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ABSTRACT

In a study of the effect of the quantal zero-point oscillations of
nuclei on their Tow-energy fusion cross section, we calculate exactly
the penetrability for a simple two-dimensional barvrier V(r,c). The
coordinate r is the distance between the centers of mass of the two nuclei,
and o is the sum of the rooi-mean-square extensions along the syrmetry
axis of the mass of each nucleus about its center of mass. The potential
V{r,o) is a parabolic peak in r and is one or the other of two harmonic
oscillators in o, depending upon whether r is greater thain or less than a

critical value vy The oscillators differ both in the locations of their



minima and in their curvatures. This simulates the dominant feature in

the two-dimensional nuclear potential-energy surface of two misaligned
valleys (the fission and fusion valleys) separated by a ridge between them.
When an incident wave that is localized in the fusion valley encounters

the potentijal-energy ridge, it is partially transmitted and partially
reflected in waves that correspond to different excited states in the
transverse direction and hence to different amounts of energy in the fusion
“direction. The amplitudes of these waves are determined by requiring that
the wave functions (expressed exactly in terms of parabolic-cylinder
functions) and their first derivatives be continuous at rye The
penetrability is then obtained from the amplitudes of the transmitted waves.
As a specific example, we use this formalism to calculate the penetrability
for a two-dimensional potential-energy surface appropriate to the reaction
]OOMO + ]OOMO > 200Po. The calculated penetrability is substantially
different from the result for a one-dimensional calculation. In particular,
10 MeV below the maximum in the one-dimensional fusion barrier the two-

dimensional penetrability is 1010

times as large as the one~dimensional
result. Also, for equal penetrability the slopes of the two curves are

vary different.
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I. INTRODUCTION

The goal of many experiments in heavy-ion physics is to provide
information on the nuclear potential energy of deformation. In
particular, the measurement of heavy-ion fusion cross sections at Tow
bombarding energies provides information on the height of the interaction
barrier and on its curvature near the point where the two nuclei first
“come into contact. These quantities are usually extracted by analyzing
the experimental fusion cross section in terms of the penetrability for a
one-dimensional interaction barrier. The shape of this barrier is often
assumed to be parabolic, which leads to a simple analytic expression for
the penetrabi]ity.l_ 4 If the target or projectile is deformed in its
ground state, the height of the interaction barrier depends upon the
angular orientation of thé deformed nucleus. This effect is usually

6 or in some other way.7

taken into account by averaging over orientation4"
Such procedures are fair approximations in the case of a relatively
1ight incident projectile, where the nuclear potential energy depends
primarily upon a single coordinate that describes the distance between the
centers of mass of the two nuclei. However, as the mass of the projectile
increases, it becomes increasingly important to take into account the
possibility that the nuclei may deform during the collision. In
particular, near the point at which the nuclei first come into contact, the
potential energy depends strongly upon theidistance between their
equivalent sharp nuclear surfaces. For a fixed separation of their centers
of mass, this distance is related to the sum of their deformations along a
common symmetry axis. Prolate deformations Tower the potential energy

relative to that for two spheres, whereas ohblate deformations raise it.

In terms of a center-of-mass separation coordinate r and a fragment-



elongation coordinate o, the two-dimensional potential-energy surface
V{ r,0) has the appearance of two misaligned valleys--one associated with

fission and the other with fusion--separated by a ridge between them.8"]3

13 100 200

This is illustrated Mo + 10049 5 200p,

in Fig. 1 for the reaction
It has been recognized for several years that nuclei can deform

during heavy-ion collisions, and classical dynamical calculations have

been performed to describe the deformation of nuclei both before they

14-21 ]2,22"26 However, for energi es

come into contact and after contact.
near or below the top of the one-dimensiornal interaction barrier, classical
mechanics is no longer valid. For these energies it is necessary to use

a quantal approacn in describing the collision.

Within tne collective model of the nucleus, the full solution of the
quantal collision problem would require solving a rultidimensional
Schrodinger equation in terms of the coordinates that describe the shapes
and angular orientations of the two colliding nuclei. HWe do not solve this
multidimensional problem nere, but instead calculate the penetrability for
a restrictad two-dimensional problem, taking into account only a center-of-
mass separation coordinate and a fragment-elongation coordinate.

lhen tie two nuclei are far apart, the ground-state wave function for
the motion perpendicular to the fusion valley is approximately a Gaussian
function centered about the bottom of the vallay. The width of this
function, which regulates the amplitude of the zero-point oscillations, is
determined by the curvature of the potential energy perpendicular to the
valley and by the associated =ffective mass.

