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1 Introduction.

The unification program aiming at a unified description of the known interactions as well as a
consistent quantum formulation for gravity, nowadays mostly points towards higher-dimensional
supersymmetric theories. At present the most promising, however still conjectural, candidate
should live in eleven dimensions and goes under the name of M-theory [1]. The theoretical
(and phenomenological) consistency requirements put on any possible candidate for unification
necessarily lead to a systematic investigation of the properties of Clifford algebras and spinors
in space-times of arbitrary dimension and signature. The generalized supersymmetries going
beyond the standard H3LS scheme [2] admit the presence of bosonic abelian tensorial central
charges associated with the dynamics of extended objects (branes). It is widely known since
the work of [3] that supersymmetries are related to division algebras. Indeed, even for the
generalized supersymmetries, classification schemes based on the associative division algebras
(R, C, H) are now available. For what concerns the remaining division algebra, the octonions,
much less is known due to the complications arising from their non-associativity. Octonionic
structures were, nevertheless, investigated in [4, 5] in application to superstring theory.

Octonions are not just a curiosity. They are the maximal division algebra. This fact alone
already justifies that they should receive the same kind of attention paid to, let’s say, the
maximal supergravity. However, their importance is more than that, they are at the very
heart of many exceptional structures in mathematics and can be held responsible for their
existence. Among these exceptional structures we can cite the 5 exceptional Lie algebras and
the exceptional Jordan algebras. Indeed, the G2 Lie algebra is the automorphism group of
the octonions, while F4 is the automorphism group of the 3 × 3 octonionic-valued hermitian
matrices realizing the exceptional J3(O) Jordan algebra. F4 and the remaining exceptional Lie
algebras E6, E7, E8 are recovered from the so-called “magic square Tits’ construction” which
associates a Lie algebra to any given pair of division algebras, if at least one of these algebras
coincides with the octonionic algebra [6].

It has been pointed out several times, [7, 8] that the exceptional Lie algebras fit well into
the grand-unification scenario. Moreover, the E8 Lie algebra enters, through the E8×E8 tensor
product, the anomaly-free heterotic string, while the G2 holonomy of seven-dimensional mani-
folds is required, on phenomenological basis, to produce 4-dimensional N = 1 supersymmetric
field theories by compactification of the eleven dimensions. This partial list of scattered pieces
of evidence has brought to suggest, see e.g. [8], that for some deep reasons, Nature seems to
prefer exceptional structures. In this context it deserves to be mentioned the special role of
the exceptional Jordan algebra J3(O), not only associated to the unique consistent quantum
mechanical system (in the Jordan framework, see [9]) based on a non-associative algebra, but
also leading to a unique matrix Chern-Simon theory of Jordan type, see [10].

In this talk I will discuss the investigations presented in [11, 12] concerning the possibility
of realizing general supersymmetries in terms of the non-associative division algebra of the
octonions. In particular in [11] it was shown that the M algebra which supposedly underlines
the M-theory comes in two (and only two, due to the absence of the complex and of the
quaternionic structures) variants. Besides the standard realization of the M-algebra which
involves real spinors and makes therefore use of the real structure, an alternative formulation,
requiring the introduction of the octonionic structure, is also possible and can be exploited. This
is made possible due to the existence of an octonionic description for the Clifford algebra defining
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the 11-dimensional Minkowskian spacetime and its related spinors. The features of this second
variant, the octonionic M-superalgebra, are puzzling. While it is not at all surprising that it
contains fewer bosonic generators, 52, w.r.t. the 528 of the standard M-algebra (this is after
all expected, since the imposition of an extra structure always puts a constraint on a theory),
what really came as an unexpected surprise is the fact that new conditions, not present in the
standard M-theory, are now found. These conditions imply that the different brane-sectors
are no longer independent. The octonionic 5-brane alone contains the whole set of degrees of
freedom and is therefore equivalent to the octonionic M1 and M2 sectors. We can write this
equivalence, symbolically, as M5 ≡ M1 +M2. This result is indeed very intriguing. It implies
that quite non-trivial structures are found when investigating the octonionic construction of
the M-theory. It is quite tempting to think that the exceptional structures that we mentioned
before should be better understood from this octonionic variant of the M-algebra, rather than
the standard real M-algebra.

The next passage consists in defining the closed algebraic structure which realizes the octo-
nionic superconformal M-algebra. It turns out that the OSp(1, 64) superconformal algebra of
the real M-theory is replaced in the octonionic case by the OSp(1, 8|O) superalgebra of super-
matrices with octonionic-valued entries and total number of 7 + 232 = 239 bosonic generators.

2 On Clifford algebras.

The classification of generalized supersymmetries requires the preliminary classification of Clif-
ford algebras and spinors and of their association with division algebras.

To make this paper self-consistent, in this section we review the classification of the Clifford
algebras associated to the R,C, H associative division algebras, following [13] and [14].

