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We review a number of topics related to block variable renormalisation group transforma-
tions of quantum fields on the lattice, and to the emerging perfect lattice actions. We first
illustrate this procedure by considering scalar fields. Then we proceed to lattice fermions,
where we discuss perfect actions for free fields, for the Gross-Neveu model and for a su-
persymmetric spin model. We also consider the extension to perfect lattice perturbation
theory, in particular regarding the axial anomaly and the quark gluon vertex function.
Next we deal with properties and applications of truncated perfect fermions, and their
chiral correction by means of the overlap formula. This yields a formulation of lattice
fermions, which combines exact chiral symmetry with an optimisation of further essen-
tial properties. We summarise simulation results for these so-called overlap-hypercube
fermions in the two-flavour Schwinger model and in quenched QCD. In the latter frame-
work we establish a link to Chiral Perturbation Theory, both, in the p-regime and in the
ε-regime. In particular we present an evaluation of the leading Low Energy Constants of
the chiral Lagrangian — the chiral condensate and the pion decay constant — from QCD
simulations with extremely light quarks.
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Motivation and Overview

Over the recent decades, quantum field theory has been established as the appropriate
formalism for particle physics, as far as it is explored experimentally. Its treatment by
perturbation theory led to successful results, for instance in Quantum Electrodynamics
(QED), in the electroweak sector of the Standard Model and in Quantum Chromodyna-
mics (QCD) at high energy. However, there are still many open questions, which require
results at finite coupling strength — beyond the range of perturbation theory — such as
numerous aspects of QCD at low and moderate energy.

A method is known which has the potential to provide fully non-perturbative results
for a number of field theoretic questions. This method applies Monte Carlo simulations to
lattice regularised quantum field theories. The generic uncertainty of perturbation theory
— uncontrolled contributions beyond the calculated order — disappears in this approach.
However, one has to deal with statistical errors, as well as ambiguities in the extrapolation
to the continuum and to a large volume.

Simulation results are obtained at finite lattice spacing, which causes systematic ar-
tifacts in the numerically measured observables. The stability of dimensionless ratios of
observables under the variation of the lattice spacing is denoted as the scaling behaviour.
Its quality, which is vital for the reliability of the continuum extrapolation, depends on
the way in which the lattice regularisation is implemented. This work deals with renor-
malisation group techniques to improve the scaling behaviour compared to the standard
lattice formulations, which describes, for instance, derivatives simply by differences be-
tween nearest neighbour lattice sites. In contrast to Symanzik’s program, this technique
does not attempt to correct a specific order in the lattice spacing, but it directly addresses
a finite cutoff. We describe the renormalisation group approach in detail and present a
variety of results that it led to, in particular for fermionic systems.

The symmetries of a model under consideration are a key aspect for a controlled con-
tinuum extrapolation. A great virtue of the lattice regularisation is the conservation of
exact gauge symmetries. But global symmetries are often explicitly broken by the lat-
tice structure, for instance the continuous Poincaré invariance. The question, how well
— and if — they are restored as we approach the continuum limit is a notorious issue,
which is related to the scaling behaviour. Again it depends on the features of the lattice
formulation, i.e. on the extent of the explicit symmetry breaking due to a finite lattice
spacing. The renormalisation group technique provides a tool to improve the symmetries
on the regularised level — in principle they can even be implemented exactly — which
renders the continuum limit smoother and safer. This property is particularly relevant for
the (approximate) chiral symmetry of (almost) massless fermions. The chiral symmetry
is essential for instance in QCD at low energy, and its discussion will take a central rôle
in this work. Here we also need a chiral extrapolation, in addition to the limits that we
mentioned already.

As an introduction, we summarise in Section 1 some basic aspects of quantum field
theory in the functional integral formulation. In particular we sketch the road from
classical mechanics to Euclidean quantum field theory, with quantum mechanics and
classical field theory as intermediate steps. We focus on the lattice regularisation, which
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we first introduce for the case of scalar fields. This allows us to summarise the notions
and notations used throughout this work.

In Section 2 we describe — still for scalar fields — the concept of block variable
renormalisation group transformations. Under iteration they lead to a perfect lattice
action, which is free of any cutoff artifacts. We also encounter approximations to a
perfect action, which are needed for practical purposes, such as the classical perfection
and the truncation of the couplings. Still the lattice artifacts can be kept small for such
approximations, as we illustrate for the dispersion relation, the topological susceptibility
of a quantum rotor and for thermodynamic quantities.

In Section 3 we proceed to fermionic quantum field theories, where we start again with
a few generalities. We review the traditional formulations of lattice fermions and describe
the doubling problem. It is related to the difficulty to keep track of the chiral symmetry in
a regularised system — an obstacle, which obstructs other regularisation schemes as well.
Therefore the existence of light quarks is an amazing feature of Nature, which cannot be
described easily in a natural way. In that context, we discuss a brane world scenario as a
possible solution to this hierarchy problem.

Section 4 applies the concept of perfect actions to lattice fermions, which takes us
to the main topic of this work. For free fermions, we demonstrate that this approach
provides both, a solution to the doubling problem and at the same time an exact scaling
behaviour. Depending on the choice of the renormalisation group transformation, we can
implement either locality or standard chirality in the perfect lattice action. However, if
we insist on locality, the resulting Dirac operator still obeys the Ginsparg-Wilson relation,
which guarantees a lattice modified but exact chiral symmetry.

In principle, exact scaling and chirality can also be realised at finite lattice spacing
in the interacting case, where, however, perfect actions can in general not be constructed
explicitly. An exception is the Gross-Neveu model in the limit of a large number of
flavours. Here we present a perfect action for staggered fermions, and we approve the
perfect scaling for the ratio between the chiral condensate and the dynamically generated
fermion mass. The concept we are dealing with also reaches out to perfect lattice currents.
With that ingredient, perfect actions can even capture exact supersymmetry on the lattice.

In Section 5 we consider perfect lattice perturbation theory. We give results for the
anharmonic oscillator and the Yukawa term, which couples fermions to a scalar field. In
gauge theory we show that the perfect lattice action retrieves correctly the axial anomaly
at any lattice spacing, and we discuss the quark gluon vertex function in QCD.

For practical applications, i.e. for the applicability in simulations, the couplings have
to be truncated. In Section 6 we describe our truncation scheme for the perfect fermion
to a so-called hypercube fermion, which has been simulated successfully in the Schwinger
model. In QCD it has been used for the spectral functions at finite temperature, and —
together with a truncated perfect vertex function — in the evaluation of the charmonium
spectrum. For truncated perfect fermions, the scaling behaviour and chirality are not
exact anymore, but the latter can be corrected again by inserting the hypercube fermion
into the overlap formula.

This procedure yields the “overlap hypercube fermion”. Its construction and proper-
ties are presented in Section 7. The corresponding lattice Dirac operator is a solution to
the Ginsparg-Wilson relation, hence it is endowed with an exact, lattice modified chiral
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symmetry. Still it yields the correct axial anomaly in all topological sectors. Similarly we
can arrange for a modified but exact parity symmetry for lattice fermions in three dimen-
sions. In two dimensions we review simulations results for overlap hypercube fermions in
the two-flavour Schwinger model, which reveal an excellent scaling behaviour. Here and
also in QCD we further observe a strongly improved level of locality and approximate
rotation symmetry compared to the standard overlap fermion.

Section 8 finally presents simulation results with Ginsparg-Wilson fermions in QCD,
using the overlap hypercube fermion as well as the standard formulation of overlap
fermions, both in the quenched approximation. This enables simulations near the chi-
ral limit. Here our main goal is a connection to Chiral Perturbation Theory. This is an
effective theory of strong interactions at low energy, which provides a variety of successful
predictions. However, its effective Lagrangian involves free parameters denoted as the
Low Energy Constants, which play an important rôle in the physics of light hadrons.
Their theoretical determination can only emerge from QCD as the fundamental theory.
This is a challenge for lattice simulations, and the principal issue of Section 8.

We measured light meson masses in the p-regime (characterised by a large volume),
and we reveal the difficulties to evaluate Low Energy Constants in that setting. Then
we focus our interest on the ε-regime, which deals with a small volume. In the ε-regime,
the topological sectors play an extraordinary rôle. Hence we first give results for the
distribution of topological charges and the resulting susceptibility, which is relevant for
the mass of the η′-meson. Next we describe a 3-loop calculation which confirms the
perturbative renormalisability of the ε-expanded effective theory. We then apply various
techniques to extract the leading Low Energy Constants: the chiral condensate — which
is the order parameter of chiral symmetry breaking — and the pion decay constant —
which is experimentally observable. In particular, the density of low lying eigenvalues
of the Dirac operator is fitted to predictions by chiral Random Matrix Theory. The
axial-vector current correlator, as well as the zero mode contributions to the pseudoscalar
density correlation, are confronted with formulae of quenched Chiral Perturbation Theory.
We will see that these methods do have the potential to evaluate the physical values of
the Low Energy Constants — which correspond to the large volume limit — even in
the ε-regime. However, the final results have to await the feasibility of dynamical QCD
simulations with chiral quarks.

Section 9 is dedicated to concluding remarks, summarising the status of the fields of
research that we addressed, along with an outlook on future perspectives. In particular
we comment on the prospects for dynamical simulations with chiral quarks.
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1 Introduction

1.1 From classical mechanics to quantum mechanics

In classical mechanics, the trajectory �x(t) of a point particle between fixed endpoints �x(0)
and �x(T ) is — in simple situations — determined by the principle of least action, which
imposes the condition δS = 0. The action S[x] is a functional of the conceivable particle
paths �x(t),

S[x] =

∫ T

0

dt L(�x, �̇x) , (1.1)

where L is the Lagrange function. A simple form of it reads

L(�x, �̇x) =
m

2
�̇x(t) 2 − V (�x(t)) , (1.2)

with the particle mass m and a potential V (which we assume to be velocity indepen-
dent). The variational condition δS = 0 corresponds to Newton’s equation of motion,
m�̈x = −∇V , at each instant t ∈ [0, T ].

Let us consider this transition in quantum mechanics. In contrast to classical me-
chanics, we now deal with a transition amplitude, which picks up contributions from all
possible paths connecting the fixed endpoints. Hence the path in between is not deter-
mined. These contributions are summed up coherently,

〈�x(T )|�x(0)〉 =

∫
Dx exp

( i
�
S[x]

)
. (1.3)

This expression represents a path integral (or functional integral), where the functional
measure Dx symbolises the summation over all possible paths (which formally requires
an infinite dimensional integral) [1].

In the (hypothetical) limit � → 0 solely the classical path (which we assume to be
unique) contributes, whereas the additional contributions for � > 0 correspond to the
quantum effects. However, if a path far from the classical one is varied, the phase in eq.
(1.3) tends to rotate rapidly, so that such contributions almost cancel. As long as � is
small compared to the action shift caused by path variations on the scale of interest, it is
the vicinity of the classical path that dominates the transition amplitude (1.3).

This situation has a historically older counterpart in optics, where the classical and the
quantum mechanical description correspond to the principles by Fermat and by Huygens,
respectively.

In order to attribute an explicit meaning to the functional measure Dx, we divide the
period T into N equidistant intervals of length a = T/N . In this discretised system, the
path integral is given by N −1 integrals over the possible positions at the times tj = j ·a,
j = 1 . . .N − 1. The expression (1.3) is then understood as the continuum extrapolation
a→ 0 (which, at fixed T , corresponds to N →∞),

N−1∏
j=1

∫
RI 3

d3xj . . .
a→0
−→

∫
Dx . . . (1.4)
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1.2 Classical field theory

In field theory we do not consider particle paths �x(t), but instead fields φ(x), where
x = (t, �x) is a point in space-time. The (classical) field takes its value in some abstract
space, like RI n or CI n, for example. Now space and time are treated on an equal footing
(up to the signature in the metrics), which is a prerequisite for covariance. Moreover, the
number of degrees of freedom is extended drastically: before there were just three of them
(in each time point t), but now there is a degree of freedom for each field component in
each single space-time point x.

We assume in each point x a Lagrange density L(φ, ∂µφ) to be defined (µ = 0, . . . , 3),
which we denote as the Lagrangian. The field theoretic action is given by

S[φ] =

∫
d4xL(φ, ∂µφ) . (1.5)

Now an action value is obtained for each field configuration φ(x). This means that S
is a functional of the fields involved, which take the rôle of the paths in the mechanical
system.

The simplest case is a neutral scalar field φ(x) ∈ RI . If this field describes free scalar
particles of mass m, its Lagrangian reads1

L(φ, ∂µφ) =
1

2
∂µφ(x)∂µφ(x)− m2

2
φ(x)2 . (1.6)

Assembling the Lagrangian L only by covariant terms — as it is the case in eq. (1.6) —
ensures that we are dealing with relativistic field theories.

In classical field theory the configuration is determined by again enforcing the varia-
tional condition δS = 0. For a neutral scalar field, this implies

∂L
∂φ
− ∂µ ∂L

∂(∂µφ)
= 0 , (1.7)

which translates for the Lagrangian (1.6) into the Klein-Gordon equation of motion for
the scalar field,

[ ∂µ∂
µ −m2 ]φ(x) = 0 . (1.8)

In simple situations, the variational principle and the boundary conditions fix the classical
field configuration φ(x) everywhere in space-time.

As a well-known example, electrodynamics deals with vector fields Aµ(x), which rep-
resent the electromagnetic potentials. The Lagrangian

L = −1

4
FµνF

µν + jµAµ , Fµν = ∂µAν − ∂νAµ , (1.9)

is constructed from the (gauge invariant) field strength tensor Fµν , and we added an
external, electrically charged current jµ(x). Now the condition δS = 0 leads to the
inhomogeneous Maxwell equations

∂µF
µν = jν ,

1For convenience, we set the speed of light to c = 1.
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from which we infer that the current classically obeys the continuity equation ∂νj
ν = 0.

(On the other hand, the homogeneous Maxwell equations are already encoded in the use
of potentials.)

1.3 Quantum field theory

The transition from classical field theory to quantum field theory can be performed in
analogy to the quantisation of the mechanical system in Subsection 1.1. Since the rôle of
paths in that case is now taken by configurations, we quantise the field theoretic system
by including contributions of all possible field configurations. To render such a huge
summation well-defined, we introduce again a discretisation. Since the fields take their
values in each space-point x, we now need a space-time lattice, which we choose to be
hypercubic, and we denote the lattice spacing again by a. Thus the lattice consists of the
sites {

x
∣∣∣ xµ
a
∈ ZZ , ∀µ

}
. (1.10)

If we stay with the example of a neutral scalar field, then all the configurations are summed
over as follows, ∏

x∈ lattice

∫ ∞

−∞
dφx . . . a→0

−→

∫
Dφ . . . (1.11)

In this summation, we are going to attach a phase factor exp( i
�
S[φ]) to each configuration,

similar to eq. (1.3). On the right-hand-side we indicate again the continuum limit, the
details of which will be of prominent interest in this work.

A configuration which corresponds to the lowest possible energy is denoted as a vacuum
Ω. Similar to eq. (1.9) we add an external source field J(x), which now couples to the
field φ(x). Then the vacuum-to-vacuum transition amplitude is defined as

Z[J ] = 〈Ω|Ω〉J =

∫
Dφ exp

( i
�
(S[φ] + Jφ)

)
, (1.12)

where we use continuum notation, and Jφ =
∫
d4x J(x)φ(x).

Let us assume for simplicity the solution of the equation δS = 0 to be unique. Then
it is again the vicinity of this classical configuration which contributes in a dominant way
(on an action scale where � is small); also here the contributions at large |δS| are mostly
washed out by the rapidly rotating phase.

The convergence of the sum over the configurations can be accelerated drastically if
we perform a Wick rotation t → −it to arrive at Euclidean space. There we denote a
point as x = (�x, x4), x4 being the Euclidean time, and the above quantities turn into

LE(φ, ∂µφ) =
1

2
∂µφ∂µφ+ V (φ) , SE[φ] =

∫
d4xLE(φ, ∂µφ) ,

ZE = ZE[J = 0] =

∫
Dφ exp

(
− 1

�
SE[φ]

)
. (1.13)

LE and SE are the Euclidean Lagrangian and action. V (φ) is some potential, which is
— for instance — quadratic in the free case, as we saw in eq. (1.6). In Euclidean space
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we only write lower indices, and doubled indices are summed over from 1 to 4 with the
metric tensor δµν .

Now the contributions by configurations deviating from the action minimum are sup-
pressed exponentially, which speeds up the convergence of the functional integral tremen-
dously.2 This property is highly welcome if we try to evaluate functional integrals approx-
imately by summing over a small but (as far as possible) representative set of random
configurations. This is the method used in numerical simulations, which we will be con-
cerned with later. If conclusive simulations are feasible, they provide in most cases the
only access to functional integral results beyond perturbative, semi-classical or effective
approximations, i.e. to actual functional integrals at finite interaction parameters.

In the terminology of statistical mechanics, ZE is a partition function. Then � takes a
rôle analogous to the temperature, which controls the extent of field fluctuations around
an action minimum.3 In the limit �→ 0 only the latter contributes (the system “freezes”
to the classical configuration), so this limit leads back to the classical field theory of
Subsection 1.2. Once more there is an analogy to the point mechanics in Subsection 1.1.

In quantum field theory, the fluctuations around the vacuum are essential; they record
the occurrence of particles, deviating from a vacuum state Ω.

In view of the statistical interpretation, we can build expectation values, and these
are the quantities that contain the physical information. The vacuum expectation value
of some observable O(φ) is given by

〈O(φ)〉 := 〈Ω|O(φ)|Ω〉 =
1

Z[0]

∫
DφO(φ) exp

( i
�
(S[φ])

)
, (1.14)

so that eq. (1.12) fixes the normalisation 〈1〉 = 1. In particular, the Euclidean 2-point
function takes the form

G2(x− y) = 〈φ(x)φ(y)〉 = �2

ZE

∂

∂J(x)

∂

∂J(y)
ZE[J ]

∣∣∣
J=0

=
1

ZE

∫
Dφφ(x)φ(y) exp

(
− 1

�
SE[φ]

)
. (1.15)

Here we assumed the condensate (or 1-point function) 〈φ〉 to vanish, hence G2(x − y)
coincides with the connected correlation function (with the general form 〈φ(x)φ(y)〉 −
〈φ(x)〉〈φ(y)〉 ). It characterises the correlation over a temporal separation ∆t = x4 − y4

and a spatial distance �x− �y. If one Fourier transforms the distance, one usually obtains
an exponential decay in ∆t,

G2(�p,∆t) ∝ e−E(�p )∆t , (1.16)

where E(�p ) is the energy of the particle involved; in particular E(�0) is its mass.
Similarly we may extract further information of physical interest by evaluating higher

n-point functions
Gn(x

(1), . . . , x(n)) = 〈φ(x(1)) · · ·φ(x(n))〉 , (1.17)

2Of course, the Wick rotation could have been performed earlier in quantum mechanics, where it
accelerates the convergence of the path integral as well.

3In this sense, the variation of � does have a realistic interpretation, although it is fixed in Nature.
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or their connected part, which is often of primary interest,

G(c)
n (x(1), . . . , x(n)) = (−�)n

∂n

∂J(x(1)) . . . ∂J(x(n))
lnZE[J ]

∣∣∣
J=0

. (1.18)

Here all the x(i) are Euclidean space-time points.
In the further Sections we will stay in Euclidean space (unless it is specified otherwise),

and we will from now on suppress the subscript “E”. The use of the Euclidean signature is
justified because the expectation values — which provide the physical observables — can
be carried over to Minkowski space, if four conditions are fulfilled. These conditions
are known as the Osterwalder-Schrader axioms [2]. Two of them (“analyticity” and
”regularity”) are rather technical, while “O(4) invariance” and “reflection positivity” have
a physical interpretation. Note also that n-point functions in Minkowski space require a
time ordering. If we deal with Euclidean lattices, we assume first a continuum limit to be
taken, and then the transition to Minkowski space to be justified.

In addition, we use from now on natural units, � = c = 1, and — when it is specified
— also lattice units, which set in addition the lattice spacing a = 1. In Sections 7 and 8
we identify the spacing in lattice QCD with a physical scale, which then attaches physical
units to all dimensional quantities involved.

Derivations and details of the basic features that we have sketched in this Introduction
can be found at numerous places in the literature. Due to their established status, we
hardly indicated references so far. At this point we would like to attract attention to
Ref. [3], which covers the subjects hinted at in Section 1 with great precision. This also
includes an explanation of the Osterwalder-Schrader axioms and a comprehensive list of
references on the functional integral formulation of quantum physics.

2 Renormalisation Group Transformations and Per-

fect Lattice Actions

2.1 Block variable transformations

In Section 1 we have introduced the partition function Z and its functional derivatives
as the quantities of interest. They are well-defined on a Euclidean lattice, which restricts
the momenta to the Brillouin zone

B =
(
−π
a
,
π

a

]d
, (2.1)

i.e. it naturally introduces a momentum cutoff Λ = π/a.
For the neutral scalar field, the source-free partition functions takes the form

Z =

∫ ∏
x

dφx e
−S[φ] . (2.2)

Also the action S[φ] is affected by the discretisation. The standard form for a free lattice
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scalar field reads

S[φ] = ad
∑
x

[ 1

2a2

∑
µ

(
φx+aµ̂ − φx

)2

+
m2

2
φ2
x

]

=
( a

2π

)d ∫
B

ddp
1

2
φ(−p) [p̂2 +m2

]
φ(p) , (2.3)

where µ̂ is the unit vector in µ-direction, and

p̂µ :=
2

a
sin

apµ
2

, p̂2 =

d∑
µ=1

p̂2
µ . (2.4)

As this modified momentum shows, the lattice structure introduces artifacts on a scale
fixed by the cutoff Λ. 4

Now we would like to alter the lattice action in a way that moves the cutoff effects to
higher energies. This can be achieved by a renormalisation group transformation (RGT)
[4] to a new lattice field φ′ living on a coarser lattice {x′}, for instance with spacing 2a.
We can choose the sites x′ as the centres of disjoint unit hypercubes on the fine lattice
{x}. Then the action S ′ for the lattice field φ′ can be formulated as

e−S
′[φ′] =

∫ ∏
x

dφx exp

[
−S[φ]− α

∑
x′

(
φ′
x′ −

b

2d

∑
x∈x′

φx

)2
]
, (2.5)

where the sum x ∈ x′ runs over the 2d sites on the fine lattice in the unit hypercube with
centre x′. α > 0 and b are RGT parameters, which will be commented on below.

