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abstract

We present analytical results for a one-dimensional cellular automaton which is a good

prototype for memory effects on damage. The dynamics of the system is studied through

the analysis of the associated Hamming distance as a function of time. The characteristics

of its fluctuations indicate the existence of some type of memory.
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INTRODUCTION

Memory effects are present in a huge number of complex dynamical systems (magnetic

systems, neural networks, social groups models, etc.). Therefore, the study of those effects

is relevant for enlightening our understanding of critical phenomena. One of the ways of

recognizing the presence of memory effects is based on the study of the spreading of a

damage introduced in the system. This may be achieved through the analysis of the time

evolution of two different replicas of the system, between which a small difference is intro-

duced, for instance, in the initial conditions or in the random sequence which generates

the evolution of the system. In order to characterize the damage, the quantity whose

time evolution is followed typically is the Hamming distance[1]. This quantity behaves

as a function of time, in a more or less noise-like manner, as well as the quantities which

characterize a large number of complex systems comprising from the discrete sandpile

model[2] to models describing the dynamics of social groups[3].

Recently, it was introduced by Tsallis et al.[4] a simple prototype whose associated

Hamming distance as a function of time mimics many complex dynamical systems. From

the study, by means of computational simulations, of the time evolution of the associated

Hamming distance, the prototype was shown to exhibit effects of memory in the evolution

of damages as a large number of systems and theoretical models do.

For different values of the external parameters the behaviour of the prototype varies

from a noise-like to a plateaux-like one. In the present work, we find an analytical ex-

pression which describes its behaviour and we compare our results with those obtained

previously[4] through numerical simulations. Moreover, as suggested in ref. [4], we also

describe analytically the distribution of probabilities (P (τ)) of finding plateaux of size τ

and the momenta of P (τ).

THE PROTOTYPE

As described in ref. [4], we assume a semi-infinite linear chain of sites (i = 0, 1, 2, ...)

occupied by binary random variables {Si} (Si = 0, 1, ∀i). The prototype is defined

through the following construction rules:
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• S0 = 1

• Si+1 = Si with probability p (thus Si+1 �= Si with probability 1 − p), for all i =

0, 1, 2, ....

We consider two equivalent replicas of the system {SA
i } and {SB

i }, constructed with

the same value of p but corresponding to different random sequences.

In order to study the time dynamics of the damage evolution in the system, we define

the following Hamming distance:

H(t) = 1
L

i0+L−1∑
i=i0

| SA
i − SB

i |, (1)

where L is the length of the window we will analyze, i0 ≡ Jt, J being a fixed positive

integer number and t the discrete time (t = 0, 1, 2, . . .).

As already discussed in ref. [4], the Hamming distance H(t) as a function of time

fluctuates, exhibiting, for different values of the external parameters, behaviours which

vary from a noise-like to a plateaux-like one. It is worth recalling that these behaviours are

present in a large number of complex dynamical systems that plausibly belong to the same

“class of universality” that the prototype under consideration. It is specially interesting

to analyze the behaviour of the distribution of plateaux present in the fluctuations of the

Hamming distance. We say that there is a plateau at time t if H(t) = H(t+ 1) and the

plateau is of length τ if H(t−1) �= H(t) = H(t+1) = ... = H(τ −1) = H(τ) �= H(τ +1).

For fixed values of the external variables (p, J, L), H(t) yields a distribution of plateaux

P (τ) (
∞∑

τ=0

P (τ) = 1)) and the probability of having finite-size plateaux is:

M(p, J, L) ≡ 1− P (0). (2)

RESULTS

First, we analyze the mean value of the Hamming distance < H(t) >. It follows directly

that:

< H(t) > =
1

2
− (2p− 1)2Jt

8Lp (1− p)
(1− (2p− 1)2L). (3)
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So that, in the limit L → ∞, for 0 < p < 1, we have:

lim
L→∞

< H(t) > =
1

2
, (4)

hence, there are no long-range memory effects for any value of J and 0 < p < 1.