The most general irreducible real matrix representations of the Clifford algebra

ΓµΓν + ΓνΓµ = 2ηµν , (1)

with ηµν being a diagonal matrix of (p, q) signature (i.e. p positive, +1, and q negative, −1,
diagonal entries)1 can be classified according to the property of the most general S matrix
commuting with all the Γ’s ([S,Γµ] = 0 for all µ). If the most general S is a multiple of
the identity, we get the normal (R) case. Otherwise, S can be the sum of two matrices, the
second one multiple of the square root of −1 (this is the almost complex, C case) or the linear
combination of 4 matrices closing the quaternionic algebra (this is the H case). According to
[13] the real irreducible representations are of R, C, H type, according to the following table,
whose entries represent the values p− q mod 8

R C H
0, 2 4, 6
1 3, 7 5

(2)

The real irreducible representation is always unique unless p − q mod 8 = 1, 5. In these
signatures two inequivalent real representations are present, the second one recovered by flipping
the sign of all Γ’s (Γµ �→ −Γµ).

1Throughout this paper it will be understood that the positive eigenvalues are associated with space-like
directions, the negative ones with time-like directions.
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Let us denote as C(p, q) the Clifford irreps corresponding to the (p, q) signatures. The
normal (R), almost complex (C) and quaternionic (H) type of the corresponding Clifford
irreps can also be understood as follows. While in the R-case the matrices realizing the irrep
have necessarily real entries, in the C-case matrices with complex entries can be used, while in
the H-case the matrices can be realized with quaternionic entries.

Let us discuss the simplest examples. The C-type C(0, 1) Clifford algebra can be expressed

either through the 2× 2 matrix with real-valued entries
(

0 1
−1 0

)
or through the imaginary

number i.
The H-type Clifford algebra C(0, 3), on the other hand, can be realized as follows:

i) with three 4× 4 matrices with real entries, given by the tensor products τA ⊗ τ1, τA ⊗ τ2 and
12 ⊗ τA, where the matrices τA, τ1 and τ2 furnish a real irrep of C(2, 1)

(τA =

(
0 1
−1 0

)
, τ1 =

(
0 1
1 0

)
, τ2 =

(
1 0
0 −1

)
) ,

ii) with three 2× 2 complex-valued matrices given by
(

0 1
−1 0

)
,

(
0 i
i 0

)
and

(
i 0
0 i

)
,

iii) with the three imaginary quaternions ei (see for more details the section 3).
The formulas at the items i) and ii) provide the real and complex representations, respec-

tively, for the imaginary quaternions. They can be straightforwardly extended to provide real
and complex representations for the H-type Clifford algebras by substituting the quaternionic
entries with the corresponding representations (the quaternionic identity 1 being replaced in
the complex representation by the 2× 2 identity matrix 12 and by the 4× 4 identity matrix 14

in the real representation).
It is worth noticing that in the given signatures p − q mod 8 = 0, 4, 6, 7, without loss of

generality, the Γµ matrices can be chosen block-antidiagonal (generalized Weyl-type matrices),
i.e. of the form

Γµ =

(
0 σµ

σ̃µ 0

)
(3)

In these signatures it is therefore possible to introduce the Weyl-projected spinors, whose
number of components is half of the size of the corresponding Γ-matrices2.

A very convenient presentation of the irreducible representations of Clifford algebras with the
help of an algorithm allowing to single out, in each arbitrary signature space-time, a represen-
tative (up to, at most, the sign flipping Γµ ↔ −Γµ) in each irreducible class of representations
of Clifford’s gamma matrices has been given in [14]. We recall and extend here the results
presented in [14], making explicit the connection between the maximal-Clifford algebras in the
table (6) below and their division-algebra property.

The construction goes as follows. At first one proves that starting from a given D spacetime-
dimensional representation of Clifford’s Gamma matrices, one can recursively construct D + 2
spacetime dimensional Clifford Gamma matrices with the help of two recursive algorithms.
Indeed, it is a simple exercise to verify that if γi’s denotes the d-dimensional Gamma matrices
of a D = p + q spacetime with (p, q) signature (namely, providing a representation for the

2This notion of Weyl spinors, which is convenient for our purposes, is different from the one usually adopted
in connection with complex-valued Clifford algebras and has been introduced in [14].
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C(p, q) Clifford algebra) then 2d-dimensional D + 2 Gamma matrices (denoted as Γj) of a
D + 2 spacetime are produced according to either

Γj ≡
(
0 γi

γi 0

)
,

(
0 1d

−1d 0

)
,

(
1d 0
0 −1d

)

(p, q) �→ (p+ 1, q + 1). (4)

or

Γj ≡
(

0 γi

−γi 0

)
,

(
0 1d

1d 0

)
,

(
1d 0
0 −1d

)

(p, q) �→ (q + 2, p). (5)

It is immediate to notice that the three matrices τA, τ1, τ2 introduced before and realizing the
Clifford algebra C(2, 1) are obtained by applying either (4) or (5) to the number 1, i.e. the
one-dimensional realization of C(1, 0).