The RGT (2.5) leaves the partition function invariant (up to a constant factor),5

Z ′ =

∫ ∏
x′
dφ′

x′ e
−S′[φ′]

=
∏
x′,x

∫
dφx e

−S[φ]

∫
dφ′

x′ exp
[
− α

∑
x′

(φ′
x′ −

b

2d

∑
x∈x′

φx)
2
]

= Z · const. (2.6)

Also the n-point functions are transferred to the coarse lattice without any damage, for
instance

〈 φ′
x′ φ

′
y′ 〉 =

〈(∑
x∈x′

φx

)(∑
y∈y′

φy

)〉
. (2.7)

If we now consider the situation in terms of lattice units, we set on the fine lattice a = 1
and on the coarse lattice a′ = 2a = 1. In the transition from the former to the latter lattice
units, the fields and the parameters are re-scaled according to their dimensions. But the
use of the blocked actions S ′[φ′] guarantees that the lattice artifacts — in particular the

4In this case, the artifacts occur in O(Λ2), which is generic for bosonic systems.
5This constant factor does not have any impact on physical properties, since it drops out in all

expectation values.
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discretisation errors in the kinetic term — are still those of the fine lattice. Hence their
scale is Λ = 2Λ′, in contrast to the standard action on the coarse lattice.

This blocking variable RGT can be iterated, and — for the RGT parameter b = 2d/2−1

— the lattice action converges to a finite fixed point [5]6 S∗,

S −→ S ′ −→ S ′′ −→ . . . −→ S∗ . (2.8)

The scale for the lattice artifacts is unchanged, hence it diverges in lattice units,

Λ −→ 2Λ′ −→ 4Λ′′ −→ . . . −→ ∞ . (2.9)

Therefore, S∗ is free of any cutoff artifacts; it is a perfect lattice action.

2.2 Blocking from the continuum

Let us now generalise the blocking factor to n ∈ {2, 3, . . . }, so that a′ = n · a. The limit
n→∞ means that we perform a blocking from the continuum; on the scale of the blocked
lattice units, the initial lattice appears continuous. Thus we arrive at the perfect action
in one single step, S → S∗. The corresponding transformation reads

e−S
∗[φ] =

∫
Dϕ exp

(
−S[ϕ]− α

∑
x

(
φx −

∫
Cx

dduϕ(u)
)2
)

, (2.10)

where now φ is the final lattice field on the sites x, while ϕ is a continuum field, S is the
continuum action, and Cx is the unit hypercube (in final lattice units) with centre x. 7

Since the RGT does not alter physical properties, we see here directly that S∗ captures
continuum physics on the lattice, without any possibility for lattice artifacts to sneak in.

Let us now look at the explicit form of the free scalar propagator for the standard
lattice action (2.3) and for the perfect action S∗[φ] in momentum space [5, 6] (in lattice
units),

1

2
G2(p)standard =

1

2
〈φ(−p)φ(p)〉standard =

1

p̂2 +m2
,

1

2
G2(p)perfect =

1

2
〈φ(−p)φ(p)〉perfect =

∑
l∈ZZd

Π2(p+ 2πl)

(p+ 2πl)2 +m2
+

1

α
,

where Π(p) :=

d∏
µ=1

p̂µ
pµ

. (2.11)

We see that the perfect propagator consists of the continuum propagator with an analytic
factor Π2 and all 2π periodic copies, plus a constant term. The latter vanishes in the limit
to a δ-function RGT, α→∞.

6For some field of dimension [Mass]γ and a blocking factor n, the corresponding parameter multiplying∑
x∈x′ . . . has to be set to nγ−d for the sake of convergence under RGT iterations. This factor compensates

the re-scaling at the end of each step.
7Also the continuum field ϕ is expressed in the (upcoming) lattice units.



CBPF-NF-031/06 14

The function Π(p) ensures that the sum over the integers lµ converges. In the ex-
ponential transformation term in eq. (2.10) we have used a step function shape for the
integration of ϕ (1 inside Cx, 0 otherwise). This shape could be varied, which implies dif-
ferent forms of the function Π (without danger for the converges of the sum over the copies
of the Brillouin zone). For instance, the generalisation to B-spline blocking functions is
discussed in Ref. [6].

The function Π(p) in eq. (2.11) is also affected by the hypercubic structure of the
lattice; as an example, we could stay with the step function shape and consider a 2d
triangular lattice instead, which leads to a different function in the enumerator [6] (in this
case, the lattice cells to be integrated over are the hexagons of the dual lattice). However,
it always has to be analytic,8 hence it does not affect the dispersion relation to be extracted
from the perfect propagator.9 The latter coincides indeed with the continuum dispersion,
which also means that it displays exact and continuous rotation invariance (which turns
into exact Lorentz invariance in Minkowski space). We emphasise that this symmetry can
be implemented in the physical observables (not in the form of the propagator), irrespective
of the lattice structure.

In coordinate space we write the perfect action in the form of a discrete convolution

S∗[φ] =
∑
x,y

φxρ(x− y)φy , (2.12)

where ρ(x − y) is the inverse Fourier transform of G2(p)
−1
perfect. The decay of |ρ(x − y)|

is exponential in |x − y| for any mass m (for increasing m2 the decay is accelerated).
Explicit examples are shown in Ref. [6]. This means that the perfect lattice action is
local. Generally, locality is reputed as a vital requirement to ensure that a lattice action
has a sensible continuum limit.

However, in d ≥ 2 the couplings in ρ extend to infinite distances |x − y|, in contrast
to the ultralocal standard action.10 For practical purposes this set of couplings has to
be truncated. To this end, we first identified the value of α which optimises the level of
locality, i.e. the rapidity of the exponential decay. This optimal value depends on m; a
good approximation is [6]

αoptimal(m) 
 sinhm−m
m3

, (2.13)

which is derived from the property that it only couples nearest neighbours in d = 1. Then
we may truncate ρ to a unit hypercube — i.e. we enforce that couplings ρ(x − y) �= 0
only occur if |xµ − yµ| ≤ a, ∀µ — by imposing periodic boundary conditions over 3
lattice spacings. This method yields a perfect action in a lattice volume 34, which we
then use as an truncated approximation to the perfect action on larger lattices. Unlike
other truncation schemes, this one guarantees for instance the correct normalisation of
the couplings.

Figure 1 illustrates as examples the dispersion relation E(�p ) (for momenta �p ∝
8We assume the analytic continuation to be inserted at the removable singularities.
9Of course, one always considers the branch with the lowest energy.

10Ultralocality means that the couplings drop to zero beyond a finite number of lattice spacings.
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(1, 1, 0)) for the free scalar particle of mass m = 2, as well as the thermodynamic ra-
tio P/µ4 at m = 0 (where P is the pressure and µ the chemical potential).11

2
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E

m=2

co
ntin

uum

hyperc
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standard

| p |
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Figure 1: On the left: The dispersion relation for a free scalar particle of mass m = 2 for
the perfect lattice action (which coincides with the continuum dispersion), the hypercubic,
truncated perfect action and the standard action. For increasing momenta, the magnitude
of the lattice artifact rises rapidly for the standard action, whereas it remains modest for
the truncated perfect action.
On the right: the corresponding scaling test for massless lattice scalars with respect to
the ratio between the pressure P and the fourth power of the chemical potential µ. As µ
increases, lattice artifacts cause a deviation from the continuum value P/µ4 = 1/(48π2).
This deviation is large for the standard action, but harmless for the truncated perfect
hypercube action.
In both plots all quantities are given in lattice units.

2.3 Classically perfect actions

For interacting theories, the perfect action can in general not be computed explicitly,
since this requires carrying out a functional integral. P. Hasenfratz and F. Niedermayer
[7] suggested a feasible simplification, which evaluates the RGT steps in the classical
approximation. This idea has revived and boosted the RGT method in lattice field theory.
In our case, this classical RGT step takes the form

S ′[φ′] = min
φ

{
S[φ] + α

∑
x′

(
φ′
x′ −

1

nd/2+1

∑
x∈x′

φx

)2}
. (2.14)

Iteration leads also here to a fixed point — the classically perfect action. With a suitable
parameterisation ansatz, it can be determined numerically to some approximation by
inserting a set of configurations φ′ on the coarse lattice and performing the minimisation.

11The inclusion of a chemical potential in a perfect lattice action will be commented on later in the
fermionic context (Subsection 4.1).



CBPF-NF-031/06 16

The parameters which are used in the ansatz for the action are then tuned until one
obtains optimal approximate invariance under this transformation, i.e. an approximate
classical fixed point action. This procedure is particularly promising for asymptotically
free theories. The pioneering work [7] for this method evaluated and simulated a classically
perfect action with a large number of parameters in the 2d O(3) model (a non-linear σ-
model). A subtle scaling test (suggested in Ref. [8]) revealed practically no lattice artifacts
at all down to ξ/a 
 5 (where ξ is the correlation length). This is in contrast to the
standard action, where scaling artifacts are visible even at ξ/a 
 15 [7].

Later applications of classically perfect actions include topological aspects of the 2d
O(3) model [9], the 2d CP (3) model [10], pure SU(2) [11] and SU(3) [12] gauge theory
in d = 4, the two-flavour Schwinger model [13] and finally QCD [14].

In Figure 2 we show a comparison — involving classically perfect actions — for the
scaling of the thermodynamic ratio P/T 4 (where T is the temperature) for free scalars [6]
(on top), and for the static quark-antiquark potential [15] (below).

In Ref. [16] we studied a free scalar particle on a circle (a quantum rotor) with a discrete
Euclidean time and periodic boundary conditions over a period T . We considered the
scaling of the ratio between the first two energy gaps and of the topological susceptibility
(scaled by the correlation length ξ),

E2 − E0

E1 − E0
and χt =

1

T
〈ν2〉 . (2.15)

The latter is based on the expectation value of the squared winding number ν, which is
the simplest case of a topological charge. These results are plotted in Figure 3.

It is remarkable that also the continuum topology can be represented exactly on the
lattice, thanks to the formulation with perfect actions and operators. Generally, we build
(classically) perfect operators from the lattice fields obtained by (classical) blocking [15].

In contrast, for the standard action it is not even obvious how to define topological
sectors (since all lattice configurations can be continuously deformed into one another).
We use it here with the geometrical definition of the topological charge [17], which is the
best option, but we observe strong scaling artifacts.12 On the other hand, the perfect
formulation keeps track of each detail in the intervals between the discrete time points,
since it emerges from blocking transformations. This means that any winding number
between nearest neighbour time sites is included as a possibility in the expectation value
〈ν2〉. (Of course, a large number of windings is strongly suppressed by the kinetic term in
the exponent of the Boltzmann factor, cf. eq. (1.13)). The classically perfect action still
approximates the continuum value of χt to a very good approximation.

12In Figure 3 we use the continuum correlation length as the scale. If one inserts instead for the
standard action the correlation length as obtained from standard action simulations, the artifacts are
reduced, but the hierarchy in the scaling quality persists [18].
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Figure 2: On top: the scaling ratio (pressure)/(temperature)4 for finite numbers Nt of
lattice sites in the temporal direction. A decreasing number Nt corresponds to a coarser
lattice, which amplifies the artifacts, in particular for the standard action. (The contin-
uum value is given by the Stefan-Boltzmann law, P/T 4 = π2/90.)
Below: The (re-scaled) static quark-antiquark potential V (r) at different distances. Wil-
son’s standard formulation is only defined at discrete distances and exhibits significant
artifacts at short r. The classically perfect potential captures all distances and suffers
much less from lattice artifacts.

3 Fermions

3.1 The Dirac equation

For convenience we temporarily return to Minkowski space for the Subsections 3.1 to 3.3,
which contain introductory remarks on fermions.

Let us go back to quantum mechanics as a renewed starting point. Taking the rela-
tivistic energy-momentum relation E2 = �p 2+m2 as a guide-line, one arrives at an obvious
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Figure 3: The scaling behaviour of a free scalar particle on a circle. We show two scaling
quantities as functions of the correlation length in lattice units: the ratio between the first
two energy gaps (on the left) and the topological susceptibility (on the right).

ansatz for a relativistic Schrödinger equation,

[∂µ∂
µ −m2] Ψ = 0 . (3.1)

This is the Klein-Gordon equation, which we already encountered in eq. (1.8) in the
context of classical field theory. An apparent problem with it, which worried the pioneers
of quantum mechanics, is the occurrence of negative energies. P.A.M. Dirac wanted to
avoid them by linearising this equation with the ansatz

[ iγµ∂
µ −m ] Ψ = 0 . (3.2)

In order to reproduce the relativistic energy, the coefficients γµ have to obey the anti-
commutation relation

{γµ, γν} = 2gµν , g ≡ diag(1,−1,−1,−1) . (3.3)
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Therefore, these coefficients γµ in the Dirac equation (3.2) have to be (at least) 4 × 4
complex matrices in d = 4. Thus the spinor Ψ has four components,13

Ψ =

⎛
⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎠ . (3.4)

Actually this linearisation does not overcome the negative energy eigenvalues. Never-
theless this ansatz was extremely successful; for instance, it led to the prediction of the
positron just before its experimental discovery in 1931. In fact, the spinor Ψ captures a
spin-1/2 particle plus its antiparticle.

Later on, relativistic quantum mechanics considered the Dirac equation appropriate
for fermions, and the Klein-Gordon equation for bosons.

3.2 Fermionic field theory

In the functional integral formulation of fermionic field theory, the Dirac operator is still
present as the central ingredient in the Lagrangian. For free fermions of mass m, the
partition function and the action are written as

Z =

∫
DΨ̄DΨ eiS[Ψ̄,Ψ] ,

S[Ψ̄,Ψ] =

∫
d4x Ψ̄(x) [iγµ∂

µ −m] Ψ(x) , (3.5)

where Ψ̄(x) = (ψ̄1(x), ψ̄2(x), ψ̄3(x), ψ̄4(x)) and Ψ(x) are spinor fields. Application of the
variational principle δS = 0 leads to the Dirac equation (3.2) for Ψ, and to the adjoint
Dirac equation

Ψ̄ [ iγµ
←
∂ µ +m ] = 0 . (3.6)

In the light of the Spin-Statistics Theorem, fermion field components anti-commute,
hence one describes them by Grassmann variables. A set of Grassmann variable {ηi} (as
it is used here for the components of Ψ̄ and of Ψ in a specific point x) obeys the relations

{ηi, ηj} = 0 ,

∫
dηi ηj = δij . (3.7)

A striking difference from the Dirac algebra (3.3) is of course the property η2
i = 0. The

integration rule is motivated by the analogy to the translation invariance of the real,
unbounded integral. The Grassmann integral has no bounds, and its effect is equivalent
to differentiation. It provides the basis for the functional integral in eq. (3.5) [19], which
we will make explicit in Subsection 3.4.

Interactions can be included for instance by adding a 4-Fermi term (Ψ̄(x) Ψ(x))2 to
the Lagrangian, which we will consider in Subsections 3.5, 4.3 and 5.2. Another type of

13In two dimensions, we can live with 2× 2 matrices γµ and 2-component spinors.
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interaction is generated by coupling the fermions to a gauge field Aµ through a covariant
derivative, which turns the Dirac operator and the partition function into

D(A) = iγµ [∂µ − gAµ(x)]−m , (3.8)

Z =

∫
DΨ̄DΨDA exp

(
i

∫
d4x Ψ̄(x)D(A)Ψ(x) + iS[A]

)
.

S[A] represents the pure gauge action; it could be for instance the Abelian gauge action
obtained by integrating the Lagrangian (1.9). In that framework, the term gΨ̄γµΨ
takes the rôle of the external, charged current jµ (and g is the gauge coupling). Fermionic
n-point functions are defined in analogy to the bosonic case (see Subsection 1.3), but the
order matters, of course.

3.3 Chiral symmetry

Due to the anti-commutation rule (3.3), the matrix

γ5 := iγ0γ1γ2γ3 obeys {γ5, γµ} = 0 and γ2
5 = 11 . (3.9)

Therefore, the operators

P± :=
1

2
(11± γ5) (3.10)

are complementary projectors (P 2
± = P± , P+ +P− = 11). They can be used to decompose

the spinor fields into their so-called left-handed and right-handed parts,

ΨL,R(x) = P±Ψ(x) , Ψ̄L,R(x) = Ψ̄(x)P∓ . (3.11)

In these terms, the fermionic part of the Lagrangian in eq. (3.8) reads

L = Ψ̄LD(A)m=0ΨL + Ψ̄RD(A)m=0ΨR −m(Ψ̄LΨR + Ψ̄RΨL) . (3.12)

In the chiral limit m→ 0 the left-handed and the right-handed parts decouple completely.
This property corresponds to the relation

{Dm=0 , γ5} = 0 , (3.13)

which manifests itself in a global symmetry, namely the invariance of L under the “chiral
rotation”

Ψ̄→ Ψ̄ eiαγ5 , Ψ→ eiαγ5 Ψ (3.14)

for an arbitrary parameter α.
Obviously, the term that enters the Lagrangian (3.12) for a fermion mass m �= 0 breaks

the chiral symmetry explicitly; the chiral rotation (3.14) transforms the mass term as

mΨ̄Ψ → mΨ̄e2iαγ5Ψ . (3.15)

In general, global symmetries — such as the chiral invariance — are only realised
approximately in Nature,14 hence a breaking by a mass term is not necessarily a problem.

14An exception is the CPT invariance, which is assumed to be exact [20].
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However, by the introduction of gauge fields one arrives at local symmetries, and they
have got to be exact. In a vector theory, the gauge fields couple in the same way to the
left-handed and to the right-handed fermions. This is the case for the gluon fields in
QCD. Then the fermion mass is allowed — quark masses can be inserted into the QCD
Lagrangian.

On the other hand, the electroweak sector of the Standard Model is an example for a
chiral gauge theory, where the gauge fields couple in different ways to the left-handed and
to the right-handed fermions. Then we have to require their invariance under independent
transformations, which forbids explicit mass terms in L. In that framework, the masses
of fermions (and also those of gauge fields) can only be generated dynamically. It takes
Yukawa couplings to the a Higgs field and spontaneous symmetry breaking to arrive at
massive quarks and leptons (and massive gauge bosons W± and Z0).15

3.4 Fermions on a Euclidean lattice

We return to Euclidean space, where the γ-matrices obey

{γµ, γν} = 2δµν , γ5 := γ1γ2γ3γ4 , {γµ, γ5} = 0 , γ2
5 = 11 . (3.16)

We choose them to be Hermitian. We write a bilinear fermionic lattice action — such
as the action for free fermions, or for fermions interacting through gauge fields — in the
form

S =
N∑

i,j=1

Ψ̄iMijΨj ≡ Ψ̄MΨ . (3.17)

Here the components Ψ̄i, Ψi run over all the lattice sites, and on each site over all internal
degrees of freedom (spinor indices, and for instance in QCD also colour indices). It is easy
to see that the partition function is given by the celebrated fermion determinant,

Z =

∫ N∏
i=1

dΨ̄idΨi e
−Ψ̄MΨ = detM . (3.18)

This expression also attaches an explicit meaning to the Grassmann functional integrals.16

(The order of the single Grassmann integrals matters, since the rule in eq. (3.7) refers
particularly to the innermost integral.)

As an example, we consider a free, massless fermion with the Euclidean continuum
action

S[ψ̄, ψ] =

∫
d4x ψ̄(x)γµ∂µψ(x) . (3.19)

On a lattice with unit spacing (a = 1) the simplest discretisation ansatz reads

S[Ψ̄,Ψ] =
∑
x

Ψ̄xγµ
1

2
(Ψx+µ̂ −Ψx−µ̂)

=
1

(2π)4

∫
B

d4p Ψ̄(−p)iγµ sin pµΨ(p) . (3.20)

15We do not consider renormalisation effects at this point.
16It is entertaining to compare this result to the expression for a complex scalar field,∫ ∏

i dReΦidImΦi exp(−Φ†MΦ) ∝ (detM)−1, or 1/
√

detM for a neutral scalar field.
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This formulation is known as the naive lattice fermion. As the name suggests, there is a
serious problem with it: the propagator

G2(p)naive =
1

iγµ sin pµ
(3.21)

has inside the (first) Brillouin zone (2.1) not only the physical pole at p = 0, but it
has poles whenever pµ ∈ {0, π}, µ = 1 . . . 4. Hence there are 16 poles (in general, 2d

poles) instead of the one that we have ordered. This effect is known as the fermion
doubling problem — it is due to the occurrence of a linear derivative. In fact, these
doublers distort physical properties regardless how fine the lattice might be, hence this
formulation cannot be applied. For instance, among the 16 species the chiralities are
equally distributed, which makes it impossible to construct a chiral gauge theory [21].
Moreover, the trouble also affects vector theories, since these species contribute to the
axial anomaly with alternating signs, hence doubled lattice fermions cannot reproduce a
non-vanishing axial anomaly either [22].

So we have to consider further options for the lattice action

S =
∑
xy

Ψ̄xDxyΨy . (3.22)

We recall that locality is in general a requirement for a controlled continuum limit (in
view of the extension to the interacting case). In coordinate space, a local lattice Dirac
operator D has to be bounded as17

|Dxy| ≤ c1e
−c2|x−y| , c1, c2 > 0 . (3.23)

In momentum space this means that D(p) = G2(p)
−1 has to be analytic.

It is not easy to find a satisfactory solution to the doubling problem. This statement
was made precise by the Nielsen-Ninomiya No-Go Theorem [21]. Putting aside technical
details,18 it essentially states that an undoubled lattice fermion cannot be chiral and local
at the same time.

For an intuitive and simplified illustration, we write a rather general ansatz for a chiral
lattice Dirac operator for free fermions,

D(p) = iρµ(p)γµ , ρµ(p) = pµ +O(p2) . (3.24)

The leading momentum order of ρµ is required by the correct continuum limit (which is
determined by small momenta in lattice units). We may consider the specific momenta
p = (p1, 0, 0, 0), so that

D(p1, 0, 0, 0) = iρ1(p1)γ1 ,

with the physical zero at p1 = 0. Since 2π periodicity is mandatory, and since locality
requires an analytic function ρ1(p1) = p1 +O(p2

1), at least one additional zero (generally:

17Different definitions of locality appear in the lattice literature, but the condition of an exponential
decay — which we referred to already for scalar fields — is the relevant one, because it guarantees a safe
continuum limit.

18The proof requires some additional assumptions — like lattice translation invariance — but they are
not especially tricky.
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an odd number of them) is inevitable inside the Brillouin range p1 ∈ (−π, π], even if one
deviates from the naive form ρ1(p1) = sin p1.

Many suggestions have been made to circumvent this problem by breaking one of the
desired properties on the lattice, hoping this would not affect the continuum limit. We
do not review all these efforts, but we mention as an example the SLAC fermion [23]. In
the above consideration, it sets ρ1(p1) = p1 in p1 ∈ (−π, π], which is then periodically
continued (and the same for the other momentum components). Due to the jumps at the
edges of the Brillouin zone this formulation is non-local. The hope to get away with this
was crushed by Karsten and Smit, who showed that this formulation is inconsistent at
the one-loop level of gauge theory, where it fails to reproduce Lorentz symmetry in the
continuum limit [24].19

The standard lattice fermion formulation, which has been used most in simulations —
in QCD in particular — was put forward by K.G. Wilson in 1979 [26]. The free Wilson
operator reads

DW,xy =
1

2

∑
µ

[
γµ(δx,y−µ̂ − δx,y+µ̂)− (δx,y−µ̂ + δx,y+µ̂ − 2δx,y)

]
+mδx,y . (3.25)

Wilson added the term in the second round bracket to the naive form that we considered
before. This term represents a Laplacian operator, which is discretised in the simplest
way.20 In fact it avoids the fermion doubling by sending the doublers to the cutoff energy.
There is no doubt that this operator is local, and the Wilson term is O(a) suppressed, so
one could hope that it does not distort the continuum limit.