During a heavy-ion fusion reaction, when an incident wave localize
in this vy in the fusion valley arrives in tne vicinity of the potential-

energy ridge and the fission valley, it is partially transmitted



and partially reflected in waves that correspond to different excited
states in the transverse direction. This leads to a distribution in the
amount of energy in the fusion direction that is available for penetrating
the barrier. Those components with increased energy in the fusion
direction penetrate more easily, which increases the penetrability.
Because this is especially true for low incident energies, the resulting

- dependence of the penetrability on energy is qualitatively simi]ar»to that
calculated for a one-dimensional barrier that is somewhat lower in heignt
and substantially. thinner.

Tne importance of calculating tne penetrability for a two-dimensional
barrier has long been racognized, and some advances have been made
recently on this problem. Hofmann has applied the WKB approximation and
tne Born approximation to two-dimensional potentials of interest in ﬁssion.2
Miller has developed a classical-Timit treatment of quantum mechanics that
involves solving classical equations of motion for complex time.28 This
method has been used by Massmann, Ring, and Rasmussen to caiculate the
penetrability through a simple two~dimensional fission barrier at energies

29,30 , ., . .
> Unfortunately, the Born approxima-

well below the top of the barrier.
tion that appears in Hofmann's treatment is poor when applied fo a potential
ridge, and Miller's method does not apply for incident energies near the
top of the barrier, which is a region of great experimental interest.

e are therefore led to consider a two-dimensional potential which
displays the salient feature of two misalioned valleys, but that is

nevertheless sufficiently simple that an exact solution can be effected.

Soma preliminary accounts of our approach are given in Refs. 31 and 32.



IT. POTENTIAL AND KINETIC EMERGIES

e represent the dependence of the potential energy on the separation
coordinate in terms of a parabolic peak centerad at the maximum in the one-
dimensional interaction barrier, and represent the fission and fusion
valleys in terms of two harmonic oscillators whose curvatures and
equilibrium positions are different. To be specific, we approximate the

two-dimensional potential-energy surface V(r,o) by

T 1 2
Vg - %.kyj Y- ro)z + §Jk](0-01) > 12
V(r,o) = (1)
] 2 2 ] 2
Vo =z K Lr=rg)” + 5 kylo-0))" - g kylop = 0)" ,r <ry

The position of the peak in the separation coordinate is at rErge
The fusion valley is centerasd about ¢ = 0 and occurs for values of r
éreater than or equal to the critical value T]. The fission valley is
centered about ¢ = P and cccurs for values of v less than ry- The
nesitive quantity kr specifies the curvature with respect to r of the

parabolic peak, and k. and k, specify the curvatures with respect to ¢ in

1
the fusion and fission valleys, respectively. Along the one-dimensional

patin defined by o = S the potential energy is continuous and has the

maximun value VO at r = r,. The energy of the fission saddle point, wnich
occurs at r =vr,, o =¢g,, is V. - l—k,(c -0 )2
n 2 o 2 "2M2 1

.

This representation of the potential-energy surface is shown in the

t 21
100, , 100, 200

lower part of Fig. 2 for the reaction " Po. For

comparison, the upper part of the figure shows the actual calculated

. s . . .
macroscopic potentiai-enargy surface for this reaction. 3 The eignt

constants appearing in Eq. (1) were selected to yield the correct energy



and Tocation in both r and o of the maximum in the one-dimensional
interaction barrier, the correct energy and location in o of the fission
saddle point, the correct energy and location in r where stability with
respect to o deformations is lost in the fusion valley, and the correct
curvature with respect to o in the fusion valley. The energies in both
the upper and lower parts of Fig. 2 are plotted relative to the maximum
V0 in the one-dimensional interaction barrier.