All Clifford algebras of R-type are obtained by recursively applying the algorithms (4) and
(5) to the Clifford algebra C(1, 0) (≡ 1) and the Clifford algebras of the series C(0, 7+8m) (with
m non-negative integer), which must be previously known. Similarly, all Clifford algebras of H-
type are obtained by recursively applying the algorithms to the Clifford algebras C(0, 3+ 8m),
while the C-type Clifford algebras are obtained by recursively applying the algorithms to the
Clifford algebras C(0, 1+8m) and C(0, 5+8m). This is in accordance with the scheme illustrated
in the table below, taken from [14]. We get

Table with the maximal Clifford algebras (up to d = 256).
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1 ∗ 2 ∗ 4 ∗ 8 ∗ 16 ∗ 32 ∗ 64 ∗ 128 ∗ 256 ∗

R (1, 0) ⇒ (2, 1) ⇒ (3,2) ⇒ (4,3) ⇒ (5,4) ⇒ (6,5) ⇒ (7,6) ⇒ (8,7) ⇒ (9,8) ⇒

(1,2) → (2,3) → (3,4) → (4,5) → (5,6) → (6,7) → (7,8) →
↗

C (0,1)

↘

(3,0) → (4,1) → (5,2) → (6,3) → (7,4) → (8,5) → (9,6) →

(1,4) → (2,5) → (3,6) → (4,7) → (5,8) → (6,9) →
↗

H (0,3)

↘

(5,0) → (6,1) → (7,2) → (8,3) → (9,4) → (10,5) →

(1,6) → (2,7) → (3,8) → (4,9) → (5,10) →
↗

C (0,5)

↘

(7,0) → (8,1) → (9,2) → (10,3) → (11,4) →

(1,8) → (2,9) → (3,10) → (4,11) → (5,12) →
↗

R/O (0,7)

↘

(9,0) → (10,1) → (11,2) → (12,3) → (13,4) →

(1,10) → (2,11) → (3,12) →
↗

C (0,9)

↘

(11,0) → (12,1) → (13,2) →

(1,12) → (2,13) →
↗

H (0,11)

↘

(13,0) → (14,1) →

(1,14) →
↗

C (0,13)

↘

(15,0) →

(1,16) →
↗

R/O (0,15)

↘

(17,0) →

(6)

Concerning the above table some remarks are in order. The columns are labeled by the
matrix size d (in real components) of the maximal Clifford algebras. Their signature is denoted
by the (p, q) pairs. Furthermore, the underlined Clifford algebras in the table can be named as
“primitive maximal Clifford algebras”. The remaining maximal Clifford algebras appearing in
the table are the “maximal descendant Clifford algebras”. They are obtained from the primitive
maximal Clifford algebras by iteratively applying the two recursive algorithms (4) and (5).
Moreover, any non-maximal Clifford algebra is obtained from a given maximal Clifford algebra
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by deleting a certain number of Gamma matrices (this point has been fully explained in [14]
and will not be further elaborated here).

The maximal Clifford algebras generated by the C(0, 7 + 8m) series are associated to both
the real (R) and octonionic (O) division algebras, since (1), for the (0, 7+8m)-signature, can be
realized either associatively (in the normal, R, case), or non-associatively through the octonions
(see [14] and [16]).

The primitive maximal Clifford algebras C(0, 3) and C(0, 7) can be explicitly realized
through, respectively, three 4 × 4 matrices (as already recalled) and seven 8 × 8 matrices
given by

C(0, 3) ≡
τA ⊗ τ1,
τA ⊗ τ2,
12 ⊗ τA.

(7)

and

C(0, 7) ≡

τA ⊗ τ1 ⊗ 12,
τA ⊗ τ2 ⊗ 12,
12 ⊗ τA ⊗ τ1,
12 ⊗ τA ⊗ τ2,
τ1 ⊗ 12 ⊗ τA,
τ2 ⊗ 12 ⊗ τA,
τA ⊗ τA ⊗ τA.

(8)

The complex primitive maximal Clifford algebras C(0, 1) and C(0, 5) can be obtained from
C(1, 2) and C(0, 7), respectively, by deleting two gamma-matrices. From C(0, 7) we can, e.g.,
consider the last tensor-product column, eliminate the two terms containing τ1 and τ2 and
replacing 12 �→ 1, τA �→ i, to get

C(0, 5) ≡

τA ⊗ τ1,
τA ⊗ τ2,
iτ1 ⊗ 12,
iτ2 ⊗ 12,
iτA ⊗ τA.

(9)

It is worth pointing out that the C(0, 1) and C(0, 5) series were correctly considered as
“descendant” series in [14] due to the fact that they can be obtained from C(1, 2), C(0, 7)
after erasing extra-Gamma matrices. We find however convenient here to explicitly insert them
in table (6) and consider them as “primitive”, since they admit a different division-algebra
structure (they are almost complex, C) w.r.t. the normal (R)-type maximal Clifford algebras
they are derived from.