However, due to this extra term the chiral symmetry is broken explicitly, {DW,m=0 , γ5} �=
0. As interactions are switched on, this causes numerous problems. In particular, a gauge
field can be added as a set of link variables in the gauge group, which provides invari-
ance under gauge transformation of the matter fields on the sites. One often writes this
compact link variable as

Uµ,x = exp
(
i

∫ x+µ̂

x

dyµAµ(y)
)
∈ { gauge group } , (3.26)

which indicates a connection to the (non-compact) continuum gauge field Aµ. For non-
Abelian gauge groups this exponential is formulated as a path ordered product [27]. Such a
gauge field suppresses the terms δx,y±µ in the Wilson term, but not its last entry 2δx,y. This
different treatment gives rise to additive mass renormalisation. If one tries to approach
the chiral limit, where the renormalised fermion mass vanishes, one has to fine tune the
bare mass to some value m < 0, which compensates for the additive renormalisation.

A further (related) inconvenience for interacting Wilson fermions is that the lattice
artifacts can appear in O(a) already21 (unless one adds another term to cancel the O(a)

19However, this conceptual problem at the one-loop level is specific to gauge interactions. The SLAC
fermion may still be in business for instance in supersymmetric spin models without gauge fields [25].

20The Wilson term can also be multiplied by some independent coefficient (the Wilson parameter), but
this generalisation is not particularly fruitful.

21For the free Wilson fermions, the scaling artifacts are of O(a2).



CBPF-NF-031/06 24

artifacts — following Symanzik’s program — which requires fine tuning again [28]).

Another formulation, which has been considered standard over the past decades, and
which is regularly applied in simulations, is known as the staggered fermions (or Kogut-
Susskind fermions) [29]. An elegant way to construct them starts from the naive action
on a unit lattice,

S[Ψ̄,Ψ] =
∑
x

[1
2

d∑
µ=1

(
Ψ̄xγµUµ,xΨx+µ̂ − Ψ̄x+µ̂γµU

†
µ,xΨx

)
+mΨ̄xΨx

]
, (3.27)

and performs the substitutions [30]

Ψ̄′
x = Ψ̄xγ

x1
1 . . . γxd

d , Ψ′
x = γxd

d . . . γx1
1 Ψx . (3.28)

This leaves the mass term invariant and renders also the kinetic term diagonal in the
spinor space. Hence one may reduce the transformed spinors to a single component χ̄, χ,
and one obtains

S[χ̄, χ] =
∑
x

[1
2

d∑
µ=1

Γµ,x
(
χ̄xUµ,xχx+µ̂ − χ̄x+µ̂U †

µ,xχx
)

+mχ̄xχx

]
,

Γµ,x := (−1)x1+x2+···+xµ−1 . (3.29)

This structure distinguishes two sublattices by the criterion if
∑d

µ=1 xµ is even or odd, i.e.
by the sign term

ε(x) = (−1)x1+···+xd . (3.30)

The link variables Uµ,x always connect sites belonging to distinct sublattices. For m = 0,
the action (3.29) is invariant under the transformations

χ̄x → eαε(x)χ̄x , χx → eαε(x)χx , (3.31)

which amounts to a remnant chiral symmetry U(1)e ⊗ U(1)o, where ε(x) adopts the rôle
of γ5 (the subscripts refer to the even/odd sublattice). The 2d components on the corners
of the disjoint unit hypercubes are nowadays denotes as “tastes” (the earlier literature
also called them “pseudoflavours”). As long as one finally assembles exactly 4 flavours
from them, this remnant symmetry is sufficient to avoid additive mass renormalisation
and O(a) scaling artifacts.

Recently it became fashion to try to build single flavours with staggered fermions by
taking the fourth root of the fermion determinant (3.18). However, it is likely that this
formulation is non-local, and — even if someone is willing to accept that — additive mass
renormalisation sets in again (see e.g. Refs. [31]). The question is this formulation might
provide correct results even if it is non-local is still debated [32].

3.5 Are light fermions natural ?

We would like to stress that keeping track of the chiral symmetry is not a specific problem
of the lattice regularisation. It should rather be viewed as a generic and deep problem,
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which plagues other regularisations as well. For instance, in dimensional regularisation
[33] one performs computations in 4 + ε dimensions (in the sense of distribution theory)
and sends ε → 0 at the end. This is the most popular regularisation scheme for pertur-
bative calculations, but it is a longstanding problem to find a generally reliable rule for
handling γ5 =

∏d
µ=1 γµ on the regularised level (or i

∏d−1
µ=0 γµ in the Minkowski signature),

generalising eq. (3.16) (resp. (3.9)). A careful analysis of this issue can be found in Ref.
[34].

On the conceptual level, this observation means that the existence of light fermions
in our world actually appears to be unnatural. Nature must be non-perturbative, so we
can only refer to a non-perturbative regularisation scheme when addressing this question,
which means essentially the lattice.22 It is possible to formulate light lattice fermions
— for instance light quarks in lattice QCD — but only with tedious and sophisticated
constructions (see Section 7), which do not appear to mimic a conceivable mechanism in
Nature. What could be an acceptable mimic is something very simple like the Wilson
fermion (3.25), which, however, pushes the fermion mass to the cutoff scale due to a strong
additive mass renormalisation — unless a negative bare mass is fine tuned, which appears
unnatural again.23

Nevertheless there do exist in particular two light quark flavours,

mu, md � ΛQCD . (3.32)

The question how this is realised in Nature is a hierarchy problem that is not properly
understood. The situation is different in pure Yang-Mills theory, for example, where
(regularised) glueball masses can be made arbitrarily light thanks to asymptotic freedom
and the absence of additive mass renormalisation. But for quarks it does not work in
this simple way, due to the problems to keep track of an approximate chiral symmetry
in a regularised system, such that the fermion mass is far below the cutoff. In a broader
framework, this hierarchy problem raises the question why hadron masses are far below
the Planck scale, and therefore why we do not just consist of gluons.

In Ref. [37] we studied the question if this problem could be solved (qualitatively) in a
brane world. As a toy model, our target theory was the 2d Gross-Neveu model [38] with
the (continuum) action

S[Ψ̄,Ψ] =

∫
d2x
[
Ψ̄γµ∂µΨ− g

2N
(Ψ̄Ψ)2

]
, (3.33)

where we suppress the flavour index 1 . . . N . It has a discrete chiral Z(2) symmetry

(Ψ̄L,ΨL)→ ±(Ψ̄L,ΨL) , (Ψ̄R,ΨR)→ ∓(Ψ̄R,ΨR) (3.34)

22A conceivable alternative might be the formulation on a “fuzzy sphere” [35]. However, even simula-
tions of models without fermions [36] show that it is not obvious to recover the desired continuum limit
in these formulations.

23In the light of the properties mentioned in the last paragraph of Subsection 3.4, the staggered fermion
formulation cannot really be considered a solution to this problem either.
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(the chiral components are defined in eq. (3.11)). With an auxiliary scalar field Φ the
action (3.33) is equivalent to

S[Ψ̄,Ψ,Φ] =

∫
d2x
[
Ψ̄γµ∂µΨ− ΦΨ̄Ψ +

N

2g
Φ2
]
, (3.35)

as we see by integrating out the field Φ. The sign of Φ flips under a Z(2) chiral transfor-
mation (3.34).

In the limit N → ∞, Φ freezes to a constant [38], and Ψ̄,Ψ can be integrated out.
The resulting fermion determinant gives rise to an effective potential,∫

DΨ̄DΨ e−S[Ψ̄,Ψ,Φ] = e−N ·V ·Veff (Φ) . (3.36)

In a large volume V , the minima ±Φ0 of Veff obey the gap equation

1

g
=

1

π

∫ Λ2

0

dk
k

k2 + Φ2
0

. (3.37)

At weak coupling g � 1 we are dealing with a cutoff Λ2 � Φ0 and

m = Φ0 = Λ2 e
−π/g (3.38)

represents the fermion mass, which is generated by the spontaneous breaking of the Z(2)
symmetry (3.34). The exponent in eq. (3.38) expresses asymptotic freedom.

Let us proceed to three dimensions, where the action

S[Ψ̄,Ψ]=

∫
d3x
[
Ψ̄γµ∂µΨ + Ψ̄γ3∂3Ψ− G

2N
(Ψ̄Ψ)2

]
, (µ = 1, 2) (3.39)

still has a Z(2) symmetry,

(Ψ̄L,ΨL)|(�x,x3) → ±(Ψ̄L,ΨL)|(�x,−x3) ,

(Ψ̄R,ΨR)|(�x,x3) → ∓(Ψ̄R,ΨR)|(�x,−x3) , (3.40)

which turns into the discrete chiral symmetry (3.34) after dimensional reduction. The 3d
gap equation reads

1

G
=

1

(2π)3

∫
d3k

2

k2 + Φ2
0

, (3.41)

and for a cutoff Λ3 � Φ0 one identifies a critical coupling Gc = π2/Λ3. At G > Gc we are
in a phase of broken Z(2) symmetry with

Φ0 = 2π
( 1

Gc
− 1

G

)
, (3.42)

whereas weak coupling (G ≤ Gc) corresponds to a symmetric phase (Φ0 = 0).
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Canonical dimensional reduction from 3 to 2 dimensions works in the usual way if we
start from the 3d symmetric phase, and it leads to light 2d fermions [37]. However, this
is not satisfactory in view of our motivation: for instance a non-perturbative treatment
at finite N (on the lattice) should not start from the symmetric phase, because this just
shifts the problem of fine tuning to d = 3. Therefore we focus on dimensional reduction
from the broken phase.

We denote the (periodicity) extent of the third direction by β, and ξ = 1/m is the
correlation length. Starting from the 3d broken phase, the limit lim

β→0 β/ξ = 2 ln(1 +
√

2)
does not provide light fermions. Hence we proceed differently and generate a light 2d
fermion as the k3 = 0 mode on a brane. For the latter we make the ansatz Φ(x3) =
Φ0 tgh(Φ0x3), which is inspired by Refs. [39]. We choose x2 as the time direction, hence
the Hamiltonian reads

Ĥ = γ2[γ1∂1 + γ3∂3 − Φ(x3)] . (3.43)

The ansatz Ψ(x3)e
ik1x1e−iEt (and the chiral representation for γi) reveals one localised

eigenstate of Ĥ,

Ψ0(x3) =

√
Φ0

2

(
0

cosh−1(Φ0x3)

)
(3.44)

with energy E0 = −k1 > 0, i.e. a left-mover. (On an anti-brane −Φ(x3) one obtains a
right-mover with E0 = k1 > 0 and exchanged components in Ψ0(x3)).

In addition there are bulk states (not localised in x3),

Ψk3(x3) =
eik3x3√

2E(E + k1)

(
i(E + k1)

Φ0tgh(Φ0x3)− ik3

)
(3.45)

with E = ±
√
�k2 + Φ2

0, which form together with Ψ0 an orthonormal basis for the 1-
particle Hilbert space.

To verify the consistency of the brane profile we have to consider the chiral condensate
−Ψ̄Ψ. Ψ0 does not contribute to it, and if we sum up the bulk contributions of E < 0 we
reproduce exactly Φ(x3), which confirms the self-consistency of this single brane world.

In addition we are free to fill some of the Ψ0 states. Those with E0 < Φ0 are con-
fined to the (1 + 1)-d world, whereas states with E0 ≥ Φ0 can escape in the 3-direction.
For the low energy observer on the brane this event appears as a fermion number violation.

We now want to include both, ΨL and ΨR, to be localised on a brane and an anti-
brane, and β now denotes their separation. For the corresponding profile we make the
ansatz

Φ(x3) = Φ0(a[tgh+ − tgh−]− 1) ,

tgh± := tgh(aΦ0[x3 ± β/2]) , a ∈ [0, 1] . (3.46)

The ansatz for a bound state with the same form as on single branes,

Ψ0(x3) = c

(
α1 cosh−1(aΦ0[x3 − β/2])
α2 cosh−1(aΦ0[x3 + β/2])

)
, (3.47)
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implies the condition tgh(aΦ0β) = a. Hence the parameter a controls the brane separa-
tion, such that a→ 0 and a→ 1 correspond to β → 0 and β →∞, respectively.

The Dirac equation in this background still has an analytic solution, which is given
by the ansatz (3.47) with

c =
1

2

√
aΦ0

E0(E0 + k1)
, E0 = ±

√
k2

1 +m2 ,

α1 = −i(E0 + k1) , α2 = m =
√

1− a2 Φ0 . (3.48)

The resulting Ψ0(x3) represents a Dirac fermion with components ΨL, ΨR localised on
the brane resp. the anti-brane. For a fast motion to the left (right) we have 0 < E0 

−k1 (+k1), so that the lower (upper) component dominates. This situation is sketched in
Figure 4. The mass m measures the extent of the L,R mixing. The limit a→ 0 does not
provide a light fermion (m = Φ0), but the opposite limit a → 1 achieves this, since the
L,R mixing is suppressed as

m 
 2 Φ0 e
−βΦ0 . (3.49)

Counter-intuitively, large β implies ξ � β and therefore dimensional reduction. A low
energy observer in d = 1 + 1 now perceives a point-like Dirac fermion composed of L−
and R−modes. On the other hand, a high energy observer in d = 2 +1 refers to the scale
Φ0 (the 3d fermion mass) and observes a Dirac fermion with strongly separated L− and
R−constituents.

Also the bulk states can be determined analytically,

Ψk3(x3) =
eik3x3

√
U

(
i(E + k1)[aΦ0tgh− − ik3]

−(Φ0 + ik3)[aΦ0tgh+ − ik3]

)
, (3.50)

U := 2E(E + k1)(k3 + a2Φ2
0) , E = ±

√
k2

1 + k2
3 + Φ2

0 .

Summing up again their E < 0 contributions to −Ψ̄Ψ yields

−G
N

∫
dk3Ψk3Ψ̄k3

∣∣∣
E<0

= Φ(x3) + C , (3.51)

i.e. the desired result up to a term C, which is given explicitly in Ref. [37]. It has to be
cancelled by occupying bound states in Ψ0, which do contribute this time. This requires
all the bound states with energies E0 ≤ EF to be filled. The Fermi energy turns out to
be EF = Φ0, i.e. exactly the threshold energy for the escape into the third dimension.
Hence this brane anti-brane brane world does contain naturally light fermions, but it is
completely packed with them, so its physics is blocked by Pauli’s principle.

Since this brane anti-brane world is not topologically stable, we also checked if the
brane and anti-brane repel or attract each other, which could lead to disastrous scenarios.
However, it turns out that the brane tension energy per fermion does not depend on the
brane separation, so this toy world is indeed stable [37].

Finally we studied the possibility of adding a fermion mass term MΨ̄Ψ to the La-
grangian, so that the Z(2) symmetry is also explicitly broken in d = 3 (which is actually
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realistic for a lattice formulation at finite N). This lifts the degeneracy of the minima
of Veff(Φ). If we still insert the profile (3.46), the condition for −Ψ̄Ψ requires the bound
fermion states to be filled even beyond Φ0, hence in this case there is no stable configu-
ration at all.

One might also start from the symmetric phase and add a mass term to construct a
somehow natural starting point. However, such a mass is simply inherited by the dimen-
sionally reduced model (while the cutoff keeps the same magnitude), hence this does not
solve the hierarchy problem under consideration.

We drop this mass term again and summarise Subsection 3.5 by repeating that the
construction of naturally light fermions is basically successful, but unfortunately this world
does not enjoy any flexibility for physical processes. However, we assumed translation
invariance in the 2d world so far. That symmetry may be broken at sufficiently large
chemical potential, so that the chiral condensate prefers a kink anti-kink pattern, rather
than a constant [40]. This could possibly provide the missing flexibility for a lively brane
world of that kind.

4 Perfect Actions for Lattice Fermions

4.1 Free fermions

In the previous Section we have described the severe conceptual difficulties with the
formulation of fermions on the lattice. We now proceed to the application of the RGT
technique — described in Section 2 — to lattice fermions. This is going to reveal how
the perfect action handles — and solves — the problems of species doubling and chiral
symmetry.

We start with the free fermion and apply immediately the blocking from the contin-
uum (introduced in Subsection 2.2), which is most efficient for analytic calculations. In
analogy to eq. (2.10) we now relate lattice spinor fields Ψ̄x, Ψx to their counterparts in
the continuum,

Ψ̄x ∼
∫
Cx

ddu ψ̄(u) , Ψx ∼
∫
Cx

ddv ψ(v) . (4.1)

This relation is imposed by the RGT, which leads to the perfect lattice action S[Ψ̄,Ψ] for
free lattice fermions,

e−S[Ψ̄,Ψ] =

∫
Dψ̄Dψ e−s[ψ̄,ψ] ×

exp
{
−
∑
xy

[
Ψ̄i
x −

∫
Cx

ddu ψ̄i(u)
]
(R−1)ijxy

[
Ψj
y −

∫
Cy

ddv ψ̄j(v)
]}

, (4.2)

where s[ψ̄, ψ] =
∫
ddu ψ̄(u)[γµ∂µ + m]ψ(u) is the continuum action (cf. eq. (3.19)). On
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Figure 4: We show the brane anti-brane profile (3.46) in the 3-direction of our toy brane
world [37]. The 2-direction is the (Euclidean) time, and the left-handed (right-handed)
fermion moves to the left (right) in the one spatial direction inside the brane world. In
the plot above it does so with a momentum p1 = −4m and below with p1 = 2m, where
m is the fermion mass. The latter arises from the communication between the left- and
right-handed components, which are localised on the brane and anti-brane. As they drift
apart, m decreases exponentially in the distance, hence a low energy observer on the brane
perceives them on top of each other as a point-like Dirac spinor.

the lattice (of spacing a = 1) we arrive at the following perfect action and propagator

S[Ψ̄,Ψ] =
1

(2π)d

∫
B

ddp Ψ̄(−p)G(p)−1Ψ(p) ,

G(p) =
∑
l∈ZZd

Π(p+ 2πl)2

iγµ(pµ + 2πlµ) +m
+R(p) , (4.3)
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where the function Π(p) is defined in eq. (2.11) (also here it could be generalised). This
formula has been computed in various ways [41, 42, 15].24 It incorporates the continuum
propagator, its periodic copies and the blocking term, in full analogy to the perfect action
for free scalars in eq. (2.11).

Let us now discuss the rôle of the blocking term, which we have generalised from the
constant 1/α in the scalar case (eq. (2.5)) to the form Rij

xy. For sure we have to require
R to be local. Thus it cannot disturb the pole structure of G(p). Hence the formulation
is free of doublers, and the dispersion relation25 coincides with the continuum.

In the limit R → 0 we perform a δ-function blocking, as we mentioned for the scalar
fields before. Then the relations (4.1) turn into equations. In this case (or more generally,
whenever {R, γ5} vanishes), G(p)m=0 — and therefore also the Dirac operator D(p)m=0

— anti-commutes exactly with γ5. Then we have chirality, i.e. invariance under the global
transformation (3.14), just as in the continuum. Hence the question arises in which way a
contradiction to the (mathematically rigorous) Nielsen-Ninomiya Theorem [21] is avoided.
The answer is that in this case the Dirac operator in non-local [41, 42]: it does not decay
exponentially, but only as [15]

D(r)m=0 ∝ 1

rd−1
. (4.4)

As soon as we proceed to some non-vanishing, local term R, which obeys

{R, γ5} �= 0 , (4.5)

locality is restored. However, this obviously leads to

{D(p)m=0, γ5} �= 0 , (4.6)

hence we do not have chirality in the standard form (3.14) anymore.
Still, this breaking of the chiral symmetry can only be superficial: we know that the

RGT does not distort any physical properties, hence the chirality of the continuum must
be preserved in the physical observables, despite the relation (4.6), as we emphasised at
numerous occasions [45, 46, 15, 47]. Therefore this must be a specifically harmless anti-
commutator. Indeed it gave the crucial clue for a general criterion for the form of such a
non-vanishing anti-commutator [44], which is still compatible with chiral symmetry in a
lattice modified form [48]. This criterion is now denoted as the Ginsparg-Wilson relation
(since it was already mentioned in Ref. [43]), which we will discuss in Section 7.

We move to coordinate space, where the perfect action for the free fermion is given in
the form

S[Ψ̄,Ψ] =
∑
x,y

Ψ̄xDxyΨy ,

Dxy = (G−1)xy = γµρµ(x− y) + λ(x− y) , (4.7)

i.e. it consists of a vector term plus a scalar term. We consider the local case (4.5), where
ρµ(x− y) and λ(x− y) decay exponentially in the distance |x− y|. For practical purposes

24Later on it turned out that the perfect propagator G(p) was already discussed in the Ref. [43].
However, that work was forgotten until it was accidentally re-discovered by P. Hasenfratz in 1997 [44].

25We repeat that one always considers the branch with the lowest energy, cf. Subsection 2.2.
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r ρ1(r) λ(r)

(0, 0, 0, 0) 0 1.852720547165511
(1, 0, 0, 0) 0.1368467943177540 −0.060757866428667176
(1, 1, 0, 0) 0.032077284302446526 −0.030036032105554878
(1, 1, 1, 0) 0.011058131255574036 −0.015967620416694967
(1, 1, 1, 1) 0.0047489906005042248 −0.0084268119917885868

Table 1: The couplings of the free, massless HF with the parameterisation of eq. (4.9).
Note that ρµ(r) is anti-symmetric in rµ and symmetric in all other components rν , while
λ(r) is symmetric in all directions.

we need a truncation in these couplings, and we follow again the scheme of Section 2: we
first optimise R, for the case Rij

xy = ρ δxyδ
ij. An analytic calculation in d = 1 suggests the

choice

ρ(m) =
em −m− 1

m2
. (4.8)

Only for this form of ρ(m) the 1d couplings are limited to nearest neighbour sites, i.e.
they take the structure of DW. In d ≥ 2 couplings over all distances are inevitable, but
the choice (4.8) still provides practically optimal locality, i.e. optimally fast exponential
decays of the functions ρµ(x− y) and λ(x− y); this is illustrated in Ref. [15].

As a truncation scheme, we computed for this function ρ(m) the couplings of a perfect
action in a periodic 34 lattice, and applied these couplings in larger volumes [49]. This
yields the free hypercube fermion (HF), which still has the structure of eq. (4.7), but now
with strictly limited supports for the ingredients to the Dirac operator,

DHF,xy = γµρµ(x− y) + λ(x− y) ,
supp[ρµ(x− y)], supp[λ(x− y)] ⊂

{
x, y

∣∣∣ |xµ − yµ| ≤ 1 , ∀µ
}
. (4.9)

Tables for the explicit couplings for such HFs at various masses are given in Ref. [49]; in
Table 1 we display here the HF couplings at m = 0 to an extended precision of 16 digits.

