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1 Introduction

The algebraic technique of the supersymmetry in quantum mechanics (SUSY QM)

formulated by Witten [1], in which the essential idea is based on the Darboux procedure

on second-order differential equations, has been extended in order to find the 2x2 matrix

superpotencial [2, 3, 4, 5].

In this work we show that the superpotential for the SUSY QM with two-component

wave functions is a Hermitian matrix, and we consider the application to a planar physical

system, a neutron interacting with the magnetic field [6].

2 Supersymmetry for two-component eigenfunction

In this section we consider a non-relativistic Hamiltonian (H1) for a two-component

wave function in the following bilinear forms

H1 = A+
1 A−

1 + E
(0)
1

= −I
d2

dx2
+

(
d

dx
W1(x)

)
+ W1(x)

d

dx
− W†

1(x)
d

dx
+ W†

1W1(x), (1)

H2 = A−
1 A+

1 + E
(0)
1

= −I
d2

dx2
−
(
d

dx
W†

1(x)

)
− W†

1(x)
d

dx
+ W1(x)

d

dx
+ W1(x)W†

1, (2)

where

A−
1 = −I

d

dx
+ W1(x), A+

1 =
(
A−

1

)†
. (3)

So far W1(x) can be a two by two non-Hermitian matrix, but we will now show

that H1 and H2 are exactly the Hamiltonians of the bosonic and fermionic sectors of a

SUSY Hamiltonian if and only if the matrix superpotential is a Hermitian one. Indeed

(comparing the pair SUSY Hamiltonians H± with the Hamiltonians H1 and H2) we see

that only when the hermiticity condition of the W1 is readily satisfied, i.e., W†
1 = W1,

we may put H1 in a bosonic sector Hamiltonian. In this case H1 (H2) becomes exactly

H− (H+) of a SUSY Hamiltonian model, analogous to the Witten model, viz.,

HSUSY = −1

2
I
d2

dx2
+

1

2

{
W2(x) + W′(x)σ3

}
=

(
H− 0

0 H+

)
, (4)
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where σ3 is the Pauli matrix. Only under the hermiticity condition one can to call

W1 = W(x) of a matrix superpotential.

Let H± be the bosonic (-) and fermionic (+) sector Hamiltonians for a two-component

eigenstate Ψ−, given by

H± = −I
d2

dx2
+ V±(x), Ψ−(x) =


 ψ−,1(x)

ψ−,2(x)


 , E

(0)
− = 0, (5)

where I denotes the 2x2 unit matrix and the pair of SUSY potential V−(x), is a 2x2

matrix potential which may be written in terms of a 2x2 matrix superpotential W(x),

viz.,

V±(x) = W2(x) ∓W′(x). (6)

Let us consider the eigenvalue equations for the bosonic and fermionic sector Hamil-

tonians, viz.,

H±Ψ
(n)
± = E

(n)
± Ψ

(n)
± , n = 0, 1, 2, · · · . (7)

These systems can exhibit bound and continuous eigenstates under the annihilation con-

ditions

A−Ψ
(0)
− = 0, Ψ

(0)
− (x) =


 ψ

(0)
−,1(x)

ψ
(0)
−,2(x)


 (8)

or

A+Ψ
(0)
+ = 0, Ψ

(0)
+ (x) =


 ψ

(0)
+,1(x)

ψ
(0)
+,2(x)


 . (9)

In this case we see that one cannot put Ψ
(0)
+ (x) in terms of Ψ

(0)
− (x) and vice-versa in a

similar manner to the case of one-component eigenfunction system. However, if Ψ
(0)
− (x)

is normalizable we have

∫ +∞

−∞

(
|ψ(0)

−,1|2 + |ψ(0)
−,2|2

)
dx = 1. (10)

Note that in Eq. (5) of ref. [4] the author has taken a particular Hermitian matrix for

his superpotential in such a way that the validity of his development is ensured.

Let us now consider the interesting application of the above development for a bidi-

mensional physical system in coordinate space associated to a Neutron with magnetic
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momentum 	µ = µ(σ1, σ2, σ3) in a static magnetic field [6]. In this case, x = ρ > 0, the

Ricatti equation in matrix form is given by

V−(ρ) = W′(ρ) + W2(ρ) =


 m2− 1

4

ρ2
−2F

ρ

−2F
ρ

(m+1)2− 1
4

ρ2


− IẼ

(0)
1 , (11)

which has the following particular solution for the 2x2 matrix superpotential given by

Wm =


 m+ 1

2

ρ
− F

m+1

− F
m+1

m+ 3
2

ρ


 , where the energy eigenvalue of the ground state is Ẽ

(0)
1 =

− F 2

2(m+1)2
, F ∝ −µI, m = 0,±1,±2, · · · , and ρ is the usual cylindrical coordinate.

We are considering the current I located along the z-axis, and we have used units with

h̄ = 1 = mass. The current I generate a static magnetic field. Also, note that V−(ρ) has

zero ground state energy, E
(0)
− = 0, thus SUSY is said to be unbroken.

The algebra of SUSY in quantum mechanics is characterized by one anti-commutation

and two commutation relations given below

HSUSY = [Q−, Q+]+, [HSUSY , Q±]− = 0 = (Q−)2 = (Q+)2. (12)

One representation of the N = 2 SUSY superalgebra is the following

HSUSY = [Q−, Q+]+ =


 A+A− 0

0 A−A+




4x4

=


 H− 0

0 H+


 . (13)

The supercharges Q± are differential operators of first order and can be given by Q− =
 0 0

A− 0




4x4

, Q+ =


 0 A+

0 0




4x4

, where A± are 2x2 non-Hermitian matrices given

by Eq. (3).
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3 Conclusion

In this work we investigate an extension of the supersymmetry in non-relativistic quan-

tum mechanics for two-component wave functions. This leads to 4x4 supercharges and

supersymmetric Hamiltonians whose bosonic sectors are privileged with two-component

eigenstates.

We have considered the application for a Neutron in interaction with a static magnetic

field of a straight current carrying wire [6].
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