The remaining primitive maximal Clifford algebras C(0, x+ 8m), for positive integers m =
1, 2, . . . and x = 1, 3, 5, 7, can be recovered from the mod 8 properties of the Gamma-matrices.
Let τ i be a realization of C(0, x) for x = 1, 3, 5, 7. By applying the (4) algorithm to C(0, 7)
we construct at first the 16× 16 matrices realizing C(1, 8) (the matrix with positive signature
is denoted as γ9, γ9

2 = 1, while the eight matrices with negative signatures are denoted as γj ,
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j = 1, 2 . . . , 8, with γj
2 = −1). We are now in the position [14] to explicitly construct the whole

series of primitive maximal Clifford algebras C(0, x+ 8n), through the formulas

C(0, x+ 8n) ≡

τ i ⊗ γ9 ⊗ . . . . . . . . .⊗ γ9,
14 ⊗ γj ⊗ 116 ⊗ . . . . . . . . .⊗ 116,
14 ⊗ γ9 ⊗ γj ⊗ 116 ⊗ . . . . . . . . .⊗ 116,
14 ⊗ γ9 ⊗ γ9 ⊗ γj ⊗ 116 ⊗ . . . . . . . . .⊗ 116,
. . . . . . . . . ,
14 ⊗ γ9 ⊗ . . . . . . ⊗γ9 ⊗ γj,

(10)

Please notice that the tensor product of the 16-dimensional representation is taken n times.

3 On division algebras.

In the previous section we furnished a simple algorithm to explicitly construct any given Clifford
irrep of specified division-algebra type. It is convenient to review here the basic features of
division algebras which will be needed in the following.

The four division algebra of real (R) and complex (C) numbers, quaternions (H) and
octonions (O) possess respectively 0, 1, 3 and 7 imaginary elements ei satisfying the relations

ei · ej = −δij + Cijkek, (11)

(i, j, k are restricted to take the value 1 in the complex case, 1, 2, 3 in the quaternionic case and
1, 2, . . . , 7 in the octonionic case; furthermore, the sum over repeated indices is understood).

Cijk are the totally antisymmetric division-algebra structure constants. The octonionic
division algebra is the maximal, since quaternions, complex and real numbers can be obtained
as its restriction. The totally antisymmetric octonionic structure constants can be expressed
as

C123 = C147 = C165 = C246 = C257 = C354 = C367 = 1 (12)

(and vanishing otherwise).
The octonions are the only non-associative, however alternative (see [17]), division algebra.
Due to the antisymmetry of Cijk, it is clear that we can realize (1) by associating the (0, 3)

and (0, 7) signatures to, respectively, the imaginary quaternions and the imaginary octonions.
For our later purposes it is of particular importance the notion of division-algebra principal

conjugation. Any element X in the given division algebra can be expressed through the sum

X = x0 + xiei, (13)

where x0 and xi are real, the summation over repeated indices is understood and the positive
integral i are restricted up to 1, 3 and 7 in the C, H and O cases respectively. The principal
conjugate X∗ of X is defined to be

X∗ = x0 − xiei. (14)

It allows introducing the division-algebra norm through the product X∗X. The normed-one
restrictions X∗X = 1 select the three parallelizable spheres S1, S3 and S7 in association with
C, H and O respectively.

Further comments on the division algebras and their relations with Clifford algebras can be
found in [14] and [17].
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4 On fundamental spinors.

In section 2 we discussed the properties of the Clifford irreps, presenting a method to explicitly
construct them and mentioning their division-algebra structure. It is worth reminding that the
division-algebra character of fundamental spinors does not necessarily (depending on the given
space-time) coincide with the division-algebra type of the corresponding Clifford irreps.

Fundamental spinors carry a representation of the generalized Lorentz group with a minimal
number of real components in association with the maximal, compatible, allowed division-
algebra structure.

The following table, taken from the results in [18] and [13], see also [14], presents the
comparison between division-algebra properties of Clifford irreps (Γ) and fundamental spinors
(Ψ), in different space-times parametrized by ρ = s− t mod 8. We have

ρ Γ Ψ
0 R R
1 R R
2 R C
3 C H
4 H H
5 H H
6 H C
7 C R

(15)

It is clear from the above table that, for ρ = 2, 3, the fundamental spinors can accommodate
a larger division-algebra structure than the corresponding Clifford irreps. Conversely, for ρ =
6, 7, the Clifford irreps accommodate a larger division-algebra structure than the corresponding
spinors. In several cases this mismatch of division-algebra structures plays an important role.
For instance in [11] a method was introduced to construct superconformal algebras based on the
minimal division algebra structure common to both Clifford irreps and fundamental spinors.
This method can be straightforwardly modified to produce extended superconformal algebras
based on the largest division-algebra structure. The price to be paid, in this case, would imply
the introduction, for ρ = 2, 3, of reducible Clifford representations and, conversely, for ρ = 6, 7
of non-minimal spinors.