After truncation, the scaling behaviour is still by far superior to the Wilson fermion,
and also to the so-called D234 fermion [50], which is improved to the leading order in the
lattice spacing, following Symanzik’s program. A comparison of the dispersion relations at
mass m = 0 and 1 is shown in Figure 5. We see a striking improvement for the truncated
perfect action.

This trend is also confirmed for the thermodynamic quantities plotted in Figure 6 and
7. The pressure P at finite temperature T is obtained by imposing periodic boundary
conditions in the time direction over Nt lattice points. The corresponding data in Figure
6 are evaluated with the formula

P

T 4
=

N4
t

(2π)3

∫ π

−π
d3p

[ 1

Nt

Nt∑
n=1

lnD(�p, p4,n)
∣∣∣
p4,n=2πn/Nt

− 1

2π

∫ π

−π
dp4 lnD(�p, p4)

]
. (4.10)
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Figure 5: On top: The dispersion relation for free, massless lattice fermions in d = 4
for spatial momenta �p ∝ (1, 1, 0) (as an example). For the perfect fermion the dispersion
coincides with the exact dispersion in the continuum, and the HF dispersion follows it
closely. The Wilson fermion deviates strongly at increasing momenta, while the Symanzik
improved D234 fermion behaves well up to |�p | ≈ 1, before it hits a doubler coming down
from higher energy.
Below: Dispersion relation for the free HF at mass m = 1. Here we show the energy E
for various directions of the momentum �p (p = |�p |) to illustrate that they all follow closely
the continuum dispersion over a sizable part of the Brillouin zone.

Note that in this case we find a deviation from the continuum value P/T 4 = 7π2/180 even
for the perfect action, because its perfection is designed specifically for zero temperature.

Figure 7 deals with the inclusion of the chemical potential µ. This is achieved by
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Figure 6: The ratio between pressure and (temperature)4 for various types of free lattice
fermions, compared to the Stefan-Boltzmann law in the continuum. The RGT improved
actions converge much faster to this value for decreasing temperature (increasing Nt) than
the Wilson action or the D234 action.

the prescription worked out in Refs. [51]. The key observation is that starting from any
prefect lattice action at µ = 0 and performing consistently the substitutions

Ψ̄(�x, x4)→ e−µx4Ψ̄(�x, x4) , Ψ(�x, x4)→ eµx4Ψ(�x, x4) , (4.11)

one obtains in fact a perfect action at finite µ. (Also classical perfection is preserved
under these substitutions.) In our perfect propagator in momentum space (4.3), this
substitution can be implemented by shifting p4 → p4 + iµ. Then one obtains the pressure
and the baryon density (one third of the fermion density) at T = 0 as

P (µ) =
1

(2π)4

∫
B

d4p
[
ln detD(�p, p4)− ln detD(�p, p4 + iµ)

]
,

nB =
1

3

∂

∂µ
P (µ) . (4.12)

The scaling is then measured by the deviations from the continuum values P/µ4 = 1/(6π2)
and nB/µ

3 = 2/(9π2). Lattice artifacts are amplified for increasing chemical potential µ.
We see that they remain modest over a broad range (i.e. up to coarse lattices) for the
truncated perfect action, in contrast to the Wilson fermion and the D234 fermion. For
large µ the fermion density turns into a constant plateau for the usual lattice fermion for-
mulations, and one might believe that this is inevitable due to Pauli’s principle. However,
the height of this plateau depends on the coupling range of the lattice Dirac operator,
and it rises to infinity for the (untruncated) perfect action — hence the RGT is able to
solve this problem as well [51].
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Figure 7: The ratios P/µ4 and nB/µ
3, for the pressure P , the baryon density nB and

the chemical potential µ, at zero temperature, for various types of free massless lattice
fermions. For the truncated perfect HF these ratios converge very fast to the continuum
values as µ decreases, in contrast to the Wilson fermion and the D234 fermion.

4.2 Perfect staggered fermions

As we pointed out in the previous Subsection, the full standard chiral symmetry cannot
be preserved in a perfect and local lattice action. On the other hand, staggered fermions
only have a remnant chiral symmetry — see Subsection 3.4 — which raises the question
if that symmetry can persist in a perfect and local staggered fermion formulation. In
fact, this U(1)o ⊗ U(1)e symmetry can be preserved under the RGT, if the block vari-
ables are constructed such that they do not mix any of the 2d tastes. A corresponding
blocking scheme with overlapping blocks was first proposed in Ref. [52]. By its itera-
tion we constructed a perfect action for free staggered fermions [42], which does fulfil the
U(1)o ⊗ U(1)e symmetry exactly, and which is manifestly local — the Nielsen Ninomiya
Theorem does not exclude this remnant chiral symmetry.26 In d = 2 the corresponding
free perfect action for the four massless tastes reads

S[χ̄, χ] =
∑
x,y

4∑
i,j=1

χ̄ix[α
−1]ij(x− y)χjy , (4.13)

α̃(p) = d(−p)α(p)d(p) =

⎛
⎜⎜⎝

0 α̃1(p) α̃2(p) 0
α̃1(p) 0 0 −α̃2(p)
α̃2(p) 0 0 α̃1(p)

0 α̃1(p) α̃2(p) 0

⎞
⎟⎟⎠

α̃µ(p) = 2
∑
l∈ZZ2

pµ + 2πlµ
(p+ 2πl)2

(−1)lµ
2∏

ν=1

( sin(pν/2)

pν/2 + πlν

)2

+ c sin(kµ/2) ,

26Another method, where different tastes contribute to a block variable, has been applied recently [53]
to study the fourth root approach (cf. Subsection 3.4). That RGT drives the rooted staggered fermion
to a sensible perfect action. However, the same is true for instance for the SLAC fermion [54], though
the latter is incorrect under gauge interaction [24], as we mentioned before (in Subsection 3.4).
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where d(p) is a matrix of phase factors, which arrange for the shifts to the appropriate
lattice sites (it is given explicitly in Ref. [55], which denotes it as D(p)1/2). c is an
arbitrary (real) RGT parameter, which we tuned again for optimal locality. In this case,
the analytic optimisation in d = 1 yields c = 1/2. Ref. [56] discusses the extension of this
action to d = 4, as well as the generalisation to a finite fermion mass m, which fills in
diagonal elements in the above matrix and changes the locality optimal RGT term.

Also this result can be derived efficiently by blocking from the continuum, if the
overlapping integration cells are treated carefully. That method also allows for a blocking
of non-compact gauge fields, which is consistent in the sense that the link variables never
connect fermionic variables on the same sublattice [56].

4.3 Application to the Gross-Neveu model

We return to the Gross-Neveu model that we described previously in Subsection 3.5. More
precisely we now consider its lattice formulation in terms of staggered fermions. Again we
replace the 4-Fermi term by a Yukawa coupling27 to an auxiliary scalar field φ. Since φ is
taste-free, it is adequate to put its lattice variables on the cell centres z of the fermionic
lattice [57]. The standard formulation then couples φz in the same manner to the 2d taste
variables located on the corners of the cell with centre z.

As in Subsection 3.5 we considered the large N limit, where the field φz freezes to a
constant φ(0). Then the fermions can be integrated out, so that the RGT can be computed
explicitly. In Ref. [55] we derived the perfect staggered fermion action for this case. To
analyse the scaling behaviour, we evaluated two quantities of dimension mass for the
staggered standard action and for the perfect action:

• First we computed the chiral condensate 〈χχ̄〉. For the perfect action S[χ̄, χ, φ] this
was achieved by a perturbation

Sε[χ̄, χ, φ] = S[χ̄, χ, φ] + εX[χ̄, χ, φ] . (4.14)

The operator X has the standard lattice form
∑

x χxχ̄x, and its perfect lattice form
was computed again by the RGT technique, i.e. this perturbation was included to
O(ε) in the transformation.

• From the gap equation (analogous to the continuum eq. (3.37))

2φ(0) =
g

(2π)2

∫
B

d2p ln detM(p, φ(0)) (4.15)

we extracted the fermion mass mf , which is dynamically generated by the breaking
of the discrete, remnant chiral symmetry. M is the fermion determinant (see eq.
(3.18)), either for the standard formulation or for the perfect formulation.

In this context, we also considered the asymptotic scaling by investigating how
closely φ(0)(1/g) follows an exponential behaviour. (This behaviour is known in

27By a Yukawa term we mean a product of a bosonic field and fermionic fields ψ̄, ψ that contributes
to the Lagrangian, as it also appears in the Standard Model.
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the continuum version of this model, see eq. (3.38), and it characterises asymptotic
freedom.) Theoretically, asymptotic scaling does not need to be improved by the
perfect action, since it is in principle independent from the scaling itself. Never-
theless we observed that it is significantly improved as well [55], in agreement with
similar observations for truncated classically perfect actions for SU(3) gauge theory
[58].

While these calculations involve lengthy expressions, the outcome for the (dimension-
less) ratio of these two terms, which represents our scaling quantity, takes a simple form,

〈χχ̄〉
mf

∣∣∣
standard

=
2 sinh(amf/2)

amf
,

〈χχ̄〉
mf

∣∣∣
perfect

= 1 . (4.16)

Hence the perfect scaling is indeed confirmed, i.e. for the perfect action the considered
scaling ratio takes the exact continuum value at any lattice spacing a. In contrast, for the
standard action this ratio is only obtained in the limit a → 0. We add that in this case
also the classically perfect action scales perfectly; artifacts are switched off by the large
N limit [55].

4.4 Exact supersymmetry on the lattice

Since the RGT technique enables us to transfer continuum properties to the lattice without
any damage in the physical observables, this procedure can in principle also preserve
exact supersymmetry (SUSY) on the lattice [59]. This may appear surprising, because
continuous SUSY seems to contradict the lattice structure. For a review which presents
a variety of approaches to handle SUSY on the lattice we refer to Ref. [60], and examples
for further efforts to construct exact lattice SUSY are collected in Refs. [61].

For an illustration of the perfect action treatment of SUSY, we considered the simplest
supersymmetric model [62]: it is given in d = 2 by the Lagrangian

L[ψ, ϕ] = ψ̄γµ∂µψ + ∂µϕ∂µϕ , (4.17)

with a Majorana spinor ψ and a neutral scalar field ϕ. The action is invariant under
simultaneous transformations with

δψ = −γµ∂µϕ ε , δϕ = ε̄ ψ , (4.18)

where ε is a two-component Grassmann vector. The SUSY transformation generators
form a closed algebra with the translation operators,

[δ1, δ2]ϕ = (ε̄1γµε2 − ε̄2γµε1)∂µϕ . (4.19)

By blocking from the continuum we transfer this model to the unit lattice and arrive at

S[Ψ,Φ] =
1

(2π)2

∫
B

d2p
[
Ψ̄(−p)G(p)−1Ψ(p) + Φ(−p)Gs(p)

−1Φ(p)
]
,

Gs(p) =
∑
l∈ZZ2

Π(p+ 2πl)2

(pµ + 2πlµ)2
+Rs(p) , (4.20)
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where G is the perfect fermion propagator (4.3), and Gs is a perfect scalar propagator
(an obvious generalisation of the form given in eq. (2.11)). If we perform the SUSY
transformations (4.18) in the continuum, they are carried over to the blocked lattice
fields,

δΨx = −γµ
∫
Cx

∂µϕ(u)du ε , δΦx = ε̄

∫
Cx

ψ(u)du , (4.21)

which — under these transformations — obey exact SUSY too.
In particular, we may treat the term jµ = γµϕ as a continuum current. As a general

prescription we block a continuum current to the lattice by integrating its flux over the
face fµ,x between adjacent lattice cells [45],

Jµ,x =

∫
fµ,x

dd−1y jµ(y) . (4.22)

This blocking scheme is illustrated in Figure 8 on the right-hand side. The lattice diver-
gence of the blocked current is then equal to the continuum divergence integrated over
the corresponding lattice cells,

δJx =
∑
µ

(Jµ,x+µ̂/2 − Jµ,x−µ̂/2) =

∫
Cx

ddy ∂µjµ(y) . (4.23)

In this way, the transformations (4.21) can be expressed solely in terms of lattice quanti-
ties, i.e. the lattice current and the blocked lattice field [59]. Accordingly, the algebraic
relation (4.19) is now precisely reflected in terms of lattice quantities as

[δ1, δ2]Φ = (ε̄1∇µJµε2 − ε̄2∇µJµε1) , (4.24)

where ∇µ is the standard (symmetric) lattice derivative.
These properties also extend to the free 2d Wess-Zumino model, which involves an

additional scalar field that balances the fermionic and bosonic degrees of freedom, and to
the free 4d Wess-Zumino model, where further field components are added.

In terms of classically perfect fields, the continuum SUSY transformations can be
carried over to the lattice also in the interacting case. However, the explicit construction
of the corresponding lattice terms is a challenging numerical project, which has not been
carried out so far.

Still the lattice is hostile by its nature towards SUSY. In order to simulate SUSY
models nevertheless, also the discrete formulation on a fuzzy sphere — that we already
mentioned in Subsection 3.5 — should be considered [63]. For corresponding simulations
we refer to Refs. [64, 65].

5 Perfect Lattice Perturbation Theory

On the level of analytical calculations, the construction of perfect lattice actions can be
extended from the free fields to perturbative interactions. As a first example, we already
sketched the computation of a perfect chiral condensate in Subsection 4.3.
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G(p)

1/(ip+m) Aµ J µ

Π(p)

Π(p)

Figure 8: A cartoon of the schemes that we used to block various quantities from the
continuum: matter fields are blocked to the lattice by integrating the continuum field in
a lattice cell, with the convolution function Π. The perfect propagator G is obtained by
integrating all continuum propagators between points in the corresponding lattice cells, as
shown on the left (the formulae are given in Subsections 2.2, 4.1 and 4.2). In the centre
we illustrate the blocking for gauge fields, to be discussed in detail in Subsection 5.3. Here
we integrate all straight parallel transporters between continuum points, which have the
same relative position in adjacent lattice cells. At last, a perfect current is obtained by
integrating the continuum flux through the face between adjacent lattice cells (it will be
used again Subsection 5.3).

The method of blocking from the continuum is still applicable and highly efficient
for this purpose. One now blocks various fields in such a way that all the continuum
propagators between the continuum points in the lattice cells are integrated over. In the
case of gauge interactions, also the gauge fields undergo a blocking procedure, which can
be made explicit most conveniently for non-compact gauge fields, see Subsections 5.3 and
5.4, and for illustrations Figures 8 and 10.

5.1 The anharmonic oscillator

As a toy model from quantum mechanics, we considered the anharmonic oscillator [66].
We write its action in field theoretic notation as

s[ϕ] =

∫
dt
[ 1

2
ϕ̇(t)2 +

m2

2
ϕ(t)2 + λϕ(t)4

]
, (ϕ(t) ∈ RI ) . (5.1)

As in the case of the quantum rotor (discussed in Refs. [16, 18] and reviewed in Subsection
2.3), we use the ratio between the first two energy gaps, ∆E1 = E1 − E0 and ∆E2 =
E2 − E0, as a scaling quantity. In continuum perturbation theory, the corresponding
expansion can be found at many places in the literature, e.g. in Ref. [67]. In terms of the
dimensionless interaction parameter λ̄ := λ/m3 one obtains

∆E2

∆E1

(λ̄) = 2 + 3λ̄− 189

4
λ̄2 +

7857

8
λ̄3 − 1569069

64
λ̄4 +O(λ̄5) . (5.2)

First we evaluated this ratio to a high precision by Metropolis Monte Carlo simulations
and we compare it to the perturbative results in various orders in Figure 5.1 (above).
The latter approach the correct result only laboriously in a small range for λ̄, even if
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we include the fourth order. This may serve as a caution to be careful in general with
extrapolations to finite interaction strength based on perturbation theory.

2
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Figure 9: Above: The ratio between the leading energy gaps, ∆E2/∆E1, against the per-
turbative predictions. Higher orders do extend the range of the validity of perturbation
theory gradually, but even at fourth order it is still limited to small interaction parameters
(λ̄ <∼ 0.03).
In the plot below we compare simulation results at λ̄ = 0.005 with the standard action and
the O(λ̄) perfect action, for different correlation lengths ξ in lattice units [66].

Next we calculated the perfect lattice action to O(λ̄). We chose the RGT parameter so
that the action at λ̄ = 0 consists of nearest neighbour couplings only. This is possible in
1d field theory (i.e. quantum mechanics) with the parameter given in eq. (2.13). We then
extended the blocking from the continuum to O(λ̄). This generates additional 2-spin and
4-spin terms, which were written down explicitly in momentum space [66]. There inverse
Fourier transform yields a set of couplings that we computed for various parameters m2

up to a coupling distance of two lattice spacings. This truncation is justified because the



CBPF-NF-031/06 41

couplings undergo a fast decay, which speeds up for increasing m2.
Finally we simulated the resulting perturbatively perfect action. For the scaling test,

we fixed λ̄ = 0.005, i.e. a value where Figure 5.1 (above) suggests the validity of first
order perturbation theory. The results at various correlation lengths are compared to the
outcome with the standard action in Figure 5.1 (below). At a correlation length of ξ = 5
(in lattice units), both actions perform very well, and below 2.5 both suffer from similar
scaling artifacts. In between, there appears a window where the perturbatively perfect
action seems superior, as we observed at ξ = 10/3.

5.2 The Yukawa term

We computed a perturbatively perfect action in the framework of the Gross-Neveu model
with staggered fermions, cf. Subsections 4.2 and 4.3, but now for four tastes. In this
case (without a large N limit), the auxiliary scalar field Φ is not constant anymore, but
we assumed it to be small. More precisely, we considered the first order in Φ (which
absorbs the Yukawa coupling). In this approximation — which describes the system at
high energy — the perfect staggered action takes the form

S[χ̄, χ,Φ] =
∑
xy,ij

χ̄ix[α
−1]ijxyχ

j
y +

1

2

∑
z

Φ2
z

+
∑
xyz,ij

χ̄ixσ
ij(x− z, y − z)χjyΦz , (5.3)

where x, y run over the lattice which hosts the fermionic degrees of freedom, whereas z
runs over the plaquette centres, and i, j = 1 . . . 4. If we take the spacing between fermion
components of the same taste as the unit, z is spaced by 1/2. In momentum space we
write the interaction term as χ̄(−p)σ(p, q)χ(−q)Φ(p + q). In the taste space, the shifted
kernel σ̃ is a 4×4 matrix, which only couples tastes of the same sublattice. To be explicit,
its first order perturbatively perfect form reads [55] (we use the notation of eq. (4.13))

σ̃(p, q) = d(p)α(p)σ(p, q)α(−q)d(−q) =

⎛
⎜⎜⎝

σ̃0 0 0 −σ̃3

0 σ̃0 σ̃3 0
0 −σ̃3 σ̃0 0
σ̃3 0 0 −σ̃0

⎞
⎟⎟⎠ , (5.4)

with the matrix elements

σ̃0(p, q) =
∑

l,m∈ZZ2

∑
n

p
(l,n)
µ q

(m,n)
µ

p(l,n) 2q(m,n) 2

×
2∏

ν=1

(−1)lν+mν+nν
p̂ν q̂ν(p̂+ q)ν

p
(l,n)
ν q

(m,n)
ν [p

(l,n)
ν + q

(m,n)
ν ]

,

σ̃3(p, q) =
∑

l,m∈ZZ2

∑
n

εµρp
(l,n)
µ q

(m,n)
ρ

p(l,n) 2q(m,n) 2

×
2∏

ν=1

(−1)lν
p̂ν q̂ν(p̂+ q)ν

p
(l,n)
ν q

(m,n)
ν [p

(l,n)
ν + q

(m,n)
ν ]

, (5.5)
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where pl,nµ = pµ + 4πlµ + 2πnµ, and nµ ∈ {0, 1}. Note that these matrix elements are 4π
periodic, in accordance with the central positions of the auxiliary scalar variables.

This Yukawa term identifies the direction of a “renormalised trajectory” (a line of per-
fect actions in parameter space) emanating from the critical surface.28 The corresponding
couplings in coordinate space can be evaluated numerically, and they have been applied
— in a truncated form — in lattice simulations [68].

5.3 Perfect gauge actions and the axial anomaly

The attempts to formulate non-local lattice fermions with a finite gap at the edge of the
Brillouin zone were unsuccessful; we mentioned the SLAC fermion in Subsection 3.4. A
refined approach was presented by C. Rebbi, who formulated a non-local fermion with
divergences at these edges instead [69]. However, the Rebbi fermion does not reproduce
a non-zero axial anomaly, as A. Pelissetto pointed out [70].

If we construct the perfect fermion for a δ-function blocking RGT, we obtain a non-
locality of the same type as the Rebbi fermion [41, 42], hence we wondered what happens
to the axial anomaly in that case.

Once we deal with the δ-function blocking, the relations (4.1) turn into equations. In
momentum space they read

Ψ̄(p) =
∑
l∈ZZd

Π(p+ 2πl)ψ̄(p) , Ψ(p) =
∑
l∈ZZd

Π(p+ 2πl)ψ(p) . (5.6)

Analogously, we now block an Abelian gauge field Aµ(x) from the continuum to construct
the non-compact link variable [45, 15]

Aµ,x =

∫
Cx−µ̂/2

ddu (1 + uµ − xµ)Aµ(u) +

∫
Cx+µ̂/2

ddv (1− vµ + xµ)Aµ(v) . (5.7)

Here x is a link centre on a unit lattice, so that we integrate over adjacent lattice cells.
This blocking scheme is illustrated in the centre of Figure 8. A gauge transformation in
the continuum, Aµ → Aµ + ∂µλ, induces exactly a lattice gauge transformation

Aµ,x → Aµ,x + Λx+µ̂/2 − Λx−µ̂/2 , Λx =

∫
Cx

ddy λ(y) , (5.8)

which shows that this lattice gauge field is covariant. In momentum space it takes the
form

Aµ(p) =
∑
l∈ZZd

Πµ(p+ 2πl)(−1)lµ Aµ(p + 2πl) ,

where Πµ(p) :=
p̂µ
pµ

Π(p) (5.9)

28The endpoint of this trajectory is the free perfect action that we identified before, due to the asymp-
totic freedom of the Gross-Neveu model.
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is anti-periodic over the Brillouin zone in the µ-direction (and periodic in the other di-
rections). It is convenient to start from a continuum action in the Landau gauge, which
leads to the perfect lattice gauge action [15]

S[A] =
1

(2π)d

∫
B

ddp
1

2
Aµ(−p)G(g)

µ (p)−1Aµ(p) ,

G(g)
µ (p) =

∑
l∈ZZd

Πµ(p+ 2πl)2

(p+ 2πl)2
+R(g)(p) , (5.10)

where the term R(g) smears the RGT in analogy to the treatment of the matter fields in
eqs. (2.5) and (4.2). As a remarkable property, the specific choice

R(g)(p) =
1

6
− 1

72
p̂2
µ (5.11)

yields for an Abelian gauge field in d = 2 the standard plaquette action, which is therefore
perfect already [15]. This property is similar to the standard lattice scalar and the Wilson
fermion in d = 1, which are also perfect in the non-interacting case, as the choice of suitable
RGT parameters confirms (this was pointed out previously in Subsections 2.2 and 4.1).
Again we use this property as a tool to optimise the RGT in view of locality also in higher
dimensions.