The kinetic energy T is taken to be

1 -2 1 -2
Pl mrr + -2—m10 s > Y‘l
T = -
1 2 1 .2
—Z-mrr +—2-m20 s Y‘<Y‘-I s

where the effective masses m.s Ty and m, are independent of position.
The frequencies of oscillation in the fusion and fission valleys are

therefore

1/2

e
_—
i

and

(kz/mz)]/2 ,

1)

We
c

respectively. The associated curvature parameter for the parabolic peak is

o, = (km)Ve

For m. we use the reduced mass of the two colliding nuclei, and for
both m and 1, ve use the incompressible, irrotational mass for vibrations

about spherical equilibrium shapes in the fusion vaﬂey.'3 For tne

100, , 100

reaction 4 Mo - 200Po this leads to the values



hmr = 2.61 MeV ,

hu, = 3.29 MeV
and

hwz = 4,25 MeV.

| When the bombarding energy is measured relative to the maximum V0 in the
one-dimensional interaction barrier, the penetrability depends upon only

two additional quantities, whose values for this reaction are

i}

1.56 fm

and

1.45 fm.

II1. PENETRABILITY

Because of the forms chosen for the potential and kinetic energies,
the total wave function ¥(r,o) is given exactly in each of the two
regions in terms of a sum of parabolic-cylinder functions in r times
harmonic-oscillator wave functions in o. The boundary conditions that we
are interested in correspond to an incident wave in the ground state in
the fusion valley travelling toward the left from r = + « and to a sum of
transmitted and reflected waves. The transmitted waves correspond to
exciting different harmonic-oscillator states in the fission valley and
travel asymptotically toward r = - «, The refiected waves correspond to
exciting different harmonic-oscillator s%ates in the fusion vallay and

travel asympcotically toward r = + o,



The wave function in the fusion-valley is therefore given by

% co
¥y (r,0) = E (ay4.u) ¥pql0-07) + nio A E(aysu) by (o-97)

*
where the parabolic-cylinder functions E and E are solutions in standard

33,34

notation of the differential equation

2

d 2

<

+ (%-u -a)¢ =0.

2

u

Complex conjugation is denoted by an asterisk. The dimensionless variable

u that éppears in these functions is related to r by
- 1/2 . 15 Ve,
u = (Zmrwr/h) (t~r0) = [gkr/(hwr)] (r ro).

The quantity 3, is given by

a, = [Vo - (E - nhw1)] /(h‘*’l)

and specifies in units of hwr the energy deficit relative to VO for motion
in the r direction when the n-th harmonic-oscillator state in the fusion
valley is excited. The total energy of the system E (not to be confused
with the parabolic-cylinder functions denoted by the same symbol) includes
the zero-point energy %—hw]. The properly normalized harmonic-oscillator

wave functions in the fusion valley are given by

r -
| ) . 1 2 2

vy, (om0y) = [é]/(énnlv”f)} 172 H, [“](O—OT) } P l:‘ﬁ—u] (o-07) ’J(‘
where

1/2 _ 1/2

oy = (mje /i) ST

and where Hn denotes the n-th Hermite polynomial.
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v
Similarly, the wave function in the fission failey is given by
[ee]
v gy = I 5_F - P g-0
2(}": ) UnL(azns U) Y on ( 2) ’
wiere

2 [ Y 1
- - — - 2Yh
0]) E+2 (n+2)w

a = v ]

1 f
“2n 0" 2. /1 wr)

2
and where the harmonic-oscillator wave functions are given by expressions
analogous to Egs. (2) and (3).

The ref]ect1on and transmission coeff1c1ents A and. B are
determ1ned by requiring that the wave function and 1its grad1ent be
continuous at ry for all values of o. The resulting two equations are
transformed into two systems of algebraic equations by multiplying by

o
V]

]n‘(G-O]) and integrating over all vaiues of o. This leads to

*
E (a]o,u]) &0t E(a]m,u])Am = ? ¢ E(a

— o ) m_ ,
Ei:°T;,ii::f¥i\\\“____—§ (aygouq) O * B/ (agpuq)A nEO e L

where the primes denote differentiation with respect to u and where
+ o

*
. ] Yim (g—(j]:)ljjzn (O’-Oz)dU . (4)

- 00

Elimination of ﬁ“ from tnese equations leads to
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i K. 7 *
L(a]m,u])t (a]O,u]) -E (a1m,u1)t (d]O,u]) § o0 =

I M8

. I3 !
- -E( 1, JE - .
n=0 “an E(a]m,u1)E (aZn’ u]) E ‘alm’“1)t(a2n’.u]) B

Tne presence of the kronecker delta in the Teft-nand side of this

L3 3 kS Pt 1 > 33,34
~equation permits us to use the lironskian property

i [E (a,u), E*(a,u) ]= -21.