The reason behind the mismatch can be easily understood on the basis of the algorithmic
construction of Section 2 and of table (6). Indeed, all the maximal, descendant Clifford algebras
appearing in table (6) have all block-antidiagonal Gamma matrices with the exception of a single

Gamma matrix given by

(
1 0
0 −1

)
. Therefore, all non-maximal Clifford algebras which

are produced by erasing this extra Gamma matrix (a detailed discussion can be found in
[14]) are of block-antidiagonal form. We recall now that the fundamental spinors carry a
representation of the generalized Lorentz group whose generators are given by the commutators
among Gamma matrices, [Γi,Γj ]. For the non-maximal Clifford algebras under considerations
these commutators are all in 2×2 block-diagonal forms, allowing to introduce a (generalized, in
the sense specified in [14]) Weyl projection for fundamental spinors, with non-vanishing upper
or lower components.
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It is convenient to explicitly discuss the simplest Minkowskian cases where the mismatch
appears (the general procedure can be straightforwardly read from table (6)). In the ordinary
(3, 1) space-time the (R) Clifford irrep is obtained as the non-maximal Clifford algebra (3, 1) ⊂
(3, 2), obtained from the maximal (R) (3, 2) after erasing a time-like Gamma matrix. On
the other hand, the fundamental complex spinors are obtained from the reducible Clifford
representation (3, 1) ⊂ (4, 1), obtained by erasing a space-like Gamma matrix from the (C)
Clifford irrep (4, 1).

In the other Minkowskian cases we get
i) (4, 1): Γ coincides with the maximal Clifford (4, 1) (C), while Ψ is constructed in terms

of the reducible, non-maximal Clifford representation (4, 1) ⊂ (6, 1) (H),
ii) (7, 1): Γ coincides with the non-maximal Clifford (7, 1) ⊂ (7, 2) (H), while Ψ is con-

structed in terms of the reducible, non-maximal Clifford representation (7, 1) ⊂ (8, 1) (C),
iii) (8, 1): Γ coincides with the maximal Clifford (8, 1) (C), while Ψ is constructed in terms

of the reducible, non-maximal Clifford representation (8, 1) ⊂ (10, 1) (R).

5 Generalized supersymmetries: the M and F algebra

examples

Three matrices, denoted as A,B,C, have to be introduced in association with the three con-
jugations (hermitian, complex and transposition) acting on Gamma matrices [3]. Since only
two of the above matrices are independent we choose here, following [14], to work with A and
C. A plays the role of the time-like Γ0 matrix in the Minkowskian space-time and is used to
introduce barred spinors. C, on the other hand, is the charge conjugation matrix. Up to an
overall sign, in a generic (s, t) space-time, A and C are given by the products of all the time-like
and, respectively, all the symmetric (or antisymmetric) Gamma-matrices3. The properties of
A and C immediately follow from their explicit construction, see [3] and [14].

In a representation of the Clifford algebra realized by matrices with real entries, the conju-
gation acts as the identity, see (14). In this case the space-like gamma matrices are symmetric,
while the time-like gamma matrices are antisymmmetric, so that A can be identified with the
charge conjugation matrix CA.

For our purposes the importance of A and the charge conjugation matrix C lies on the fact
that, in a D-dimensional space-time (D = s+ t) spanned by d×d Gamma matrices, they allow
to construct a basis for d× d (anti)hermitian and (anti)symmetric matrices, respectively. It is
indeed easily proven that, in the real and the complex cases (the quaternionic case is different),

the

(
D
k

)
antisymmetrized products of k Gamma matrices AΓ[µ1...µk] are all hermitian or all

antihermitian, depending on the value of k ≤ D. Similarly, the antisymmetrized products
CΓ[µ1...µk ] are all symmetric or all antisymmetric.

For what concerns the M-algebra, the 32-component real spinors of the (10, 1)-spacetime
admit anticommutators {Qa, Qb} which are 32 × 32 symmetric real matrices with, at most,
32 + 32×31

2
= 528 components. Expanding the r.h.s. in terms of the antisymmetrized product

3Depending on the given space-time (see [3] and [14]), there are at most two charge conjugations matrices,
CS , CA, given by the product of all symmetric and all antisymmetric gamma matrices, respectively. In special
space-time signatures they collapse into a single matrix C.
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of Gamma matrices, we get that it can be saturated by the so-called M-algebra

{Qa, Qb} = (AΓµ)ab P
µ +

(
AΓ[µν]

)
ab
Z [µν] +

(
AΓ[µ1...µ5]

)
ab
Z [µ1...µ5]. (16)

Indeed, the k = 1, 2, 5 sectors of the r.h.s. furnish 11 + 55 + 462 = 528 overall components.
Besides the translations P µ, in the r.h.s. the antisymmetric rank-2 and rank-5 abelian tensorial
central charges, Z [µν] and Z [µ1...µ5] respectively, appear.

The (16) saturated M-algebra admits a finite number of subalgebras which are consistent
with the Lorentz properties of the Minkowskian eleven dimensions. There are 6 such subalgebras
which are recovered by setting either one or two among the three sets of tensorial central
charges P µ, Z [µν], Z [µ1...µ5] identically equal to zero (a completely degenerate subalgebra is
further obtained by setting the whole r.h.s. identically equal to zero).

The fact that the fundamental spinors in a (10, 2)-spacetime also admit 32 components is
due to the existence of the Weyl projection. This implies that the saturated M-algebra admits
a (10, 2) space-time presentation, the so-called F -algebra, in terms of (10, 2) Majorana-Weyl
spinors Q̃ã, ã = 1, 2, . . . , 32.