In Ref. [45] we considered a more general perfect lattice gauge action, without previous
gauge fixing in the continuum. There we also proceeded to perturbation theory to the
first order in the gauge coupling g. In this case, the blocking RGT of the fermion field is
extended from eq. (5.6) to the form

Ψi(p) =
∑
l∈ZZd

Π(p+ 2πl)ψi(p+ 2πl) +
g

(2π)d

∑
l∈ZZd

∫
ddq

× Kµ(p+ 2πl, q + 2πl)Acµ(p− q)λcijψj(q + 2πl) , (5.12)

and correspondingly for Ψ̄i. Eq. (5.12) refers to a SU(N) (or U(N)) gauge field, where
λc are Hermitian generators. However, in the current Subsection we will deal with the
Abelian gauge field, where the last factor simplifies to Aµ(p− q)ψ(q + 2πl).

The kernel Kµ has to be regular, and gauge covariance requires

(pµ − qµ)Kµ(p, q) = Π(p− q)Π(q)− Π(p) . (5.13)

To this order, the perfect action includes — in addition to the pure fermion and pure
gauge action — an interaction term of the structure

V [Ψ̄,Ψ, A] =
g

(2π)2d

∫
B2

ddp ddq Ψ̄i(−p)Vµ(p, q)Acµ(p− q)λcijΨj(q) . (5.14)

The explicit form of Vµ(p, q) is rather lengthy; it is written down for the gauge group U(1)
in Ref. [45], and for QCD in Ref. [15]. Gauge invariance requires that the vertex function
Vµ obeys the lattice Ward identity

(p̂− q)µVµ(p, q) = G(q)−1 −G(p)−1 , (5.15)
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where G is the perfect fermion propagator (4.3).
To investigate the axial anomaly, we now block the axial continuum current

j5
µ(p) =

1

(2π)d

∫
ddq ψ̄(p− q)γµγ5ψ(q) (5.16)

to the lattice. Following the prescription (4.22) we obtain a lattice current J5
µ,x. In

momentum space it takes the form

J5
µ,x(p) =

∑
l∈ZZd

j5
µ(p+ 2πl)Π¬µ(p+ 2πl)(−1)lµ , Π¬µ(p) :=

∏
ν �=µ

p̂ν
pν

. (5.17)

In the Schwinger model (two dimensional QED [71]), the continuum current in a gauge
background is known to obey the relation

〈j5
µ(p)〉A =

g

π

pµ
p2
ενρpνAρ(p) , (5.18)

which can be derived for instance with dimensional regularisation. We integrate out the
continuum gauge field Aµ and take the lattice divergence of the current J5

µ,x in the perfect
lattice background, which leads to

〈p̂µJ5
µ(p)〉A =

g

π

∑
l∈ZZ2

ενρ
pν + 2πlν
(p+ 2πl)2

Π(p+ 2πl)(−1)lρ

× Πρ(p+ 2πl)Gg
ρσ(p)

−1Aσ(p) , (5.19)

where Gg
ρσ(p) is the perfect gauge propagator (without previous gauge fixing in the con-

tinuum it generalises to a tensor). On the other hand, we build the perfect topological
charge density in agreement with the blocking recipe of Subsection 2.3, i.e. we block the
continuum density 1

π
εµν∂µAν to the lattice. We find that it coincides precisely with the

lattice divergence of the perfect current [45],

Qx :=
1

π

∫
Cx

d2y εµν∂µAν(y) !
= 〈δJ5

x〉A . (5.20)

Therefore the perfect lattice action does indeed reproduce the perturbative axial anomaly
correctly, at any lattice spacing.

Hence the perfect fermion constructed with a δ-function RGT is the only non-local
lattice fermion that did not run into conceptual trouble. It represents therefore the
only conceptually successful implementation of chiral symmetry in its standard form on
the lattice. For practical purposes, however, one prefers the local form, which is still
compatible with a modified chiral symmetry, as we will discuss in Section 7.

5.4 The perfect quark gluon vertex function

The kernel function Kµ in the fermionic blocking scheme to the first order in the gauge
coupling is submit to the constraint (5.13), and it is difficult to find explicit solutions for
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it. This issue is discussed in Ref. [49]. In the small momentum expansion one obtains
unambiguously to the leading orders

Kµ(p, q) 
 qµ
12

[
1 +

1

120

{
p2
µ − 4 [ pµ(pµ − qµ) + q2

µ ] − 5 [ �p ( �p− �q ) + �q 2 ]
}]

, (5.21)

where p = (pµ, �p ), q = (qµ, �q ). We also discovered two full solutions, which can be
evaluated numerically. We display here one of them, denoted as the “recursive kernel”,
in a corrected form (unfortunately this formula contains an error in Ref. [49]),

Kµ(p, q) =
1

4

∑
n≥0

Π(p)

Π(p/2n)
Πµ((p− q)/2n)Π(q/2n+1)

× sin(qµ/2
n+1)Kµ(p/2n+1, q/2n+1)

Kµ(p, q) =
∑

�l∈{0,1}d−1

[∏
ν �=µ

cos(pν + πlν/2) cos(qν − πlν/2)

(1 +�l 2)

]
, (5.22)

where �l excludes the µ-component.
Along with eq. (5.14) this provides a fully explicit — though somewhat complicated —

form of the perfect quark gluon vertex function [15]. We recall that its gauge invariance
is guaranteed by the Ward identity (5.15).

We worked out a truncated version of the quark gluon vertex function in coordinate
space, which we applied in simulations to be addressed in Subsection 6.4. Its general
form involves terms in the full Clifford algebra. It simplifies drastically if we map the
system down to d = 2 by dimensional reduction. For that case we gave explicit couplings,
including the perturbatively perfect clover term, at various fermion masses in Ref. [49].

6 The Hypercube Fermion

6.1 Construction of the Hypercube Fermion

In Subsection 4.1 we have already described the truncation of the perfect free fermion
to a hypercube fermion (HF) by means of periodic boundary conditions. We gave the
couplings for the massless fermion in Table 1. We have also seen that it has excellent
scaling properties, and we will illustrate in Section 7 that its approximation to chirality
is excellent as well.

The numerical treatment of all couplings inside a unit hypercube is clearly more com-
plicated than the effort for standard formulations (Wilson or staggered), which only deal
with nearest neighbour couplings. However, simulations with this generalised form are
feasible and have been carried out. To this end, the first question was how to handle the
link variables to include the gauge interaction. If the spinors Ψ̄x and Ψy are coupled in
some lattice action, we can arrange for gauge invariance of the corresponding term by
connecting these spinors over a lattice path, where the compact link variables are multi-
plied [27] (cf. Subsection 3.4). The way to do so is ambiguous. The perfect or classically
perfect actions do actually determine the couplings to these lattice paths (once the RGT
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Figure 10: Overview over the construction scheme of the perfect quark gluon vertex func-
tion: the lattice fermion fields Ψ̄ and Ψ and the gluon field Aµ are obtained by blocking
from the continuum, cf. Figure 8. For a given point (as the one marked by the central
dot in this Figure) we then integrate the continuum propagators to all continuum fields
involved in this blocking process.

is chosen). But their evaluation is tedious, and a truncation of the path length is required,
which is again arbitrary.

The simplest approach just includes connections over the shortest lattice paths. For
most connections in a hypercube there are several shortest paths, which are then all
included with the same weight and averaged over. In this way, we introduce “hyperlinks”
which connect a lattice site x to all the 3d sites in a common unit hypercube with x. An
illustration of 2d and 3d hyperlinks, U

(2)
µ+ν and U

(3)
µ+ν+ρ , is given in Figure 11. Regarding the

numerical implementation, it is favourable to construct these hyperlinks in a given gauge
configuration recursively, i.e. to start with the 2d hyperlinks (over plaquette diagonals),
which then also serve as building blocks for the 3d hyperlinks, from which one arrives
conveniently at the 4d hyperlinks [72].

In Ref. [72] we discussed a suitable preconditioning method for the HF. The goal is to
divide the lattice into sublattices such that a block structure in the lattice Dirac operator
Dx,y(U) is generated. This block structure allows for the transition to an equivalent Dirac
operator with a better condition number. This means that the ratio between the maximal
and minimal eigenvalue of D†D decreases, and this ratio is essential for the computational
effort in a simulation. Moreover, the transformed operator is block diagonal, which also
simplifies its inversion.

For the Wilson fermion, this method is usually applied with two sublattices, which do
not contain nearest neighbour sites, as distinguished by the sign term (3.30). It is known
as even-odd (or red-black) preconditioning. For the HF a set of 2d sublattices is suitable,
which we denoted as “rainbow preconditioning”.29 In fact, it yields gain factors between

29This approach was also discussed for the hypercube scalar in Ref. [6].
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U (x)µ

U (x+ )ν µU (x)µ+ν

(2)

U (x)µ+ν+ρ

(3)

(1)

(1)

U (x+    )
ρ

µ+ν(1)

Figure 11: A 3d illustration for the construction of hyperlinks in the gauging of a hypercube
fermion.

3 and 4 in typical QCD simulations [72]. (We add that also for Wilson fermions it can be
profitable to deal with a larger set of sublattices, as the locally-lexicographic symmetric
successive overrelaxed preconditioner (ll-SSOR) shows [73].)

6.2 Approximate rotation symmetry

A first simulation of this HF with the simple gauging described above was presented in
Ref. [49]. We set the bare fermion mass to zero and evaluated the dispersion relation for
the pseudoscalar meson with the Wilson plaquette gauge action (see e.g. Refs. [27]), at
β = 5 in a quenched simulation on a lattice of size 63 × 18. The corresponding “speed of
light”

cmeson =

√
E2 −M2

|�p | (6.1)

is shown in Figure 12 and compared to the result for the Wilson fermion. In this formula,
E, M and �p are the energy, mass and 3-momentum of the pseudoscalar meson. The
continuum behaviour, cmeson = 1, is marked by a dotted line. We see that it is approxi-
mated very well for the HF — which leads to cmeson = 1.04(5) — in striking contrast to
the Wilson fermion. This property corresponds to an excellent approximation to Lorentz
symmetry (resp. to Euclidean rotation invariance). However, the meson mass is strongly
renormalised in this case. In lattice units it amounts to M 
 3, hence it can hardly
describe a pion. Of course, we were dealing with a very coarse lattice. Still, this property
calls for a closer look at chiral symmetry, which we will undertake in Section 7.

The HF has been applied successfully in simulations of the Schwinger model [71] with
two flavours, on a 16× 16 lattice at β = 6, 4 and 2 [74]. In these simulations, the gauge
configurations where generated quenched, but the measurements did include the fermion
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Figure 12: The “speed of light” in eq. (6.1) determined from the dispersion relation of
a pseudoscalar meson on the lattice. We see that the continuum relation cmeson = 1 is
approximated very well for the HF, but not for the Wilson fermion [49]. The simulation
was performed quenched with the Wilson gauge action at β = 5.

determinant.30 We used the Wilson plaquette gauge action, which is perfect for pure 2d
U(1) gauge theory (see Subsection 5.3).

First we present another test of the quality of rotation symmetry. Figure 13 shows
the decay of the correlation function

C3(x) = 〈Ψ̄0 σ3Ψ0 · Ψ̄x σ3Ψx〉 (6.2)

against the distance |x|, where x are lattice sites in all directions. We measured this
correlator for the Wilson fermion and for several types of 2d HFs, which are described in
Ref. [74]. For the TP-HF, the fermionic couplings correspond exactly to the description
in Subsection 4.1, whereas the SO-HF is further optimised with respect to the scaling
behaviour. Both variants also include a clover term. This plot shows in addition the
results obtained with the classically perfect action constructed in Ref. [13].

The observation that the HFs and the (far more complicated) classically perfect action
display a much smoother decay of C3 down to short distances |x| approves their good
approximation to rotation symmetry.

30In the recent literature, it became fashionable to denote this kind of simulation simply as “dynamical”,
although the fermion determinant is still treated as constant in the generation of the configurations.
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Figure 13: The isotropic correlation function (6.2) for the Wilson fermion, a fixed point
fermion and two HF versions in the Schwinger model. We see in all cases but the Wilson
fermion a smooth decay, which confirms the good quality of approximate rotation symmetry
down to short distances.

6.3 Spectral properties in the two-flavour Schwinger model

6.3.1 Applications of the hypercube fermion

In Ref. [74] we also measured the dispersion relations for the states, which are analogous
to the pion and the η-meson (a general discussion of these properties of the Schwinger
model can be found in Ref. [75]). Again, for increasing momenta (in lattice units) scaling
errors due to lattice artifacts are enhanced, cf. Subsections 2.2 and 4.1. In Figure 14
we show these dispersions, which are again strongly improved for the classically perfect
action and for the HFs, in particular for the SO-HF. It is remarkable that the latter —
which is still very simple — scales at least as well as the highly involved classically perfect
action of Ref. [13].

6.3.2 Applications of a truncated perfect staggered fermion

In Ref. [76] we constructed with a similar procedure a truncated perfect staggered fermion,
starting from the formulation described in Subsection 4.2. We applied it in Schwinger
model simulations as well, and these simulations were truly dynamical. We designed a
variant of the Hybrid Monte Carlo algorithm [77], which is particularly suitable for this
formulation. It uses a simplified action (the standard staggered fermion action with fat
links) for the Molecular Dynamics, and the full quasi-perfect action in the Metropolis
accept/reject step. This provided a numerically cheap evaluation of the force, along with
a still useful acceptance rate (as expected, the latter decreases at strong gauge coupling,
which corresponds to a large physical volume). Again we used a 16× 16 lattice and the
plaquette gauge action. At β = 3 we found the neat π and η dispersion relations shown in
Figure 15. In the framework of that project, we further investigated the “meson” masses
under variation of the gauge coupling β (the parameters are given in detail in Ref. [76]).
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Figure 14: The dispersion relations for the “pion” and the “η-meson” in the Schwinger
model with various lattice fermion formulations: Wilson fermions (diamonds), the clas-
sically perfect action (filled circles) and three types of HFs, in particular the scaling opti-
mised SO-HF (little empty boxes) [74]. The solid lines mark the behaviour in the contin-
uum.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

π   dispersion  relation

p

E

1

quasi-perfect

standard

continuum

+

x
0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

E

dispersion  relationη

quasi-perfect

standard

continuum

+

x

1p

Figure 15: The dispersion relations for the “pion” and the “η-meson” in the 2-flavour
Schwinger model with dynamical staggered fermions. We show results for standard stag-
gered fermions and for truncated perfect staggered fermions [76], similar to the HF dis-
cussed before. The solid lines mark the behaviour in the continuum, which is also here
very close to the data for the truncated perfect action.

The results, shown in Figure 16, reveal again that the truncated perfect formulation is far
more suitable to approximate the continuum behaviour, and in particular to realise light
pions — even on coarse lattices.

This work has explored on one side the construction and application of improved
staggered fermions — which became indeed fashion in the beginning of this century —
as well as the use of a simplified force term in the Hybrid Monte Carlo simulation of a
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Figure 16: The “meson” masses in the Schwinger model from dynamical simulations
with different types of staggered fermions, at various values of β, resp. lattice spacings
a ∝ 1/

√
β. We confirm that the results for the truncated perfect staggered fermion are far

closer to the continuum results, and they provide much lighter “pions”.

complicated quasi-perfect action.

6.4 The charmonium spectrum

Regarding QCD, we performed simulations to evaluate the charmonium spectrum em-
ploying the HF [78]. In this case we used a truncated version of the perfect quark gluon
vertex function discussed in Subsection 5.4. The result is shown in Figure 17. This was
a quenched simulation with the Wilson gauge action at β = 5.6 on a 83 × 16 lattice. The
bare quark mass was set to m = 0.9 — that value was adapted to match the ground state
ηc(2.98GeV). Considering the fact that only this ground state was used as an input, the
agreement with the experimental spectrum is clearly satisfactory. The inclusion of a term
∝ γµγνγρ in the vertex function (see also Ref. [49]) was especially helpful for the quality
of the charmonium spectrum.

6.5 Spectral functions at finite temperature

At last, we add that the HF is currently being applied in studies of the spectral functions
of QCD at finite temperature [79, 80]. These spectral functions, depending on the fre-
quencies, are obtained from lattice data using the Maximum Entropy Method, which was
suggested for this purpose in Ref. [81]. For the HF they reveal a continuum-like behaviour
up to much larger energies than it is the case for the Wilson fermion, see Figure 18. The
basis for this virtue is that the HF moves all the doublers to a unique cutoff scale, whereas
the Wilson fermion splits them into four (in general d) subsets, see Subsection 7.5. We
recall that the naive doubler species have between 1 and d momentum components π/a
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Figure 17: The charmonium spectrum, measured in simulations with the HF and a trun-
cated perfect quark gluon vertex function [78]. The experimental values are dashed, and
the ground state of ηc sets the scale.

in the free case. This causes the splitting in their cutoff energy for DW — an effect that
DHF overcomes.
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Figure 18: The spectral function σPS, as a function of the frequencies ω, at critical tem-
perature Tc = ∞ (on the left, free case) and at finite Tc (on the right, interacting case).
These results are obtained from lattice data using the Maximum Entropy Method for the
HF and for the Wilson fermion.

7 Chiral Correction by means of the Overlap For-

mula

7.1 The Ginsparg-Wilson relation

In Subsection 4.1 we discussed the block variable RGT for the the free fermion field. Eq.
(4.2) introduced the transformation term, which we now assume (for simplicity) to be
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diagonal in the spinor indices,

∑
x,y

[
Ψ̄x −

∫
Cx

ddu ψ̄(u)
]
(R−1)xy

[
Ψy −

∫
Cy

ddv ψ̄(v)
]
. (7.1)

For the bare fermion mass m = 0 the inverse perfect lattice Dirac operator has the
structure

(D−1) =
−γµρµ
ρ2 + λ2

+R , R =
λ

ρ2 + λ2
, (7.2)

where we are using the notation of eq. (4.7) and ρ2 = ρνρν (in coordinate space, the
products are lattice convolutions). We repeat that in the limit of a δ-function RGT,
R→ 0, the lattice action is invariant under the standard chiral transformation (3.14), as
we see from the anti-commutator {D, γ5} = 0.

However, we also saw that locality requires R �= 0, in agreement with the Nielsen
Ninomiya No-Go Theorem [21], and we found for m = 0 the term

Rxy =
1

2
δxy (7.3)

to be optimal for locality [15]. In this case, we have to face {D, γ5} �= 0, but due to our
requirements for R in Subsection 4.1 (eq. (4.5)) the anti-commutator

{D−1, γ5} = 2γ5R (7.4)

is local. The exact form of the factor Π (which depends on the blocking scheme, for our
case it is given in eqs. (4.3) and (2.11)) does not affect this relation. This already indicates
that for a given term R there is a variety of solutions to eq. (7.4).

We stressed in Section 4 — and a long time ago, for instance in Ref. [45] — that the
specific chiral symmetry breaking by the term R cannot distort any physical properties,
in particular not those related to chirality. Relation (7.4) illustrates this again, since a
local term R cannot shift the poles in the propagator D−1. If we multiply the operator
D from both sides, we arrive at the equivalent equation

{D, γ5} = 2Dγ5RD , (7.5)

which is now known as the Ginsparg-Wilson relation (GWR).31 The dimensions reveal
that the right-hand side is O(a) suppressed. As we mentioned earlier, the GWR was
written down in Ref. [43], which was forgotten over a long period until its re-discovery in
1997 [44].

We may compare this property to the Wilson operator, which breaks chiral symmetry
such that {DW,m=0, γ5} amounts to a local term, unlike relation (7.4). If we try to insert
the free operator DW,m=0 into the GWR, we arrive at a non-local term Rxy, which decays
only as |x− y|−6 in d = 4, and as |x− y|−4 in d = 2 [82]. Hence the Wilson operator does
not solve the GWR.

We continue to use the GWR as a requirement also in the interacting case. For gauge
interactions, D(U) involves the link variables, and so does R, if it couples different lattice

31If we allow a general Clifford structure for the term R, the right-hand-side turns into D{γ5, R}D.
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sites. However, we stay now with the choice (7.3), for which the GWR takes the simple
form

Rxy =
1

2
ρ δxy , ρ = 1 ⇒ {D, γ5} = Dγ5D . (7.6)

M. Lüscher observed that this relation assures the exact invariance under a lattice
modified chiral symmetry transformation [48]. In the notation of eq. (3.14), it is sufficient
to consider this modified transformation to O(α) (due to the Lie group structure of the
chiral rotation),

Ψ̄DΨ → Ψ̄
(
1 + α(1− 1

2
D)γ5

)
D
(
1 + αγ5(1− 1

2
D)
)
Ψ +O(α2)

= Ψ̄DΨ + αΨ̄
[
{D, γ5} −Dγ5D

]
Ψ +O(α2) . (7.7)

The GWR corresponds exactly to a vanishing term in the square bracket. In fact, it
could have been also discovered by requiring invariance under such a lattice modified
chiral symmetry.32 Unlike the remnant chiral symmetry of staggered fermions, this chiral
rotation involves the full number of generators that appear in the continuum theory. The
continuum limit a → 0 yields a smooth transition to the standard form of chiral invari-
ance. Based on these observations, even a non-perturbative formulation of chiral U(1)
gauge theory (cf. Subsections 3.3 and 3.4) has been worked out on the conceptual level
[83]. Earlier works in this direction, based on the overlap formalism, are collected in Ref.
[84].

Perfect Dirac operators solve the GWR, but — as we saw — they can in general not be
constructed explicitly. A step towards an applicable solution was the observation that also
classically perfect Dirac operators (cf. Subsection 2.3) are Ginsparg-Wilson operators [85].
Still, a truncation of the couplings and therefore a deviation from exact chiral symmetry is
needed in its construction, but in view of the possibilities to build approximate solutions
this is a more accessible starting point than the (quantum) perfect action.

A fully explicit solution was presented by H. Neuberger [86]. Let us recall the proper-
ties (3.16) and start from some massless lattice Dirac operator D0, which we assume to
be γ5-Hermitian, i.e.