In terms of the matrix M defined by

._,
n
~No| —

y s~ 1, -
mn 1(’mn‘J [E(a]m’uT)’E<a2n’ u]) ] >

the system of eguations to be solved for the coefficients Bn becomes simply

The expansion coafficients Crpy 2FE obtained conveniently by
multiplying both sides of Eq. (4) by xmyn/(m!n!) and summing on m and n
from 0 to «, which permits the use of the Hermite-polynomial ganerating
function to evaluate the integral. Subsequent use of the generating
function returns the right-hand side of the equation to a summation,
and tne value of ¢ is determined by equating the coefficients of xmy”.

mi
This Teads to
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2 2\ {m)/2 2 2 y 2
¢ = m!n!oc]ocz ; 172 Gy = ( ) exp 41 %2 (62 L
n - - 2, 2 2 - 2, 2
m 2 1(a] +a2 ) a12+a2 2(@1 +@2 )
min(m,n) Aoy o, Kk | a]aoz(oz-c])
T Ho . T
k=0 k!(mk)!(n-k)! uzz-a]Z -k (oc24-ot]?')]/'2

) -
a1 o, (0,~0q)

‘ 01 o logmag)
L Mook BRENTE

(g -0y

where vie specialize to the physically interesting case in which Gy >y

and where

1 .
H = (=1) H _(ix
p(x) = (1) (ix)
The penetrability P is obtained by taking the ratio of the transmitted
flux to the incident flux, integrated over all vaiues of 0. By virtue of

Eq. (5) the final expression for P becomes

a0

where 1 denctes the transposed complex-conjugate of M.

In the Timiting case in which the fission and fusion valleys become

17 Oy k] = kz, and ny = mz), the expansion coefficients

Copy 2T given simply by Con = S In this case the expression for the
i N

coincident (o

{

" . . . , R . 1
penetrability reduces to tie usual HiTi-Wheeler formula
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-1
= ywn
p {1 +pr\27ra]0)] ,
yiere

a1q = a9y = (VO - E) /(hwr) .

Wnen calculating the penetrability by use of the above formalism,
'one must take extreme care with the numerical procedures emplioyed. This
is especially true when calculating the parabolic-cylinder functions for
moderately large values of the arguments, as significant‘]oés of accuracy
occurs through tne subtraction of terms of comparabie magnitude. In cur
calculations, we have used the standard power-series expansions for the

33.34 . .
YY" and have overcome the numerical

parabolic-cylinder functions
difficulties by performing the computations in double-precision arithmetic
on a CDC G600 computer, wihich yields a word length of approximately 28
decimal figures. If a computer with such precision is not available,
or if the parabolic-cylinder functions are needed for other ranges of the
arguments, then other metnods must be used for computing them.35 Also,
one must insure tnat the calculated penetrability has converged as a
function of basis size. In our calculations, we used 20 basis functions
wien £ - VO < =15 Me¥ and 25 basis functions when E - VO
Figure 3 shows the calculated penetrability as a function of

> =15 MeV.

bombarding energy for a two-dimensional potential-energy surface

'IOOMO + 100 200

appropriate to the reaction Mo - Po. The penetrability
for the two-dimensional barrier is substantially different from that for
a corresponding one-dimensional parabolic barrier with the same height

VO and same curvature hmr as the two-dimensional barrier. At energies

well below the maximum Vo in the one-dimensional barrier, the penetrability
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for the two dimensional barrier is substantially larger than that for
the one-dimensional barrier. For example, 10 MeV below VO it is 1010
times as large. This increased penetrability arises because in the two-
dimensional potential-energy surface increased fragment elongation

leads to a decrease in potential energy near the maximum in the one-
dimensional interaction barrier. At energies well above VO the
penetrability for the two-dimensional barrier is less than that for

the one-dimensional barrier. This arises because the discontinuity in
~the two-dimensional potential-energy surface at r]'increases the reflection
ot the incident wave at high energies. Finally, for equal penetrability
the slopes of the two curves are very different.