In the case of Weyl projected spinors the r.h.s. has to be reconstructed with the help
of a projection operator which selects the upper left block in a 2 × 2 block decomposition.

Specifically, ifM is a matrix decomposed in 2×2 blocks asM =

( M1 M2

M3 M4

)
, we can define

P (M) ≡ M1. (17)

The saturated M-algebra (16) can therefore be rewritten as{
Q̃ã, Q̃b̃

}
= P

(
ÃΓ̃µ̃ν̃

)
ãb̃
Z̃ [µ̃ν̃] + P

(
ÃΓ̃[µ̃1...µ̃6]

)
ãb̃
Z̃ [µ̃1...µ̃6], (18)

where all tilde’s are referred to the corresponding (10, 2) quantities. The matrices in the r.h.s.
are symmetric in the exchange ã ↔ b̃. This time the rank-2 and selfdual rank-6 antisymmetric
abelian tensorial central charges, Z̃ [µ̃ν̃] and respectively Z̃ [µ̃1...µ̃6], appear. Their total number
of components is 66 + 462 = 528, therefore proving the saturation of the r.h.s.. The saturated
equation (18) is named the F -algebra.

6 Real, complex and quaternionic generalized supersym-

metries.

For real n-component spinors Qa, the most general supersymmetry algebra is represented by

{Qa, Qb} = Zab, (19)

where the matrix Z appearing in the r.h.s. is the most general n×n symmetric matrix with total
number of n(n+1)

2
components. For any given space-time we can easily compute its associated

decomposition of Z in terms of the antisymmetrized products of k-Gamma matrices, namely

Zab =
∑

k

(AΓ[µ1...µk ])abZ
[µ1...µk ], (20)
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where the values k entering the sum in the r.h.s. are restricted by the symmetry requirement
for the a ↔ b exchange and are specific for the given spacetime. The coefficients Z [µ1...µk] are
the rank-k abelian tensorial central charges.

When the fundamental spinors are complex or quaternionic they can be organized in com-
plex (for the C and H cases) and quaternionic (for the H case) multiplets, whose entries are
respectively complex numbers or quaternions.

The real generalized supersymmetry algebra (19) can now be replaced by the most general
complex or quaternionic supersymmetry algebras, given by the anticommutators among the
fundamental spinors Qa and their conjugate Q

∗
ȧ (where the conjugation refers to the principal

conjugation in the given division algebra, see (14)). We have in this case

{Qa, Qb} = Zab , {Q∗
ȧ, Q

∗
ḃ} = Z∗

ȧḃ, (21)

together with

{Qa, Q
∗
ḃ} = Waḃ, (22)

where the matrix Zab (Z∗
ȧḃ is its conjugate and does not contain new degrees of freedom) is

symmetric, while Waḃ is hermitian.
The maximal number of allowed components in the r.h.s. is given, for complex fundamental

spinors with n complex components, by
ia) n(n+1) (real) bosonic components entering the symmetric n×n complex matrix Zab plus
iia) n2 (real) bosonic components entering the hermitian n× n complex matrix Waḃ.

Similarly, the maximal number of allowed components in the r.h.s. for quaternionic funda-
mental spinors with n quaternionic components is given by
ib) 2n(n+1) (real) bosonic components entering the symmetric n×n quaternionic matrix Zab

plus
iib) 2n2 − n (real) bosonic components entering the hermitian n× n quaternionic matrix Waḃ.

The previous numbers do not necessarily mean that the corresponding generalized super-
symmetry is indeed saturated. This is in particular true in the quaternionic case, see [15].

Any real generalized supersymmetry admitting a complex structure can be re-expressed
in a complex formalism with n-component complex spinors and total number of n(2n + 1)
(real) bosonic components split into n(n + 1) components entering the symmetric matrix Z
and n2 components entering the hermitian matrix W. The situation is different in the quater-
nionic case. The quaternionic structure requires a restriction on the total number of bosonic
generators. n-component quaternionic spinors can be described as 4n-component real spinors.
However, the r.h.s. of a quaternionic (21) and (22) superalgebra admits at most 4n2+n bosonic
components, instead of 8n2+2n of the most general supersymmetric real algebra. The Lorentz-
covariance further restricts the number of bosonic generators in a quaternionic supersymmetry
algebra.

We conclude this section mentioning the two big classes of subalgebras, respecting the
Lorentz-covariance, that can be obtained from (21) and (22) in both the complex and quater-
nionic cases. They are obtained by setting identically equal to zero either Z or W, namely

I) Zab ≡ Z∗
ȧḃ ≡ 0, so that the only bosonic degrees of freedom enter the hermitian matrix

Waḃ or, conversely,
II) Waḃ ≡ 0, so that the only bosonic degrees of freedom enter Zab and its conjugate matrix

Z∗
ȧḃ.
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Accordingly, in the following we will refer to the (complex or quaternionic) generalized
supersymmetries satisfying the I) constraint as “hermitian” (or “type I”) generalized super-
symmetries, while the (complex or quaternionic) generalized supersymmetries satisfying the II)
constraint will be referred to as “holomorphic” (or “type II”) generalized supersymmetries.

