the angle between the segments with the arrows follow
ing one another ("conserved current”)(46) is then the contrib-
ution of a contac point to the residue of the pole.

Again, when the two segments cross each other we have.

_ cotga
R = —5—22- (47)
which is twice the contribution of (46). (47) is the contrib-
ution of an intersection (Cf. (42) and (39)). Now, in more com
plicated loops where these cusps and intersections are struc-
tural elements, their contributions to the residue are simply

to be summed to obtain the total residue.
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