For a more detailed study, we want to know the probability of having finite size

plateaux, M(p,J,L), which is the probability that H(t) = H(t+ 1) for an arbitrary time

t. From the analysis of all possible configurations producing H(t) = H(t + 1) (see AP-

PENDIX), we obtain an analytical expression for M(p, J, L):

M(p, J, L) = M(R, a, b) =

= 1
2 R2(a−1)

(
1 + W1(R, a) + (2R− 1)b−a+1

[
1 + W2(R, a)

])
, (5)

where a ≡ min{J, L}, b ≡ max{J, L} and R ≡ R(p) = p2 + (1− p)2,

W1(R, a) =
1
2

a−1∑
l=1

(
σ3(R, a, l) + 2σ2(R, a, l) + σ1(R, a, l)

)2

(6)

and

W2(R, a) =
1
2

a−1∑
l=1

(
σ3(R, a, l)− σ1(R, a, l)

)2

, (7)

with

σ1(R, a, l) =
l−1∑
k=1

(
l−1k

) (
a−l−1k−1

)
(1−R

R )2k, (8)

σ2(R, a, l) =
l−1∑
k=0

(
l−1k

) (
a−l−1k

)
(1−R

R )2k+1, (9)

σ3(R, a, l) =
l∑

k=1

(
l−1k−1

) (
a−l−1k

)
(1− R

R )2k. (10)

The comparison of these results with the experimental ones as obtained in ref. [4] shows

an excellent agreement within the standard deviation of the values from simulations. For

a wide range of values of the external parameters, the maximal percent difference between

theoretical and experimental values of M was of the order of 1%.

In the particular case p = 1/2 (when 1− R
R = 1), by means of the property:

q∑
i=0

(
mi

)(
nq−i

)
=
(

m+nq

)
, we obtain:

M(R = 1/2, a, b) = 1
4a

(
2aa

)
, (11)
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which corresponds to the result obtained, through another treatment, in ref. [4], in the

discussion of the completely randomic case (p = 1/2).

If p = 0, 1, then M = 1, ∀J, L.
For J = 1 (Fig. 1(a)), M has a local minimum at pmin = 1/2, being Mmin =

M(pmin) = 1/2, ∀L ≥ 1. For 0 < p < 1 and p �= 1/2, M decreases for increasing L, i.e.

the concavity of the curve increases, such that as L → ∞, M → 1/2, ∀0 < p < 1.

For 1 < J ≤ L (illustrated in Fig. 1(b)), M has a local maximum at p = 1/2,

and two absolute minima at pmin and 1 − pmin, such that, for a given value of J , Mmax

is independent on L while pmin and Mmin = M(pmin) = M(1 − pmin) decrease as L

increases down to a constant value. This value decreases for increasing values of J . In

the limit J → ∞ (hence L → ∞), Mmax → 1√
πJ

→ 0, pmin → 0, Mmin → 0. Thus,

when p approaches either zero or unity, memory persists for increasing values of J , while,

memory effects disappear (M → 0) for J → ∞ (L → ∞).

Other cases are reduced to the previous ones recalling thatM is a symmetrical function

of J and L.

Finally, we want to determine the probability distribution P (τ), for 0 < p < 1. From

the precedent discussion we note that the probability of having a plateau at time t, that

is M = pr.(H(t) = H(t+1)), is independent of t for any value of the external parameters.

Recalling also that there is a plateau of length τ if H(t− 1) �= H(t) = H(t+ 1) = ... =

H(τ − 1) = H(τ) �= H(τ + 1), then it follows that:

P (τ) = τ (1−M)2 Mτ , for τ ≥ 1, (12)

which verifies
∞∑

τ=1

P (τ) = M .

The mean size of the plateaux is < τ > =
∞∑

τ=0

τP (τ), then, we have:

< τ > =
M(1 +M)
1−M . (13)

Straightforwardly, the nth momenta of P (τ) (< τn >) may be obtained from the

following recurrence equation:

< τn > = M ∂ < τn−1 >
∂M

+ M
1−M < τn−1 > . (14)
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By calculating the square deviation σ2 =< τ 2 > − < τ >2, in particular, we get:

< τ >
στ

= 1 +M√
2 + (1−M)(1 +M)2/M

. (15)

The distribution of probabilities of the plateaux size, P (τ), presents a maximum at

τmax ∼ −1
lnM

, then τmax increases with increasing M and so does the mean size of the

plateaux < τ >. Above τmax, P (τ) decreases following a power law with exponent τ . Its

standard deviation is such that 0 ≤ < τ >
στ

≤ √
2, < τ >

στ
increasing for increasing M and

being unitary for M ∼ 0.75, then, the mean size of the plateux is not well defined.