7 Generalized supersymmetries and the octonionic M-

superalgebra

As already recalled, in the D = 11 Minkowskian spacetime, where the M-theory should be
found, the spinors are real and have 32 components. Since the most general symmetric 32× 32
matrix admits 528 components, one can easily prove that the most general supersymmetry
algebra in D = 11 can be presented as

{Qa, Qb} = (CΓµ)abP
µ + (CΓ[µν])abZ

[µν] + (CΓ[µ1...µ5])abZ
[µ1...µ5] (23)

(where C is the charge conjugation matrix), while Z [µν] and Z [µ1...µ5] are totally antisymmetric
tensorial central charges, of rank 2 and 5 respectively, which correspond to extended objects
[21, 22], the p-branes. Please notice that the total number of 528 is obtained in the r.h.s as the
sum of the three distinct sectors, i.e.

528 = 11 + 66 + 462. (24)

The algebra (16) is called the M-algebra. It provides the generalization of the ordinary super-
symmetry algebra, recovered by setting Z [µν] ≡ Z [µ1...µ5] ≡ 0.

The octonionic M-superalgebra is introduced by assuming an octonionic structure for the
spinors which, in the D = 11 Minkowskian spacetime, are octonionic-valued 4-component
vectors. The algebra replacing (16) is given by

{Qa, Qb} = {Q∗
a, Q

∗
b} = 0, {Qa, Q

∗
b} = Zab, (25)

where ∗ denotes the principal conjugation in the octonionic division algebra and, as a result,
the bosonic abelian algebra on the r.h.s. is constrained to be hermitian

Zab = Zba
∗, (26)

leaving only 52 independent components.
The Zab matrix can be represented either as the 11 + 41 bosonic generators entering

Zab = P µ(CΓµ)ab + Zµν
O (CΓµν)ab, (27)

or as the 52 bosonic generators entering

Zab = Z
[µ1...µ5]
O (CΓµ1...µ5

)ab . (28)

Due to the non-associativity of the octonions, unlike the real case, the sectors individuated
by (27) and (28) are not independent. Furthermore, as we have already seen for k = 2,
in the antisymmetric products of k octonionic-valued matrices, a certain number of them are
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redundant (for k = 2, due to the G2 automorphisms, 14 such products have to be erased). In the
general case [14] a table can be produced expressing the number of independent components in
D odd-dimensional spacetime octonionic realizations of Clifford algebras, by taking into account
that out of the D Gamma matrices, 7 of them are octonionic-valued, while the remaining D−7
are purely real. We get the following table, with the columns labeled by k, the number of
antisymmetrized Gamma matrices and the rows by D (up to D = 13)

D \ k 0 1 2 3 4 5 6 7 8 9 10 11 12 13
7 1 7 7 1 1 7 7 1
9 1 9 22 22 10 10 22 22 9 1
11 1 11 41 75 76 52 52 76 75 41 11 1
13 1 13 64 168 267 279 232 232 279 267 168 64 13 1

(29)

For what concerns the octonionic equivalence of the different sectors, it can be symbolically
expressed, in different odd space-time dimensions, according to the table

D = 7 M0 ≡ M3
D = 9 M0 +M1 ≡ M4
D = 11 M1 +M2 ≡ M5
D = 13 M2 +M3 ≡ M6
D = 15 M3 +M4 ≡ M0 +M7

(30)

In D = 11 dimensions the relation between M1 +M2 and M5 can be made explicit as
follows. The 11 vectorial indices µ are split into the 4 real indices, labeled by a, b, c, . . . and the
7 octonionic indices labeled by i, j, k, . . .. The 52 independent components are recovered from
52 = 4 + 2× 7 + 6 + 28, according to

4 M1a M5[aijkl] ≡ M5a

7 M1i, M2[ij] ≡ M2i M5[abcdi] ≡ M5i,M5[ijklm] ≡ M̃5i

6 M2[ab] M5[abijk] ≡ M5[ab]

4× 7 = 28 M2[ai] M5[abcij] ≡ M5[ai]

(31)

8 The octonionic superconformal M-algebra

The conformal algebra of the octonionic M-theory can be introduced [12] adapting to the
eleven dimensions the procedure discussed in [5] for the 10 dimensional case. It requires the
identification of the conformal algebra of the octonionic D = 11M-algebra with the generalized
Lorentz algebra in the (11, 2)-dimensional space-time. In such a space-time the octonionic
Clifford’s Gamma-matrices are 8-dimensional. The basis of the hermitian generators is given
by the 64 antisymmetric two-tensors CΓ[µ1µ2]Zµ1µ2 and the 168 antisymmetric three tensors



CBPF-NF-031/04 14

CΓ[µ1µ2µ3]Zµ1µ2µ3 (or, equivalently, by the 232 antisymmetric six-tensors CΓ[µ1...µ6]Zµ1...µ6). This
is already an indication that the total number of generators in the conformal algebra is 232.
We will show that this is the case.