The resonances in the penetrability for the two-dimensional barrier
arise because of the Take between the fissicn saddle point and the fusion
valley that occurs in our approximation to the potential-energy surface;
see again the lower part of Fig. 2. Because this lake is not present in
the actual macroscopic potential-energy surface, the resonances would
not occur for this Gase. Houever, single-particle effects could Tead
to small Takes in the total potential-energy surface, which would in turn

give rise to smail resonances in the penetrability.
IV. SUMMARY ARD CONCLUSIOH

lle have calculated exactly the penetrability for a simple two-
dimensional potential-energy surface V(r,o), where r is the distance
between the centers of mass of the two nuclei, and ¢ is a fragment-
elongation coordinate. The potential is a parabolic peak in r and is one or

the other of two harmonic oscillators in o, depending upon whether r is
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greater than or less than a critical value ry. It reproduces correctly
several features of tne true macroscopic two-dimensional potential-
energy surface, including the energy and Tocation in both r and o of
the maximum in the one-dimensional interaction barrier, the energy and
location in o of the fission saddle point, the energy and Tocation in r
where stability with respect to o deformations is Tost in the fusion
valley, and the correct curvature with respect to o in the fusion vailey.
For such a potential the total wave function ¥(r,o) was written
exactly in each of the two regions in terms of a sum of parabolic-
cylinder functions in r times harmonic-oscillator wave functions in o.
The reflection and transmission coefficients were determined by requiring
that the wave function and its gradient be continuous at ry for all values
of o. The penetrability was then obtained by taking the ratio of the
transmitted flux to the incident flux, integrated over all values of o.
With this formalism, we calculated the penetrability as a function of
bombarding energy for a two-dimensional potential-energy surface

appropriate to the reaction ]OOMO + 100, 200

o > Po. The calculated
penetrability was found to be substantially different from the result
calcuiated for a corresponding one-dimensional paraboiic barrier. For
exarpie, 10 MeV below the maximum in the one-dimensional barrier, the
penetrability for the twe-dimensicnal barrier is 1010 times as large as
that for the one-dimensional barrier. Also, for equal penetrability
the slopes of the two curves are very different.

Previous analyses of heavy-ion Fusion cross sections at low
bombarding energies have taken into account the effect of the static

-

nuclear ground-state deformations on the penetrabi]ity.d'7 The results

of the present study indicate that the penetrability is also affected by the



16

dependence of the potential energy upon fragment elongation near the
maximum in the one-dimensional interaction barrier. Ye hope that
future analyses of heavy-ion fusion cross sections at Tow bombarding
energies will take into account the effect of the multidimensional

potential-energy surface on the penetrability.
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FIGURE CAPTIONS
13 macroscopic two-dimensional potential-energy

]OGMO + ]OOMO > 20OPO. The coordinate r is the

FIG. 1. Calculated
surface for the rezaction
distance between the centers of mass of the two nuclei, and o is the sum
of the root-mean-square extensions along the symmetry axis of the mass of
cach nucleus about its center of mass. Tae radius RO of the spherical
nucleus is given by Ry = ry A3 = 1.16 (20003 m = 6.78 fm. In this
figure the zero of potential energy is at the sphere, whose location is
given by a solid point. The location of two touching spheres is given by
two adjacent solid points, and the location of the fission saddie point is
given bybéwo‘crossed solid Tines. | |

FIG. 2. Comparison of ca]cu1ated]3 macroscopic two-dimensional potential-
energy surface (upper) and our approximation to it (Tower} for the reaction

100y, 4 100, - 200

Mo ~ Po. 1In tnis figqure the zero of potential energy is at
the maximum in the one-dimensional interaction barrier, which is located

at r/RO = 1.64, G/R0 = (0.71. This 1is slightly outside the configuration of
two touching spheres, wnose Tocation is given by two adjacent solid points.

FIG. 3. Calculated penetrability for the reaction ]OOMO + 100 ZOOPO

Fo >
as a function of center-of-mass bombarding energy relative to the maximum

in the one~dimensional interaction barrier. The solid curve gives the
result for the two-dimensional barrier shown in the lower part of Fig. 2.

As this curve is calculated at energy intervals of 0.25 MeV, the values

at the resonances and local minima have limited precision. The dashed curve
gives the result for a corresponding one-dimensional parabolic barrier with

the same heignt and curvature as the two-dimensional barrier.
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