D†
0 = γ5D0γ5 . (7.8)

This property holds for practically all Dirac operators that have been considered, in
particular for the Wilson operator DW.33 Now we define the shifted operator

A := D0 − 1 , (7.9)

32The GWR is presented along these lines in Ref. [82], which also keeps a general term R in the
transformation (7.7). Then the transformation of D reads
D → [1 + α(1 −DR)γ5]D[1 + αγ5(1−RD)] = D + α({D, γ5} −D{R, γ5}D) +O(α2).
Again the invariance to O(α) is equivalent to the GWR, and for local terms R there is a smooth transition
to the standard chiral symmetry in the continuum limit.

33An exception is the operator of the so-called “twisted mass fermion” [87]. For the staggered fermion,
the analogous relation ε(x)ρµ(x, y)ε(y) = −ρµ(x, y) holds, where ε(x) is the sign factor (3.30), and ρµ is
the nearest-neighbour coupling in eq. (3.29).
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which is unitary if D0 is a GW operator,

A†A = γ5

[
D0γ5D0 − {D0, γ5}+ γ5

]
. (7.10)

Of course, we cannot assume this for a quite general D0, and we pointed out before that
it does not hold in particular for DW. But we can transform A such that unitarity is
enforced,34

A→ Aov := A/
√
A†A ⇒ A†

ovAov = 11 . (7.11)

In this way, we obtain the overlap Dirac operator

Dov = 1 + Aov = 1 + (D0 − 1)/

√
(D†

0 − 1)(D0 − 1)

= 1 + γ5
H√
H2

, H := γ5A , (7.12)

where H is Hermitian, H = H†. H. Neuberger introduced this operator [86] with D0 =
DW, and we denote the corresponding overlap operator as the Neuberger operator DN.

Since the resulting lattice action S[Ψ̄,Ψ, U ] has now a modified but exact chiral sym-
metry, one may be worried about the fate of the axial anomaly. However, the anomaly
is in fact captured correctly, due to the variance of the functional measure under modi-
fied chiral rotations [48], which is analogous to the continuum. This property means an
explicit realisation of the program formulated in Ref. [88]. The axial anomaly has been
computed perturbatively by many authors, for instance in Refs. [43, 48, 85, 89] for gen-
eral Ginsparg-Wilson operators, and specifically for DN also in Refs. [90]. A proof which
extends to all topological sectors was given for DN in Ref. [91]. In fact, this extension is
non-trivial, as the considerations in Refs. [92] underline.

7.2 Massless lattice fermions in d = 3

In three dimensions, there is no chiral symmetry (since there is no matrix γ5 at hand),
but parity takes a rôle similar to a discrete chiral symmetry.35 The parity operator R is
then the analogue to γ5, and we can write the parity transformation on the lattice for
spinors and compact link variables as

P : Ψ̄x → iΨ̄xR , Ψx → iRΨx ,

Uµ,x → UP
µ,x := U †

µ,−x . (7.13)

Similar to the γ5-Hermiticity (7.8), practically all lattice Dirac operators which are con-
sidered obey

D(U)† = RD(UP )R . (7.14)

The relation
D(U) +D(U)† = 0 (7.15)

34Note that A does in general not commute with A†A, so we have to specify an order where to multiply
the inverse square root. This is not necessary anymore in the form given in the lower line of eq. (7.12).

35We encountered a discrete chiral symmetry before in the Gross-Neveu model (in the continuum), see
eq. (3.34) where in view of the chiral rotation (3.14) only the angles α mod 2π ∈ {0, π} occur.
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then implies parity invariance of the action S =
∑

xy Ψ̄xD(U)xyΨy, and fermion mass
zero. However, this condition (7.15) is again not easy to fulfil — it leads to a doubling
problem as the chiral symmetry does in even dimensions. The doublers in the naive action
can be avoided by a Wilson term, but this term breaks the condition (7.15) and therefore
parity symmetry, so that additive mass renormalisation sets in.

A (massless) overlap fermion in d = 3 was introduced in Ref. [93], which was actually
the first place where the overlap formula (7.12) occurred. In Ref. [94] we considered
generally a 3d Ginsparg-Wilson operator given by the condition

D +D† = D†D , (7.16)

and we studied a lattice modified parity symmetry. This modification alters the transfor-
mations (7.13) such that

Ψx → iR(1−D)Ψx . (7.17)

For a solution D to eq. (7.16) the lattice action is exactly invariant under this modified
parity symmetry, but the functional measure transforms as

DΨ̄DΨ → [det(1−D)]−1DΨ̄DΨ . (7.18)

Once more in analogy to the chiral symmetry in even dimensions, this transformation
of the measure gives rise to the requested parity anomaly [94]. We should clarify that
this is not an anomaly in the usual sense, which has a unique value, but it comes with
an arbitrary integer factor (a comprehensive discussion is given in Ref. [95]). Hence a
successful regularisation should capture all possibilities for this integer. In the current
case, they are all captured indeed by varying either the kernel R in the GWR (which then
modifies the right-hand-side of eq. (7.16) to 2D†RD), or by considering different kernels
D0 in the overlap formula (7.12).

At this point we add that also a pure Abelian 3d Chern-Simons gauge theory with the
continuum action

S[A] =

∫
d3x εµνρAµ∂νAρ (7.19)

suffers from a doubling problem on the lattice due to the occurrence of a linear momentum
[96]. A solution can be found also here either by the perfect action formalism, or by a
formula of the overlap-type [97].

7.3 The overlap hypercube fermion

We proceed to a slightly more general form of the term R in the GWR (7.5): we now
allow for a parameter ρ>∼ 1 in eq. (7.6). The overlap formula can be adapted to general
forms of R [98, 14]. For the still simple form that we are considering now, it reads

Dov = ρ
(
1 + A/

√
A†A

)
= ρ

(
1 + γ5

H√
H2

)
,

A := D0 − ρ = γ5H . (7.20)
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As we mentioned, the standard formulation inserts as a kernel the Wilson operator,
D0 = DW, which is far from chiral, and which undergoes a drastic change in the overlap
formula to yield the Neuberger operator DN. Ref. [98] suggested to consider more general
possibilities for D0, and motivated in particular the use of a truncated perfect operator,
which is approximately chiral already. In this case, the square root in eq. (7.20) is close to
the constant ρ, and the transition from D0 to Dov is therefore only a modest modification.
An intuitive argument for this property is that an exact GW kernel D0 reproduces itself
identically in the overlap formula (7.20) (for a fixed parameter ρ).36

In particular we are using DHF as the input Dirac operator — note that it is γ5-
Hermitian as well. Its inexact chirality is then corrected by the overlap formula, which
leads toDovHF, the operator of the overlap-HF, while keeping both Dirac operators similar,

DovHF ≈ DHF . (7.21)

The motivation for this construction is that the property (7.21) allows us to preserve
other virtues of DHF (beyond the approximate chirality) in the chirally exact formulation
DovHF. As such virtues we are going to discuss:

• a high level of locality

• approximate rotation symmetry

• a good scaling behaviour.

Below we will summarise results for these three aspects and comment on their meaning.37

Still before that we mention that the simulation of an overlap fermion with a hypercubic
kernel requires more computational effort compared to DN. The use of the complicated
kernel by itself corresponds to an overhead of about a factor 15 in QCD (without applying
the preconditioning method reviewed in Subsection 6.1). However we should consider that
in 4d simulations, the inverse square root in the overlap formula (7.20) (resp. the sign
function H√

H2
) is approximated by polynomials. Again thanks to the relation (7.21), the

convergence in the polynomial evaluation is faster — for a fixed precision one gains back
by this property about a factor of 3 [101, 102, 103]. Hence an overhead of about a factor 5
remains. We are confident that this factor will be more than compensated by the superior
properties listed above, which we will discuss in Subsections 7.6 and 7.7.

7.4 The axial anomaly in the continuum limit

On the conceptual side, we were able to prove that also the overlap-HF (obtained by
inserting D0 = DHF in the overlap formula, as we just advocated) has the correct chiral
anomaly in the continuum limit of all topological sectors [104].38 This proof required a

36In this sense, the overlap formula captures all solutions to the GWR. Attempts to construct chiral
lattice Dirac operators beyond GWR solutions were considered in Refs. [99].

37Of course, one could also construct an approximate Ginsparg-Wilson operator directly by starting
from some short-ranged parameterisation ansatz and tuning the couplings such that the GWR is mini-
mally violated. This was done in Refs. [100] for the Schwinger model and for QCD.

38This may be compared to the fully perfect action, which even displays the correct axial anomaly at
finite lattice spacing, as we discussed in Subsection 5.3.
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number of generalisation steps compared to the proof that had been worked out previously
for the Neuberger operator DN [91].

In Ref. [104] we gave a non-perturbative evaluation of the continuum limit of the axial
anomaly and the fermion index. To this end, we formulated the Dirac operator DHF on a
2n-dimensional Euclidean lattice in a form, which is well-suited for analytic investigations.
We used it first to study the dependence of the doubler structure of DHF on its coupling
parameters. Then we evaluated the classical continuum limits of the axial anomaly and
the index of the overlap-HF operator, showing that the correct continuum expressions are
recovered when the parameters are in the physical (doubler-free) range. This continuum
limit relies only on general properties of DHF and not on its explicit form (in contrast to
the previous evaluations in the Wilson case [91]). The main new technical tool was a set
of identities, which allowed the continuum form

εµ1...µ2n TrFµ1µ2(x) · · ·Fµ2n−1µ2n(x) (7.22)

of the axial anomaly to be extracted, and its coefficient to be evaluated topologically.
These properties are basically not specific to the HF structure. We expect that this

proof can be extended to completely general overlap Dirac operators obtained by inserting
an ultralocal (and γ5-Hermitian) lattice Dirac operator D0 (involving the full Clifford
algebra of γ matrices, as the operators in Refs. [14, 100, 105]) into the overlap formula.

7.5 Approximate chirality of the hypercube fermion

An exact solution to the GWR with a term R of the form (7.5) and ρ>∼ 1 has its spectrum
σ(D) on a circle in the complex plane with centre and radius ρ, as we see from the relation
A†A ≡ ρ2. We call it the GW circle,

σ(D) ⊂
{
z
∣∣∣ |z − ρ| = ρ

}
. (7.23)

In order to check how well some input operator D0 approximates chirality already, it is
therefore a sensible criterion to evaluate the spectrum σ(D0) and to test if it is close
to this GW circle [98]. Let us start with the free HF in d = 4: the spectrum of DHF

in infinite volume is shown in Figure 19, and we see that it approximates the GW circle
(with ρ = 1) extremely well. On the other hand, the spectrum of the free Wilson operator
covers four circles of this kind, so that its real part extends up to ≈ 8. 39 (We anticipated
this property in Section 6 when we commented on Figure 18.)

To study this property in the presence of gauge interactions, we first return to the
Schwinger model. We considered this model as described in the first part of Subsection
6.3, and we show the spectrum of a typical configuration at β ≡ 1/g2 = 6 for DW and
for DHF in Figure 20 [74]. In two dimensions, the spectrum of DW covers the vicinity
of two circles, whereas the HF is again very close to the GW circle with ρ = 1. As an
experiment, we also show in the latter case the spectrum after a minimal approximation
to the overlap formula: we only use its first term in the Taylor expansion, which leads to
a spectrum that can hardly be distinguished from the exact GW circle. As we increase

39In Ref. [98] we also measured the violation of the GWR directly, and we compared the couplings
before and after the application of the overlap formula as further criteria for the approximate chirality of
different options for D0.
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Figure 19: The spectrum of the truncated perfect, free HF in d = 4, on a lattice of unit
spacing and infinite size. It is very close the GW circle with centre and radius ρ = 1,
which shows that it approximates chirality very well.

the strength of the gauge coupling 1/
√
β, the eigenvalues spread out a bit more, but they

still follow closely the GW circle for β = 4 and even β = 2, as we illustrate in Figure 21.
In QCD this property is more tedious to achieve. Refs. [106, 101] describe the con-

struction of a suitable HF formulation for quenched QCD at β ≡ 6/g2 = 6. It starts again
from the free, truncated perfect HF and restores approximate criticality under gauge in-
teraction by a link amplification40 Ux,µ → uUx,µ, u>∼ 1. Further ingredients are a separate
link amplification factor v for the vector term (which controls the imaginary part of the
spectrum, with hardly any effect on the mass renormalisation), and the simplest version
of a “fat link”.41 The latter amounts to the substitutions

Ux,µ → (1− α)Ux,µ +
α

6

∑
[ staples terms ] (7.24)

for all compact link variables, where we chose α in the range 0.3 . . . 0.5. The fat link helps
to pull the eigenvalues around real part 1 somewhat closer to the GW circle [106, 101]. At
some point, also a clover term was considered, but since its optimisation led to a coefficient
close to 0 we dropped it again. We arrived at a very satisfactory approximation for typical
configurations at β = 6, as Figure 22 shows. This plot includes the full spectrum on a

40This procedure is inspired by method of “tadpole improvement” [107].
41A similar parameterisation has also been adapted in the approach of Refs. [100].
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Figure 20: The spectra of the Wilson operator (with and without a clover term with
coefficient 1) and of the HF operator for a typical configuration in the Schwinger model
at β = 6. The Wilson spectrum deviates strongly from the GW circle, whereas the HF
spectrum approximates it well. In the latter case we also show the result if the overlap
formula is approximated by a polynomial of first order only, which is sufficient to put the
eigenvalues quite exactly onto the GW circle [74].
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Figure 21: The spectra of the HF operator for typical configurations in the Schwinger
model at β = 4 and at β = 2. The GW circle is still approximated well. We also show a
polynomial correction with the Taylor expanded overlap formula to the first resp. second
order.

44 lattice, as well as the low eigenvalues on a 84 lattice, which fill the gap near zero (this
gap is generic on small lattices).

Later on, such a construction was also accomplished at β = 5.85, i.e. on a coarser
lattice, where it is more difficult. Still this program could be carried out successfully
[102, 103]. In this case, we made a compromise between the criteria of a minimal condition
number of A†A and optimal locality of DovHF (to be discussed in this and the following
Subsection).
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Figure 22: The spectrum of the optimised HF operator for a typical configuration in
quenched QCD at β = 6 on lattices of the sizes 44 (crosses, full spectrum) and 84 (squares,
physical part of the spectrum).

An immediate consequence of the approximate chirality of DHF is that the polynomial
evaluation of DovHF (to a fixed precision) is faster, i.e. the required degree is lower, as
we mentioned before. In QCD we used Chebyshev polynomials for this purpose, which
converge exponentially as the degree rises (see e.g. Ref. [108]).42 The required degree is
then proportional to the square root of the condition number of the operator A†A. In
practice one usually projects out the lowest few modes and treats the eigenspace spanned
by them separately — this reduces the condition number of the remaining operator very
significantly. Figure 23 compares these condition numbers for the Neuberger operator and
the overlap-HF, for QCD on a 124 lattice at β = 6, with k− 1 = 1 . . . 19 modes projected
out. We recognise for the overlap-HF a gain factor ≈ 25, which we anticipated at the end
of Subsection 7.3. This gain factor is essentially due to the reduction of the maximal A†A
eigenvalue, and it persists practically unchanged at β = 5.85; details can be found in Ref.
[103] (Table 1).

42The “minimax” polynomial provides a slightly better approximation with the same degree [108],
but the Chebyshev polynomial has the advantage that the use of huge coefficients can be circumvented
thanks to the Clenshaw recurrence formula. Regarding rational approximations, the Zolotarev polynomial
is optimal in this case [109]. We add that in the Schwinger model it was possible to evaluate the overlap
operator by diagonalising A†A, hence no polynomial was needed in d = 2.
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Figure 23: The condition numbers of the overlap ingredient A†A = H2, where H is the
Hermitian operator H = γ5A (and A = D0−ρ, see eq. (7.20)), for the Neuberger operator
and for the overlap-HF, in QCD on a 124 lattice at β = 6. k − 1 is the number of lowest
modes which are projected out. The condition number of the remaining operator, i.e. the
ratio ck = (largest eigenvalue of A†A)/(kth eigenvalue of A†A), is about 25 times lower
for the overlap-HF [101], from which we infer a gain factor of about 5 in the polynomial
degree. The computational effort is roughly proportional to this degree.
This gain factor is practically the same at β = 5.85 on a 123 × 24 lattice [103].

7.6 Locality and rotation symmetry

Now we move on to the point where the overlap operator is already evaluated to a high
accuracy of at least 10−12 (in many case, the precision was also set to 10−15 or 10−16).
First we compare the level of locality of the overlap-HF to the standard formulation DN.
A strong gain in this level was first observed for the free fermion in Ref. [98], which
was one of the motivations to generalise the overlap operator, as described in Subsection
7.3.43 In Figure 24 we show this property in d = 2: on top we see that the couplings
in DovHF decay much faster than in DN. Since the DovHF couplings follow closely a
single exponential curve, this plot also illustrates an improved rotation symmetry. Both
properties can be understood based on the ultralocality and the good rotation symmetry
of DHF, together with relation (7.21). (Of course, ultralocality also holds for DW, but the
relation (7.21) does not, hence this property is not approximately inherited in DN.) In
fact, the level of locality is related to the minimal separation of a D0 eigenvalue from ρ

43Ultralocality, i.e. the limitation of the couplings to a finite range on the lattice (cf. footnote 10), is
impossible for any Ginsparg-Wilson operator, as considerations in the free case show [110].
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(the centre of the GW circle) [111]; this implies a link between the quests for locality of
an overlap operator and approximate chirality of its kernel D0. The optimal parameters
have roughly the same trend for these criteria, but they are not identical (we mentioned in
the previous Subsection that we made a compromise between maximal locality of DovHF

and minimal condition number of A†A).
In the lower plot in Figure 24 we see that the superior locality of DovHF persists in the

Schwinger model at β = 6 [74]. In this case we measure the locality in the way suggested
in Ref. [111]: we put a unit source ηy at one site y, and we consider all sites x separated
from y by a taxi driver distance r =

∑
µ |xµ − yµ| := ‖x − y‖1. Then we identify the

maximum of the norm ‖Dxyηy‖, which we denote as f(r),

f(r) = max
x

{
‖Dxy(U)ηy

∣∣∣ ‖x− y‖1 = r
}
. (7.25)

The exponential decay of 〈f(r)〉 in r is a compelling criterion for locality. For β = 6 we
see in Figure 24 (below) that this decay is much faster for DovHF than for DN.

We proceed to QCD and first illustrate that we obtain again a higher degree of locality
for the overlap-HF at β = 6 [101] and at β = 5.85 [102, 103], see Figure 25. On top, at
β = 6 (which corresponds to a physical lattice spacing of about a 
 0.093 fm)44 we still
use the taxi driver metrics, but below (β = 5.85, corresponding to a 
 0.123 fm) we switch
to the Euclidean metrics. The observation that the decay for the overlap-HF is not only
faster, but in the Euclidean metrics also smoother, confirms again that our overlap-HF
formulation is both, more local and to a better approximation rotation invariant than
the standard formulation. We add that the quality of rotation symmetry was also tested
directly in the Schwinger model with the procedure shown before for the HF in Figure
13. For the overlap-HF a smooth decay of the isotropic correlator C3 was found, similar
to the HF, affirming an improved rotation symmetry [74].

At last we turn to strong gauge couplings, which correspond to rough configurations
and therefore to coarse lattices. Generally, the overlap formula is only applicable to
generate a valid lattice Dirac operator up to a certain coupling strength, where locality
collapses.45 We see in Figure 26 that the Neuberger operator is still local at β = 5.7
(corresponding to a 
 0.17 fm), but at β = 5.6 no exponential decay can be observed
anymore (for any parameter ρ). In contrast, the overlap-HF (where only the link amplifi-
cation factor is adapted compared to the formulation at β = 5.85) is local in both cases,
and at β = 5.7 the function 〈f(r)〉 still exhibits a remarkably fast decay.

This superior locality is essentially due to the HF structure of the overlap kernel. By
means of fat links alone the locality of the overlap operator can also be improved, but
only marginally [114] (assuming the optimal value of ρ in each case).

7.7 The scaling behaviour

Again referring to the perfect action background of the HF and to relation (7.21), we
also expect a good scaling behaviour for the overlap-HF. For the free overlap-HF, this is
clearly confirmed by the dispersion relation, which we show for momenta �p = (p1, 0, 0)

44For the physical units in quenched QCD, we always refer to the Sommer scale [112] in this work.
45For a theoretical discussion of this issue we refer to Ref. [113].
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Figure 24: The locality of the overlap-HF vs. the standard Neuberger operator in d = 2.
On top we show the decay of the free couplings in the vector term ρµ and in the scalar
term λ (in the notation Dov = ρµγµ + λ), against the Euclidean distance |x|. We see that
the overlap-HF couplings follow a much faster exponential decay, indicating a higher level
of locality. Moreover, the couplings in the Neuberger operator are much more spread out,
which reveals a better approximate rotation symmetry for the overlap-HF.
Below we compare the locality in the Schwinger model at β = 6, measured according to eq.
(7.25) (in the taxi driver metrics). We see that the overlap-HF is still by far more local.

in Figure 27. In contrast, DN scales worse than the Wilson operator DW in this case.46

Qualitatively the same behaviour is observed for massive overlap fermions [74]. We also
repeated the thermodynamic scaling tests described earlier (in Subsection 4.1, before
applying the overlap formula). The results in d = 2, for three version of the overlap-HF,
are by far improved compared to the standard overlap operator, see Figure 28 [74]. Here
we incorporated the chemical potential also for the overlap fermions according to the
prescription (4.11); for an alternative method and first simulations, see Ref. [115].

In the interacting case, we reconsidered the “meson” dispersion relations in the Schwinger
model (cf. Subsection 6.3), this time for exact Ginsparg-Wilson operators. Also here we

46On the other hand, all GW fermions are still free of O(a) artifacts in the interacting case, in contrast
to DW.
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Figure 25: The locality of the overlap-HF vs. the standard operator DN in QCD. On top
the decay is compared in the taxi driver metrics at β = 6, where we find a gain factor of
almost 2 in the exponent of the decay [101].
The plot below refers to β = 5.85 in the Euclidean metrics, which also provides a compar-
ison of the quality of rotation symmetry [103].

observe a scaling behaviour which is by far better for the overlap-HF than for the Neu-
berger operator, as Figure 29 shows. Further scaling tests in the Schwinger model with
the dynamical HF and the quenched re-weighted overlap-HF can be found in Ref. [116]
(they were compared to the scaling with dynamical Wilson fermions, which has also been
investigated in Ref. [117]). In QCD, a systematic scaling test is tedious and still out-
standing, but the toy model results summarised here rise optimism also in that respect.
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β = 5.7 DN (with an optimised parameter ρ = 1.8) is still local, but at β = 5.6 its locality
— and therefore its validity as a lattice Dirac operator — collapses. The overlap-HF is
local in both cases. At β = 5.7 its locality is still stronger than the one of DN at β = 6
and ρ = 1.4 (which is optimal for locality in that case [111]).
These measurements were done on a 123×24 lattice, and the anisotropy causes the bending
down at large r.
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dispersions end when the argument of the square root becomes negative. To provide an
overview we also include the dispersion for the kernel operators DHF and DW.