According to [5] the conformal algebra can be introduced as the algebra of transformations
leaving invariant the inner product of Dirac’s spinors. In (11, 2) this is given by ψ†Cη, where
the matrix C, the analogous of the Γ0, given by the product of the two space-like Clifford’s
Gamma matrices, is real-valued and totally antisymmetric. Therefore, the conformal transfor-
mations are realized by the octonionic-valued 8-dimensional matrices M leaving C invariant,
i.e. satisfying

M†C + CM = 0. (32)

This allows identifying the (quasi)-group of conformal transformations with the (quasi-)group
of symplectic transformations. Indeed, under a simple change of variables, C can be recast in
the form

Ω =

(
0 14

−14 0

)
. (33)

The most general octonionic-valued matrix leaving invariant Ω can be expressed through

M =

(
D B
C −D†

)
, (34)

where the 4× 4 octonionic matrices B, C are hermitian

B = B†, C = C†. (35)

It is easily seen that the total number of independent components in (34) is precisely 232, as
we expected from the previous considerations.

It is worth noticing that the set of matricesM of (34) type forms a closed algebraic structure
under the usual matrix commutation. Indeed [M,M] ⊂ M endows the structure of Sp(8|O) to
M. For what concerns the supersymmetric extension of the superconformal algebra, we have
to accommodate the 64 real components (or 8 octonionic) spinors of (11, 2) into a supermatrix
enlarging Sp(8|O). This can be achieved as follows. The two 4-column octonionic spinors α
and β can be accommodated into a supermatrix of the form

 0 −β† α†

α 0 0
β 0 0


 . (36)

Under anticommutation, the lower bosonic diagonal block reduces to Sp(8|O). On the other
hand, extra seven generators, associated to the 1-dimensional antihermitian matrix A

A† = −A, (37)

i.e. representing the seven imaginary octonions, are obtained in the upper bosonic diagonal
block. Therefore, the generic bosonic element is of the form

 A 0 0
0 D B
0 C −D†


 , (38)
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with A, B and C satisfying (37) and (35).
The closed superalgebraic structure, with (36) as generic fermionic element and (38) as

generic bosonic element, will be denoted as OSp(1, 8|O). It is the superconformal algebra of
the M-theory and admits a total number of 239 bosonic generators.

9 Conclusions.

We have seen that, contrary to what is commonly believed, an alternative formulation for theM
superalgebra and the M superconformal algebra can be consistently introduced in association
with the non-associative maximal division algebra of the octonions. It presents peculiar features,
like the non-independence of the different octonionic brane sectors, which is a reflection of the
higher-rank antisymmetric octonionic tensorial identities discussed in section 5. The existence
of this second variant of theM algebra is puzzling. It could be ultimately related with the arising
of exceptional structures (exceptional Lie and Jordan algebras) in the “Theory Of Everything”
[19].

Since imaginary octonions admits a geometrical description in terms of the seven sphere
S7, it could be speculated that the higher-dimensional octonionic descriptions, e.g. of the
eleven dimensions, corresponds to a particular compactification of the eleven-dimensional M
theory down to AdS4 × S7. This compactification corresponds to a natural solution for the 11
dimensional supergravity, see [20].

The octonionic superconformal algebra OSp(1, 8|O) has been explicitly derived. It corre-
sponds to a supersymmetric extension of a bosonic conformal algebra which is mathematically
interesting since it corresponds to a closed algebraic structure which goes beyond the standard
notion of conformal algebra of a given Jordan algebra, see [12].

Besides this aspect, the notion of hermitian (complex and quaternionic) and holomorphic
(complex and quaternionic) supersymmetries, as consistently division-algebra constrained gen-
eralized supersymmetries, has been presented.

Physical implications of these mathematical structures are quite obvious. The classification
of generalized supersymmetries allow to understand the web of interrelated dualities of different
classes of theories which can be either analitically continued (let’s say, to the Euclidean) or
recovered through dimensional reduction.

As an example, we can cite that the analytic continuation of the M algebra was proven
in [23] to correspond to an eleven-dimensional complex holomorphic supersymmetry. It was
further shown in [15] that the same algebra also admits a 12-dimensional Euclidean presentation
in terms of Weyl-projected spinors. These two examples of Euclidean supersymmetries can find
application in the functional integral formulation of higher-dimensional supersymmetric models.

There is an interesting class of models which nicely fits in the framework here described and
is currently under intense investigation. It is the class of superparticle models, introduced at
first in [24] and later studied in [25], whose bosonic coordinates correspond to tensorial central
charges. It was shown in [26] that a 4-dimensional theory of this kind leads to a tower of massless
higher spin states, concretely implementing a Fronsdal’s proposal [27] of introducing bosonic
tensorial coordinates to describe massless higher spin theories (admitting helicity states greater
than two). This is an active area of investigation, the main motivation beingthe investigation
the tensionless limit of superstring theory, corresponding to a tower of higher helicity massless
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particles (see e.g. [28]).
In a somehow “orthogonal” direction, a class of theories which can be investigated in the

present framework is the class of supersymmetric extensions of Chern-Simon supergravities in
higher dimensions, requiring as a basic ingredient a Lie superalgebra admitting a Casimir of
appropriate order, see e.g. [29].
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