7.8 The link to domain wall fermions

Finally we remark that the overlap fermion is equivalent to the domain wall fermion [118]
in the limit of an infinite number Ls of layers in a fifth direction.47 It is then a practical

47The meaning of this fifth direction is technical rather than geometrical, because it does not involve
link variables. So that direction has no scale; what one needs is its thermodynamic limit Ls →∞.
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Figure 29: The mesonic dispersion relation in the Schwinger model with two types of
overlap-HFs (open circles and squares). Both, the “pion” (on the left) and the “η-particle”
(on the right) display a scaling which is by far improved for the overlap-HFs compared
to the standard overlap fermion (diamonds). Once more we obtain the best scaling by
inserting the (scaling optimised) SO-HF into the overlap formula (squares) [74].

issue if one tries to approximate this limit by a satisfactory number Ls, or by a sufficiently
precise polynomial approximation to the overlap formula. Also in the case of the domain
wall fermions, the standard formulation inserts a Wilson kernel. Replacing it by a HF
kernel, as suggested in Ref. [98], could lead to similar improvements as we demonstrated
in this Section for the overlap fermion. The improved condition number of the kernel
operator manifests itself then in a lower demand for Ls (for some required precision of
chirality). Furthermore the gains in locality, approximate rotation symmetry and scaling
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are expected here in practically the same form as in the overlap case.

8 Relating QCD Simulations to Chiral Perturbation

Theory

8.1 Chiral Perturbation Theory

We start this Section with a few general remarks on Chiral Perturbation Theory (χPT),
an effective low energy theory, which we are going to relate to our QCD simulation results.

When a continuous, global symmetry breaks spontaneously, we obtain a continuous
set of degenerate vacuum states. Expanding around one selected vacuum, one distin-
guishes between excitations to higher energy (which are identified with massive particles)
and fluctuations, which preserve the ground state energy. The subgroups of the energy
conserving symmetry group can either transfer the selected vacuum to a different vacuum
state, or leave it simply invariant. The number of generators relating different vacuum
states corresponds — according to the Goldstone Theorem [119] — to the number of
massless Nambu-Goldstone bosons (NGBs) involved. At low energy, the NGBs can be
described by an effective theory as fields in the coset space of the spontaneous symmetry
breaking (SSB). Such effective theories still apply if we add a small explicit symmetry
breaking; we then deal with light quasi-NGBs, which dominate the low energy physics.
The effective Lagrangian Leff contains terms of the quasi-NGB fields, which obey the
original symmetry, as well as the (explicit) symmetry breaking terms. All these terms are
hierarchically ordered according to some low energy counting rules for the momenta and
the quasi-NGB masses. A simple example for such an expansion is outlined in Subsection
8.4.1.

This concept is very general, but it was introduced in the framework of chiral symmetry
breaking in QCD [120]. At zero quark masses the left- and right-handed spinors decouple
(see eq. (3.12)), so LQCD is invariant under their independent rotation. QCD is then
assumed to exhibit a chiral SSB of the pattern

SU(Nf )L ⊗ SU(Nf )R → SU(Nf )L+R , (8.1)

where Nf is the number of quark flavours involved. χPT is the corresponding low energy
effective theory [120, 121, 122]. Following the general prescription, it deals with fields in
the SSB coset space, U(x) ∈ SU(Nf ).

48

A small quark mass supplements a slight explicit symmetry breaking, and the quasi-
NGBs are then identified with the light mesons, i.e. the pions π+, π0, π− for Nf = 2 —
and for Nf = 3 also the kaons and η-particles.

In view of our lattice study, we have to put the system into a finite volume; we choose
its shape as V = L3 × T (T ≥ L). We will refer to the formulations of χPT in two
regimes, with different counting rules for the terms in Leff [U ]. The usual case — to be
addressed in Subsection 8.2 — is characterised by a large volume, Lmπ � 1, where mπ is

48Details about the symmetry groups involved and further aspects are reviewed extensively for instance
in Ref. [123].
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the pion mass, i.e. the lightest mass involved, which corresponds to the inverse correlation
length. This is the p-regime, where finite size effects are suppressed, and one expands in
the meson momenta and masses (p-expansion) [121].

The opposite situation, Lmπ < 1, is denoted as the ε-regime. In that setting, an
expansion in the meson momenta is not straightforward, due to the dominant rôle of
the zero modes. However, the functional integral over these modes can be performed by
means of collective variables [122]. There is a large gap to the higher modes, which can
then be expanded again, along with the meson masses (ε-expansion) [122, 124, 125]. We
will address that regime extensively in Subsection 8.4.

In both regimes, the leading order of the effective Lagrangian (in Euclidean space)
reads

Leff [U ] =
F 2
π

4
Tr[∂µU

†∂µU ]− 1

2
Σ Tr[M(U + U †)] + . . . ,

U ∈ SU(Nf ) , M =

⎛
⎝ mu

md

(ms)

⎞
⎠ . (8.2)

Throughout Section 8 we assume the quark masses to be degenerated, and we denote
them by mq. The coefficients to these terms are the Low Energy Constants (LECs), and
we recognise Fπ and Σ as the leading LECs. Experimentally the pion decay constant was
measured as Fπ 
 92.4 MeV. Σ is not directly accessible in experiments, but its value is
assumed to be in the range (250 MeV)3 . . . (300 MeV)3. For instance, in the one flavour
case a value around (270 MeV)3 was recently obtained based on a large Nc expansion
[126].

The LECs are of physical importance, but they enter χPT as free parameters. For a
theoretical prediction of their values one has to return to the fundamental theory, which
is QCD in this case. Due to the notorious lack of analytic tools for QCD at low energy,
the evaluation of the LECs is a challenge for lattice simulations.

The LECs in Nature correspond to their values in (practically) infinite volume, and the
p-regime is close to this situation. However, these phenomenological values of the LECs
can also be determined in the ε-regime, in spite of the strong finite size effects. Actually
one makes use exactly of the finite size effects to extract the physical LECs. Generally, we
need a long Compton wave length for the pions, 1/mπ, and in view of lattice simulations
in the p-regime we have to use an even larger box length L. In this respect, it looks very
attractive to work in the ε-regime instead, where we can get away with a small volume
[127].

However, such simulations face conceptual problems, which delayed their realisation
until this century: first, to realise light pions the lattice fermion formulation should keep
track of the chiral symmetry. Second the ε-regime has the peculiarity that the topology is
important (in accordance with the importance of the zero modes) [128]. χPT predictions
for expectation values often differ when restricted to distinct topological sectors, so it
would be a drastic loss of information to sum them up. This distinction requires a sound
definition of the topological charge on the lattice. In both respects, the use of Ginsparg-
Wilson fermions is ideal, due to the specific properties explained in Subsections 7.1 and
8.3.



CBPF-NF-031/06 70

8.2 Simulations in the p-regime

Usually, for χPT in a finite spatial box L3, one expects the meson momenta p to be small,
so that

p ∼ 2π

L
� 4πFπ . (8.3)

The term 4πFπ takes a rôle analogous to ΛQCD. Regarding the counting rules for the
momenta and the pion mass, the condition L � 1/mπ allows for an application of the
p-expansion [121]. It expands in the following dimensionless ratios, which are expected to
be small and counted in the same order,

1

LFπ
∼ p

ΛQCD
∼ mπ

ΛQCD
. (8.4)

In this Subsection we present simulation results in the p-regime. In Ref. [103] we applied
the overlap-HF (described in Section 7) at β = 5.85 on a lattice of size 123 × 24, which
corresponds to a physical volume of V 
 (1.48 fm)3 × 2.96 fm (where we use again the
Sommer scale [112], cf. footnote 44). We evaluated 100 propagators for each of the bare
quark masses

amq = 0.01, 0.02, 0.04, 0.06, 0.08 and 0.1

(in physical units: 16.1 MeV . . . 161 MeV). We will see that the smallest mass in this
set is at the edge of the p-regime — even smaller quark masses will be considered in the
ε-regime (Subsection 8.4). Part of the observables presented in the current Subsection
were also measured on the same lattice with the Neuberger operator DN at ρ = 1.6 (a
preferred value at β = 5.85) [129].

We include mq in the overlap operator (7.12) in the usual way,

Dov(mq) =
(
1− amq

2ρ

)
Dov +mq , (8.5)

which leaves the largest real overlap Dirac eigenvalue invariant. mq represents the bare
mass for the quark flavours u and d (and we re-introduce at this point a general lattice
spacing a).

We first evaluate the pion mass in three different ways:

• mπ,PP is obtained from the decay of the pseudoscalar correlation function 〈P (x)P (0)〉,
with P (x) = ψ̄xγ5ψx.

• mπ,AA is extracted from the decay of the axial-vector correlation function 〈A4(x)A4(0)〉,
with A4(x) = ψ̄xγ5γ4ψx.

• mπ,PP−SS is obtained from the decay of the difference

〈P (x)P (0)− S(x)S(0)〉 , where S(x) = ψ̄xψx

is the scalar density. This subtraction is useful at small mq, where configurations
with zero modes ought to be strongly suppressed by the fermion determinant. In
our quenched study, this suppression does not happen as it should, but the above
subtraction in the observable eliminates the zero mode contributions, which are
mostly unphysical.
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The results in Figure 30 (on top) show that the pion masses follow to a good approxi-
mation the expected behaviour m2

π ∝ mq. Deviations occur at the smallest masses, where
we observe the hierarchy

mπ,PP > mπ,AA > mπ,PP−SS , (8.6)

in agreement with Ref. [14]. This shows that the scalar density subtraction is in fact
profitable, since it suppresses the distortion of the linear behaviour down to the lightest
pion mass in Figure 30,

mπ,PP−SS(amq = 0.01) 
 (289± 32) MeV . (8.7)

That mass corresponds to a ratio L/ξ ≈ 2, which confirms that we are leaving the p-
regime around this point. Based on the moderate quark masses in Figure 30, we find a
very small intercept in the chiral extrapolation,

mπ,PP−SS(mq → 0) = (−2± 24) MeV . (8.8)

Due to quenching, one expects at small quark masses a logarithmic behaviour of the form

am2
π

mq
= C1 + C2 ln amq + C3amq , (C1, C2, C3 : constants) . (8.9)

Corresponding results are given for instance in Refs. [130, 131]. Figure 30 (below) shows
the fits of our data to eq. (8.9), which works best for mπ,AA.

On the same lattice we also measured the ρ-meson mass in the p-regime using the
overlap operators DN [129] and DovHF [103], as well as the quark mass according to the
PCAC relation,

mPCAC =

∑
�x〈(∂4A

†
4(x))P (0)〉∑

�x〈P †(x)P (0)〉 , (8.10)

where we used a symmetric nearest-neighbour difference for ∂4. It determines the axial-
current renormalisation constant ZA = mq/mPCAC. For the overlap-HF this constant is
close to 1 [103], see Figure 31 (on the left), which is favourable in view of the link to
perturbation theory. This is in contrast to the large ZA value found for the standard
overlap operator [129], see Figure 31 (on the right). A chiral extrapolation leads to

ZA = 1.17(2) for DovHF , ZA = 1.448(4) for DN . (8.11)

Regarding DN, consistent results were reported later in Refs. [132, 133], and (somewhat
surprisingly) at β = 6, ρ = 1.4 it even rises to ZA 
 1.55 [133]. When one uses the
improved Lüscher-Weisz gauge action [134], the value of ZA for DN is still in that range
[131]. The application of fat links, however, helps to reduce ZA [114].

As a further observable in the p-regime, we measured the pion decay constant by
means of the relation

Fπ =
2mq

m2
π

|〈0|P |π〉| , (8.12)

based on P (x)P (0), and based on P (x)P (0) − S(x)S(0). The results for the operator
DovHF [103] are given in Figure 32. In particular the value at amq = 0.01 (the lightest
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Figure 30: On top: The pion mass evaluated from overlap-HFs in the p-regime in three
different ways, as described in Subsection 8.2.
Below: The pion masses fitted to the formula (8.9), which is expected due to the logarithmic
quenching artifacts in the absence of an additive mass renormalisation.

quark mass in this plot) is significantly lower for the case of the scalar subtraction. Hence
this subtraction pushes the result towards the phenomenological value.

However, a chiral extrapolation based on such data for Fπ cannot be reliable. An
extrapolated value of Fπ,PP would come out clearly too large, as it is also the case for
DN [129]. But in particular the instability of Fπ,PP−SS at our lightest pion masses in the
p-regime (obtained at amq = 0.01 and 0.02) calls for a clarification by yet smaller quark
masses. We did consider still much smaller values of mq in the same volume. As the
results for the pion masses suggest, we are thus leaving the p-regime. For the tiny masses
amq ≤ 0.005 we enter in fact the ε-regime, where observables like Fπ have to be evaluated
in completely different manners, see Subsection 8.4.
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Figure 32: The pion decay constant based on a matrix element evaluation in the p-regime
— given by eq. (8.12) — using the overlap-HF [103].

8.3 The distribution of topological charges

In the next Subsection we are going to present result in the ε-regime of QCD. In this
Subsection we focus on topological charges, which play an essential rôle the ε-regime [128]
(as we mentioned before).

As we already outlined when commenting Figure 3, it is a priori not obvious how to
introduce topological sectors on the lattice. However, if one deals with Ginsparg-Wilson
fermions, a sound definition is given by adapting the Atiyah-Singer Theorem from the
continuum and defining the topological charge of a lattice gauge configuration by the
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fermionic index ν [85],

topological charge
!
= ν := n+ − n− , (8.13)

where n± is the number of zero modes with positive/negative chirality. These num-
bers are unambiguously determined once a Ginsparg-Wilson Dirac operator is fixed (and
in practice only chirality positive or chirality negative zero modes occur in one non-
trivial configuration49). However, for a given gauge configuration, the index for different
Ginsparg-Wilson operators does not need to agree. Albeit the level of agreement should
be high for smooth configurations, i.e. it should — and it does50 — increase for rising
values of β.

In view of the LEC evaluation in the ε-regime, numerical measurements inside a specific
topological sector — and a confrontation with the analytic predictions in this sector —
are in principle sufficient. This requires the collection of a large number of configurations
in a specific sector. The (hyperbolic) “topology conserving gauge actions” Shyp

ε [83, 136,
137, 138, 139] are designed to facilitate this task,

Shyp
ε (UP ) =

{
SP (UP )

1−SP (UP )/ε
for SP (UP ) < ε

+∞ otherwise
(8.14)

where SP (UP ) = Shyp
∞ (UP ) is the Wilson plaquette gauge action, and UP are the plaquette

variables [27]. For ε ≤ 1/[6(2 +
√

2)] 
 0.049 topological transitions cannot occur under
continuous deformations of the gauge configuration [140]. But in practice we have to
relax ε to larger values to allow for reasonably strong fluctuations. For strong gauge
couplings we can then arrange for a useful physical lattice spacing. Examples illustrating
the increased topological stability in the course of a Monte Carlo history are shown in
Figure 33.
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Figure 33: Histories of the topological charge |ν| on a 164 lattice for three sets of param-
eters, which correspond approximately to the same physical scale, a ≈ 0.08 fm [137].

Let us now return to the Wilson gauge action, which allows us to investigate also
the statistical distribution of the topological charges. Again at β = 5.85 on a 123 × 24

49Such a cancellation between zero modes of both chiralities is manifest for the free fermion, but in a
random gauge background this coincidence has a probability of measure zero [135].

50For instance, we observed at β = 6.15 on a 164 lattice that the index ν of DN is very stable as ρ rises
from 1.3 to 1.7; this changes less than 2% of the indices.
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lattice we compared the charges for the overlap-HF operator, and for the standard overlap
operator DN at ρ = 1.6 [103]. As an example, the histories of about 200 indices for the
same configurations are compared in Figure 34. Of course, these two types of indices are
considerably correlated, but only about 40% really coincide. Nevertheless both follow well

-10
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 0  50  100  150  200

in
de

x

configuration number

overlap-HF
standard overlap

Figure 34: Index histories for DovHF (see Section 7) and for the standard overlap operator
DN (at ρ = 1.6) for the same set of configurations.

the expected Gaussian distributions ∝ exp(−const. · ν2), with a width ≈ 3.3, see Figure
35. This width fixes the topological susceptibility (cf. eq. (2.15))

χtop =
1

V
〈ν2〉 , (8.15)

which is of importance to explain the heavy mass of the η′-meson [141].
In Figure 36 we present our results with DovHF and DN on the lattice referred to so

far, plus a result for DN at β = 6 in the same physical volume (lattice size 163 × 32). We
also mark the continuum extrapolation according to Ref. [142], which is fully consistent
with our results. That measurement of χtop was based on DN indices on L4 lattices.51

The resulting value for χtop is compatible with the Witten-Veneziano scenario that much
of the η′ mass is generated by a U(1) anomaly [141].

8.4 The ε-regime

We first repeat that the ε-regime of QCD is characterised by a relatively small volume,
i.e. the correlation length ξ exceeds the linear box size L. Together with the requirement

51A compilation of earlier lattice results for χtop (with various methods) is given in Ref. [14].
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Figure 35: The histogram of DovHF indices (on the left) and of DN indices (on the right),
on a 123 × 24 lattice at β = 5.85. In both cases, 1013 configurations are included [103].

(8.3) this amounts to the condition52

1

mπ

> L� 1

4πFπ
. (8.16)

In such a box, the p-expansion of χPT fails, in particular because of the importance of
the zero modes. However, the latter can be treated separately by means of collective
variables, and the higher modes — along with the pion mass — are then captured by the
ε-expansion [122]. One now counts the ratios

mπ

ΛQCD
∼ p2

Λ2
QCD

∼ 1

(LFπ)2
(8.17)

as small quantities in the same order.
This setting, where pions are squeezed into a tiny box, cannot be considered physical.

Nevertheless there is a strong motivation for its numerical study: the point is that the
finite size effects are parametrised by the LECs of the effective chiral Lagrangian as they

52In such small volumes the notion of mπ is problematic, but this inequality can be interpreted by
referring to the would-be pion mass in an extended volume.
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Figure 36: The topological susceptibility measured by indices of DovHF and of DN, in a
volume V = (1.48 fm)3×2.96 fm, with two different lattice spacings a. Our data — given
in detail in Ref. [103] — agree well with the continuum extrapolation in Ref. [142].

occur in infinite volume. Hence the physical values of the LECs can (in principle) be
evaluated even in such an unphysically small box, as we mentioned in the introduction to
Section 8.

Unfortunately, results for the LECs in the ε-regime are only available in the quenched
approximation so far, hence they are affected by (mostly logarithmic) finite size effects
[143]. So that the final results by this method still have to wait for the feasibility of
QCD simulations with dynamical, chiral quarks. These prospects will be commented on
in Subsection 9.2.

8.4.1 A 3-loop calculation in the ε-expansion

The chiral symmetry breaking for two flavours is locally isomorphic to orthogonal groups,

SU(2)⊗ SU(2)→ SU(2) ∼ O(4)→ O(3) . (8.18)

Generally, the spontaneous symmetry breaking O(N) → O(N − 1) generates N − 1
NGBs.53 They can be described by the non-linear σ-model and studied with the formalism
of χPT. In d = 3 and d = 4 the corresponding Lagrangian involves an infinite string of
terms, which can be ordered by the power of the momenta involved. In a volume V = Ld

(with periodic boundary conditions) we count the momenta as ∂µ = O(L−1) and obtain

53There is, however, no other symmetry breaking O(N) → O(n), N > n, which is locally isomorphic
to SU(Nf )⊗ SU(Nf)→ SU(Nf ) for any Nf .
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the leading terms

L(sym)[�S] =
F 2

2
∂µ�S∂µ�S +

1

2
g

(1)
4 ∂2�S∂2 �S +

1

4
g

(2)
4 (∂µ�S∂µ�S)2

+
1

4
g

(3)
4 (∂µ�S∂ν �S)2 +O(L−6) , �S 2(x) ≡ 1 , (8.19)

where we attach an independent LEC to each term. We may also add terms that break
the O(N) symmetry explicitly through a small, constant magnetic field �H, which adopts
the rôle of the light quark masses,

−L(sb)[�S] = Σ( �H �S) + h
(1)
2,0(

�H�S)2 + h
(2)
2,0(

�H �H)2

+ h
(1)
1,2(

�H �S) (∂µ�S∂µ�S) + h
(2)
1,2(

�H∂2�S) + . . . . (8.20)

Then we assemble the total Lagrangian L = L(sym) + L(sb).
We count H := | �H| = O(V −1), so that the NGBs with m2 = ΣH/F 2 feel the finite size

strongly, mL � 1. Then the partition function can be ε-expanded in the dimensionless
ratio ε = L2−d/F 2 in d = 3 and 4.

To compute the free energy F = − lnZ one first has to find a way to handle the zero
modes. We mentioned before that this can be achieved by using collective variable [122].
In the present case, one considers the magnetisation

�M :=

∫
ddx �S(x) = | �M |Ω�e , (8.21)

where �e = �H/| �H| is a fixed unit vector and Ω ∈ O(N) is integrated over in the func-
tional integral. (The corresponding unitary integration for quark flavours is discussed

in Refs. [144].) Here the vector field �S can be decomposed into one dominant compo-
nent plus fluctuations π(x) = (π1(x), . . . πN−1(x)), πi(x) = O(L1−d/2), which are treated
perturbatively. In this way, the partition function can be evaluated order by order.

This was first carried out to 2 loops in Ref. [125], where the functional measure was

treated with the Faddeev-Popov procedure (the constraint δ(�S 2 − 1) is implemented in
an exponential form). A different method was applied in Ref. [145], which was based on
the Polyakov measure [146]. That measure was originally introduced in the framework of
string theory and it captures the above constraint by integrating Dπ over the ε-expanded
elements of a metrics in flavour space. In this way we computed the partition function to
3 loops. In both cases dimensional regularisation [33] was used. It turned out that the
free energy is in fact perturbatively renormalisable order by order (although the number
of required counter terms increases rapidly in each order). This property is highly non-
trivial due to the requirement that the renormalised LECs must not pick up any volume
dependence. This is realised both, in d = 3 and in d = 4, for the large number of
terms occurring to the 3-loop order, thanks to numerous cancellations between forbidden
contributions. These calculations represent therefore a sensitive test for the validity of
the ε-expansion scheme, as well as the methods used for the treatment of the functional
measure.

Before chiral lattice fermions became available, the program of evaluating LECs through
simulations in the ε-regime was tested in the framework of this spin model [147].
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8.4.2 The chiral condensate

Chiral Random Matrix Theory (RMT) conjectures predictions for the low lying eigen-
values, ordered as λn, n = 1, 2, 3 . . . (excluding possible zero eigenvalues) of the Dirac
operator in the ε-regime; for a review, see Ref. [148]. More precisely, it conjectures densi-
ties of the dimensionless variables ΣV λn, where Σ is the chiral condensate in the effective
Lagrangian (8.2). Here we focus on the variable z := ΣV λ1,P , where λ1,P emerges from
the leading non-zero eigenvalue λ1 if the spectral circle of the overlap operator is mapped
stereographically onto the imaginary axis, λ1,P = |λ1/(1− λ1/2ρ)|.

These RMT predictions depend on |ν|, the absolute value of the topological charge.
Here we make use of the explicit formulae [149] for the density of the first non-zero

(re-scaled) eigenvalues z in the sectors |ν|, which we denote by ρ
(|ν|)
1 (z). For the lowest

eigenvalues, the particular density ρ
(0)
1 was first confirmed by staggered fermion simula-

tions (results are summarised in Ref. [148]). But in those studies the charged sectors54

yielded the very same density, in contradiction to RMT.
The distinction between the topological sectors was first observed to hold for DN,

following the RMT predictions to a good precision [151], if the linear box size exceeds a
lower limit of about L>∼ 1.1 fm (the exact limit depends on the criterion, of course).55 The
predictions for the densities of the leading non-zero eigenvalues in the sectors |ν| = 0, 1
and 2 are shown in Figure 37 on the left; we see that zero modes repel the finite eigenvalues.
On the right-hand-side of Figure 37 we present results for the corresponding cumulative
density with DN on a 104 lattice at β = 5.85 (box length 
 1.23 fm). Once the predicted
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Figure 37: On the left: RMT predictions for the leading non-zero Dirac eigenvalue in the
topological sectors with charge |ν| = 0, 1 and 2.
On the right: RMT predictions (lines) and simulation results for the corresponding
cumulative densities. The numerical data were obtained with DN on a 104 lattice at
β = 5.85 (see first Ref. in [151]), and they do essentially follow the RMT predictions.
The confidence level for the agreement of cumulative densities has been verified with the
Kolmogorov-Smirnov test [108].

54In that case, a topological charge has to be introduced by some traditional method like cooling [150].
55Meanwhile a topological splitting has also been observed to set in for staggered fermions if the link

variables are strongly smeared [152].
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densities ρ
(|ν|)
1 (marked by lines) are well reproduced, we can read off the value of Σ, which

is the only free fitting parameter for all topological sectors. We proceed to larger lattices
and show our result for DovHF on a 123 × 24 lattice at β = 5.85 in Figure 38 [103]. The
optimal fit shown in this plot, and its counterpart for the Neuberger operator DN, yield

Σ1/3 = 298(4) MeV (from DovHF) , Σ1/3 = 301(4) MeV (from DN) . (8.22)

These fits focus on the lowest eigenvalues resp. energies, where chiral RMT is most reliable.
Clearly, in this range the neutral sector (ν = 0) dominates. In the case of DN , the charged
sectors |ν| = 1 and 2 alone would favour a different Σ value [103]. Such ambiguities are
quite strong in the results with smeared staggered fermions [152]. In the case of DovHF,
however, a unique Σ works well for all the three sectors |ν| = 0, 1, 2, up to about z ≈ 3, as
Figure 38 shows. This range extends well beyond the Thouless value zThouless = F 2

π

√
V <∼ 1,

which is often understood as a threshold for the RMT applicability.
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Figure 38: The cumulative density of the (Möbius projected) lowest Dirac eigenvalue λ1,P

of the overlap-HF operator, in the topological sectors |ν| = 0, 1 and 2. We compare
the chiral RMT predictions to our data for z = ΣV λ1,P with Σ1/3 = 298 MeV — the
optimal value in the neutral sector (ν = 0). This value works well up to z ≈ 3 for
all topological sectors, i.e. well beyond the Thouless value zThouless <∼ 1, which is often
considered a theoretical bound for the applicability of these predictions.

As an alternative approach to test the agreement of our data with the chiral RMT,
and to extract a value for Σ, we now consider the mean values of the leading non-zero
Dirac eigenvalues λ1 in all the charge sectors up to |ν| = 5. In physical units, the results
〈λ1,P 〉 agree very well for different overlap operators and lattice spacings — see Figure
39 — although this consideration extends beyond very low energy. Each single result for
〈λ1,P 〉|ν| can then be matched to the RMT value for a specific choice of Σ. It is very
remarkable that all these 18 results are compatible with RMT if we choose

Σ = (290(6) MeV)3 , (8.23)
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as Figure 39 also shows.
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Figure 39: The mean values of the first non-zero Dirac eigenvalue (in physical units) in
the charge sectors |ν| = 0 . . . 5. All these numerical results [103] agree with chiral RMT
if we choose Σ1/3 = 290(6) MeV.

A renormalisation procedure for Σ obtained in this way is discussed in Ref. [153].
However, we will only use this quenched lattice result as a fitting input in Subsection
8.4.3, so we stay with the bare condensate Σ for our fixed lattice parameters.
We add that there are also first applications of this technique with dynamical fermions
[154].

8.4.3 The pion decay constant determined from the axial current correlator

In order to relate our quenched simulation results to the effective low energy theory,
we now refer to quenched χPT. In that framework, mesonic correlation functions were
calculated to the first order in Refs. [155, 156]. The vector current correlation function
vanishes, while the scalar and pseudoscalar correlators involve already in the first order
additional, quenching specific LECs, which obstruct the access to the physical LECs in
the Lagrangian (8.2). Therefore we first focus on the axial-vector correlator, which only
depends on Σ and Fπ in the first order. In particular we are going to compare our data to
the quenched χPT prediction in a (periodic) volume V = L3×T [156], for the topological
sectors with charge ±ν,

Z2
A · 〈A4(t)A4(0)〉|ν| = 2

(
F 2
π

T
+ 2mq Σ|ν|(zq)T h1(τ)

)
, (8.24)

h1(τ) =
1

2

(
τ 2 − τ +

1

6

)
, τ =

t

T
,

Σν(zq) = Σ

(
zq

[
Iν(zq)Kν(zq) + Iν+1(zq)Kν−1(zq)

]
+
ν

zq

)
,
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where
A4(t) = a3

∑
�x

ψ̄(t, �x)γ5γ4ψ(t, �x) (t > 0) (8.25)

is the bare axial-vector current at 3-momentum �p = �0. Iν and Kν are modified Bessel
functions, and zq := ΣV mq (in analogy to the dimensionless variable z in Subsection
8.4.2).

It is remarkable that this prediction in the ε-regime has the shape of a parabola with
a minimum at t = T/2. This is in qualitative contrast to the cosh behaviour, which
is standard in large volumes. Σ affects both, the curvature and the minimum of this
parabola, whereas Fπ only appears in the additive constant — that feature is helpful for
its evaluation.

A first comparison of this curve to lattice data was presented in Ref. [157], using DN

at β = 6, ρ = 1.4, amq = 0.01 on lattice sizes 103×24 and 124. For the anisotropic volume
the linear size of L 
 0.93 fm turned out to be too small: the data for 〈A4(t)A4(0)〉1,2
were incompatible with the parabola of eq. (8.24) for any positive Σ. This observation
is consistent with the lower bound for L that we also found for the agreement of the
microscopic spectrum with chiral RMT (L>∼ 1.1 fm, see Subsection 8.4.3).

Another observation in that study was that the corresponding Monte Carlo history in
ν = 0 is plagued by strong spikes, giving rise to large statistical errors. A huge statistics of
O(104) topologically neutral configurations would be required for conclusive results. These
spikes occur for the configurations with a tiny (non-zero) Dirac eigenvalue λ1,P . It agrees
again with chiral RMT that such configurations are most frequent in the topologically
neutral sector, see Figure 37. (A method called “low mode averaging” was designed and
applied to alleviate this problem [158].)

However, without applying that method we obtained a decent agreement with the
prediction (8.24) in the 124 lattice mentioned above (V 
 (1.12 fm)4) in the sector |ν| = 1
[157]. In view of the leading LECs, it seems unfortunately impossible to extract a value of
Σ from such data (although it is encoded in zq), since the theoretical curvature depends
on it only in an extremely weak way.56 On the other hand, Fπ can be extracted quite well
from the vicinity of the minimum at t = T/2, but the value found in Ref. [157] was too
large.

Next a study of that kind appeared in Ref. [132], which also used DN, at β = 5.85
(and ρ = 1.6), now on a 103 × 20 lattice. This work analysed the sectors |ν| = 0 and
1. As a reason for this limitation the authors referred to the condition |ν| � 〈ν2〉. As
we mentioned in Subsection 8.4.2, one expects 〈ν2〉 ∝ V (up to artifacts), see eq. (8.15),
hence this limitation was imposed by the volume.

In Ref. [103] we presented again results at β = 5.85 on a 123 × 24 lattice, where the
volume admits |ν| = 2. We measured for both, DovHF and DN, the axial-vector correlators
at the masses amq = 0.001, 0.003 and 0.005, which are safely in the ε-regime. We fitted
the data to eq. (8.24) by inserting the chirally extrapolated factors ZA (1.17 for DovHF

[103] and 1.45 for DN [129], see Subsection 8.2), along with the Σ values in eq. (8.22). For
each of the overlap operators we performed — at each of the quark masses — a global fit

56Only in the sector ν = 0 the sensitivity to Σ is significant, but there we run into the statistical
problem mentioned before.
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amq DovHF DN

0.001 Fπ = (110± 8) MeV Fπ = (109± 11) MeV

0.003 Fπ = (113± 7) MeV Fπ = (110± 11) MeV

0.005 Fπ = (115± 6) MeV Fπ = (111± 4) MeV

Table 2: Our results for the pion decay constant Fπ, evaluated in the ε-regime based on
the axial-current correlation function (8.24). These results are obtained at β = 5.85 on
a 123 × 24 lattice. The statistics was 100 propagators for DN at amq = 0.005, and 50
propagators in all other cases. Fπ was determined from fits to the quenched χPT formula
(8.24) in the range t/a ∈ [11, 13].

over the topological sectors that we considered. The result for DovHF is shown in Figure
40. It revealed for the first time a convincing distinction between the sectors |ν| = 1 and
|ν| = 2 — this predicted topological splitting could not be observed for DN up to now.
For DN at amq = 0.005 we also include the neutral sector; as expected it has clearly larger
errors than the charged sectors, but it is helpful nevertheless to reduce the error on Fπ
in the global fit. The values for Fπ obtained in this way for DovHF and for DN are in
accurate agreement, as Table 2 shows.
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Figure 40: Lattice data obtained with DovHF for the axial-current correlation functions,
measured separately in the topological sectors |ν| = 1 and 2. The curves are global fits
(over both sectors) to the quenched χPT formula (8.24), for each of our three masses in
the ε-regime. They single out the values of Fπ given in Table 2.

8.4.4 The pion decay constant based on the zero modes

At last we review our results based on an alternative method to evaluate Fπ in the ε-
regime [103]. This method was introduced in Ref. [159], and it involves solely the zero
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mode contributions to the pseudoscalar correlation function. Here one works directly in
the chiral limit. Let us briefly summarise the main idea of this approach.

Ref. [159] computed the chiral Lagrangian to the next-to-next-to-leading order in

quenched χPT, L(2)
qχPT. It can be written in a form that involves an auxiliary scalar field

Φ0, which is coupled to the quasi Nambu-Goldstone field U by a new LEC denoted as K.
The auxiliary field also contributes

L(2)[Φ0] =
α0

2Nc
∂µΦ0∂µΦ0 +

m2
0

2Nc
Φ2

0 (8.26)

to L(2)
qχPT, which brings in α0 and m0 as another two quenching specific LECs, in addition

to K. The field Φ0 supplements the quenching effects; in the dynamical case it decouples
form the field U .

It is ambiguous how to count these additional terms in the quenched ε-expansion. Ref.
[159] assumes the action terms with the coefficients α0 and K

√
Nc to be of O(1), whereas

the one with m0 is in O(ε). The last assumption is somewhat unusual (for instance, it
differs from the framework of Subsection 8.5.1). Nevertheless it is an acceptable possibility,
which simplifies this approach since it removes the auxiliary mass term from the dominant
order. If one further defines the dimensionless parameter

α := α0 − 4N2
cKFπ
Σ

, (8.27)

then only the LECs Fπ and α occur in this order.
For Nf valence quark flavours, this approach considers the correlation function of

the pseudoscalar density P (x) (defined in Subsection 8.2), which is decomposed into a
connected plus a disconnected part. In a spectral decomposition of the propagators one
obtains the residuum in terms of the zero modes,

lim
mq→0 (mqV )2〈P (x)P (0)〉ν = NfC

(1)
|ν| (x) +N2

fC
(2)
|ν| (x)

connected : C
(1)
|ν| (x) = −〈v†j (x)vk(x) · v†k(0)vj(0)〉|ν|

disconnected : C
(2)
|ν| (x) = 〈v†j(x)vj(x) · v†k(0)vk(0)〉|ν| . (8.28)

The vectors vj denote the (exact) zero modes of the Ginsparg-Wilson operator at mq = 0.

In the terms for C
(i)
|ν| these zero modes are summed over.

Next we consider the spatial integral
∫
d3xP (x)P (0). Now the above procedure for

the correlation function leads to functions C
(i)
|ν| (t), i = 1, 2, which are given explicitly in

Ref. [159]. In principle, these functions could be measured and fitted to the predictions in
order to determine Fπ and α. In practice, however, it is much more promising to consider
just the leading term in the expansion at t = T/2,

V

L2

d

dt
C

(i)
|ν| (t)|t=T/2 = D

(i)
|ν|s+O(s3) , s = t− T

2
, i = 1, 2 . (8.29)

The explicit slope functions D
(i)
|ν| in a volume V = L3×T are given in Refs. [159, 102, 103].

(They also involve a shape coefficient, which we computed for our anisotropic volume
according to the prescription in Ref. [125].)
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We evaluated the LECs Fπ and α from fits to the linear term in eq. (8.29). For each of
our lattice sizes and for each type of overlap operator we performed a global fit over the
topological sectors |ν| = 1 and 2, in a fitting range smax . The slopes tend to be stable over
a variety of fitting ranges s ∈ [−smax, smax], smax = a, 2a, 3a . . . . The deduced optimal
values for Fπ are shown in Figures 41, and the values for Fπ and α at smax/a = 1 are
given in Table 3. We see that the results for different lattice spacings and overlap Dirac
operators are in good agreement. Considering also α(smax), we found the most stable
plateau for DovHF [103].

Dirac operator DovHF DN DN

β 5.85 5.85 6
lattice size 123 × 24 123 × 24 163 × 32

Fπ (80± 14) MeV (74± 11) MeV (75± 24) MeV
α −17± 10 −19± 8 −21± 15

Table 3: Our results in the ε-regime for the pion decay constant Fπ — along with the
quenching specific LEC α given in eq. (8.27) — based on the zero mode contributions
to the pseudoscalar correlation function. We give results for the fitting range smax = a,
which is most adequate in the light of eq. (8.29).
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Figure 41: The results for Fπ based on a global fit of our data to a quenched χPT prediction
for the zero mode contributions to the pseudoscalar correlations function. We show the Fπ
results of a two parameter fit (for Fπ and α) over the ranges s ∈ [T/2− smax, T/2+ smax].

The values that we now obtain for Fπ is below those of Section 8.4.3, which used a
different observable and a different ε-counting rule for the quenched terms. In fact, the
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Fπ results in Table 3 are close to the phenomenological value (the latter is shifted down to
≈ 86 MeV if one extrapolates to the chiral limit [160]). Our values for Fπ and α obtained
from the zero modes are somewhat below the values reported in Ref. [159] based on the
same method. We suspect that the anisotropic shape of our volumes, T = 2L, could be
the main source of this deviation [161].

9 Epilogue

The central concept in this work are block variable RGTs (renormalisation group transfor-
mations) applied to lattice regularised quantum field theories. We described this method
for various types of field theoretic models, and focused in particular on the limit obtained
under iterated RGTs. This leads to lattice formulations with fascinating properties: in
particular the symmetries and the scaling quantities of the continuum theories can — in
principle — be reproduced exactly on the lattice. This amazing feature also includes exact
supersymmetry and precise topological sectors on the lattice. The corresponding perfect
lattice actions were constructed explicitly for the case of free particle. For interacting
fields this can in general only be achieved approximately (as an exception we considered
the Gross-Neveu model in the large N limit). We discussed perturbatively perfect actions
in various models, as well as issues of truncation, parameterisation and gauging. We also
demonstrated that different kinds of anomalies are represented correctly in this way.

We summarised a variety of simulation results based on such approximately perfect
actions. They reveal a number of properties which are superior to the standard lattice
formulations, in particular an improved symmetry and scaling behaviour. The chiral
symmetry of massless fermions can be rendered exact by means of the overlap formula.
This provides a lattice formulation, which performs very well in toy model simulations,
and it is currently being applied to QCD.

9.1 The status of overlap-HF applications in QCD with light
quarks

In Section 7 we reviewed our construction of overlap hypercube Dirac operators DovHF,
which are especially suitable at lattice spacings of a 
 0.093 fm and a 
 0.123 fm. In
both cases, they display a strongly improved locality compared to the standard overlap
operator DN. Hence DovHF defines chiral fermions on coarser lattices.

Section 8 summarised quenched simulations with DovHF and with DN in a volume
V 
 (1.48 fm)3 × (2.96 fm) at β = 5.85 and at β = 6.

Subsection 8.2 dealt with the p-regime, where we measured the meson masses mπ and
mρ (though only the former was presented here), the quark mass mPCAC (based on the
axial Ward identity) and the pion decay constant Fπ at bare quark masses ranging from
16.1 MeV to 161 MeV. The results for mπ and mρ are similar for DovHF and DN. On the
other hand, for DovHF the quark mass mPCAC is much closer to mq than in the standard
overlap formulation. This implies ZA ≈ 1, which is favourable for the connection to per-
turbation theory. Regarding Fπ, it turned out that the data obtained in the p-regime can
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hardly be extrapolated to the chiral limit.

In Subsection 8.3 we discussed a way to stabilise the topological sector, as well as the
distribution of a large number of topological charges defined by the fermion indices of
DovHF or of DN. We found histograms which approximate well a Gaussian distribution,
consistent with the conservation of parity invariance. The resulting topological suscepti-
bility is in good agreement with the literature, and with the Witten-Veneziano scenario.

In Subsections 8.4 we proceeded to the ε-regime, where we first summarised a 3-loop
calculation in the framework of the ε-expansion. Numerically we determined a value for
the chiral condensate from the distribution of the lowest eigenvalues. For both, DovHF

and DN we identified Σ close to (300 MeV)3.
We evaluated Fπ in the ε-regime in two ways, from the axial-current correlation and

from the zero mode contributions to the correlation of the pseudoscalar density. These two
methods handle the ε-counting of the quenched terms differently, and they yield different
values for Fπ. The axial-current method leads to Fπ ≈ 110 MeV, which is consistent
with part of quenched results in the literature. The zero mode method leads to a lower
Fπ, in the vicinity of the phenomenological value. The result of Ref. [158] — empoly-
ing yet another method, based on the ∆I = 1/2 rule, still in the ε-regime — is in between.

From the current results, we conclude that the methods applied here do have the
potential to evaluate at least the leading LECs from lattice simulations in the ε-regime.
The quenched data match the analytical predictions qualitatively (if the volume is not too
small) and — in the setting we considered — they lead to results in the magnitude of the
LECs in Nature. However, the quenched results are volume dependent and in addition
ambiguous: different methods yield different values.

For values that can be confronted with phenomenology in detail, simulations with
dynamical quarks will be needed. In particular the ε-regime requires then dynamical
Ginsparg-Wilson fermions. This regime is promising in view of the lattice size. Also the
option to extract physical information from single topological sectors is attractive, since
it is very difficult to change the sector frequently in the course of Monte Carlo histories.
The question is if one is able to handle sufficiently small quark masses in dynamical
simulations.

9.2 Prospects for dynamical simulations with chiral fermions

We just pointed out that the results for light quarks can be linked successfully to χPT
(Chiral Perturbation Theory), but to some extent they are obstructed up to now by the
quenched approximation. Quenching has been necessary so far in QCD simulations with
chiral quarks due to limitations in the computational resources.

We hope to overcome this limitation — and the systematic errors that it causes —
in the foreseeable future, and to be able to proceed to simulations with dynamical chiral
quarks. However, in addition to powerful machines this step also requires new algorithmic
tools, which are currently under consideration. Also in this respect overlap-HFs open up
new perspectives.

Due to the similarity with the hypercubic kernel, a low polynomial of this kernel can be
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used as a numerically cheap way to evaluate the fermionic force in the Hybrid Monte Carlo
(HMC, [77]) algorithm. This approach is conceptually related to the algorithm that we
used for the simulation of quasi-perfect staggered fermions (see Ref. [76] and Subsection
6.3.2). Also for the overlap-HF formulations of Ref. [74] it is under investigation in the two-
flavour Schwinger model. First the extreme case of using directly DHF in the force term
was studied in Ref. [162], which reported a decreasing acceptance rate for an increasing
volume. However, it turned out that the acceptance rate can be improved by an order
of magnitude by correcting the fermionic force term at least to a low accuracy like 0.005,
which allows for efficient HMC simulations with very light (degenerate) overlap-HFs [163].
Of course, the overlap operator has be to very precise in the Metropolis accept/reject step
(we set it to 10−16). We verified the acceptance rate as well as algorithmic requirements,
namely area conservation and reversibility.

In our simulations at β = 5 on a 16×16 lattice (with the plaquette gauge action) [163]
we confirmed the similarity between the kernel and the overlap operator by considering
the spectra, and we observed a high level of locality for this formulation. The characteris-
tic decay hardly changes in the fermion mass range 0.03 . . . 0.24, and the locality is by far
superior to the standard overlap operator. As an observable we evaluate the chiral con-
densate at light fermion masses, based on the ratio between low lying Dirac eigenvalues in
different topological sectors (the relevant formulae were taken from Ref. [164]). This rep-
resent one of the first measurements with dynamical overlap fermions. Our results for the
chiral condensate at various masses are in excellent agreement with analytic predictions,
which were obtained with bosonisation and low energy approximations [165].

In QCD, simulations with dynamical overlap fermions are still in an early stage; for
recent status reports we refer to Refs. [166]. Regarding the approximately chiral fermion
formulations explained in this work, dynamical HFs are currently investigated, and in-
teresting results for their phase diagram are available already [167]. It provides access
to a mass ratio mπ/mρ ≤ 0.8 at the thermal crossover, which is not the case for Wilson
fermions. In this context we add that the truncated classically perfect action of Ref. [14],
and the “chirally improved” formulation of Refs. [100], are currently applied in dynamical
simulations as well [168].

Also the topology conserving gauge actions — that we discussed in Subsection 8.3
— appears to be helpful in simulations with dynamical quarks due to the suppression of
small plaquette value, as suggested in Ref. [137] and tested in Ref. [139].

The quenched studies reported here show that we have methods at hand, which are
applicable for instance for the evaluation of Low Energy Constants in the chiral Lagrangian
from first principles. These constants play a prominent rôle in QCD at low energy, hence
their determination is a major challenge and a sensitive test for QCD, to be addressed
with dynamical Ginsparg-Wilson fermions.
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