DISCUSSION

The Hamming distance associated to the present prototype behaves as a function of time

in a more or less noise-like manner, gradually varying its behaviour from a noise-like to

a plateaux-like one, the presence of jumps between plateaux indicating the existence of

some type of memory. Such behaviour is found in many complex systems and theoretical

models. Thus, the present prototype mimics many complex dynamical systems and could

belong to the same “universality class” as some of them.

Recently, connections between spread of damage and relevant thermal equilibrium

quantities of discrete statistical models have been established[5-7]. In particular, for the

Ising model, relations between the Hamming distance and some of their thermal quantities

may be found[5]. The relevance of these correspondences stays in the fact that they provide

a new approach in order to calculate thermostatistical quantities. Therefore, the study

of the present prototype may lead to a better understanding of the effects of memory in

statistical systems and their consequences in relation to critical phenomena.
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APPENDIX: DETERMINATION OF M(p, J, L)

In order to calculate the probability that H(t) = H(t+ 1) for an arbitrary time t, let us

rewrite Eq. (1) as:

H(t) = 1
L

Jt+L−1∑
i=Jt

hi, (A1)

where hi =| SA
i − SB

i |. For comparing H(t) vs. H(t+ 1), we only need to consider their

non common terms. For a systematic analysis, let us first study the special case J = 1

and later the wider case J > 1.

Case J = 1

In this case, the non common terms are ht and ht+L, ∀ L. Therefore:

M(p, 1, L) = pr.(ht = ht+L). (A2)

We consider arrays ai =

[
SA

iSB
i

]
which represent the values of the random variable

Si on the two replicas A and B. The possible arrays are: a1 =

[
00

]
, a2 =

[
11

]
,

a3 =

[
01

]
, a4 =

[
10

]
. Thus, from Eq. (A2), we have:

M(p, 1, L) =
2∑

α,β=1

pr.(at = aα ∧ at+L = aβ) +
4∑

α,β=3

pr.(at = aα ∧ at+L = aβ). (A3)

By considering the prototype construction rules, it follows:

pr.(Si+k = Si) = (1 + (2p− 1)k)/2, ∀i, k ≥ 0 hence, (A4)

pr.(Si+k �= Si) = (1− (2p− 1)k)/2.

From Eq. (A4) and taking into account that the values of St+L and St are not inde-

pendent, we have:

p++ =
(1 + (2p− 1)L

2

)2
, (A5)

p−− =
(1− (2p− 1)L

2

)2
, (A6)

p+− = p−+ =
1− (2p− 1)2L

4 , (A7)
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where p++, p−− and p+− (p−+) are, respectively, the probabilities that either both, none

or one of the elements of the arrays at and at+L be equal.

Therefore, by substituting Eqs. (A5) and (A6) in Eq. (A3), we get:

M(p, 1, L) = (1 + (2p− 1)2L)/2. (A8)

Case J > 1

For the case J > 1, in order to compare H(t) with H(t + 1), we consider 2 cases: (a)

L ≥ J and (b) 1 ≤ L ≤ J .

Subcase (a): L ≥ J

Now, we must consider arrays of 2 × J elements, e.g.

[
J︷ ︸︸ ︷

0 1 · · ·11 1 · · ·0

]
. In this case H(t)

and H(t + 1) share L − J terms. Thus, we must compare J terms: (hJt, · · · , hJt+J−1)

vs. (hJt+L, · · · , hJt+L+J−1). In order to perform this comparison, we consider pairs of

2× J-arrays corresponding to [aJt, · · · , aJt+J−1] vs. [aJt+L, · · · , aJt+L+J−1].

For a given array, let us call l (0 ≤ l ≤ J) the number of columns formed by equal

elements (i.e. either

[
00

]
or

[
11

]
). Since we are interested in the configurations giving

H(t)=H(t+ 1), we have to consider only pairs of arrays of 2× J elements with the same

value of l which will have the same Hamming distance J − l. So that, we calculate the

contributions Ml corresponding to each value of l to the probability M . We have:

Ml = pr.(hJt + · · ·+ hJt+J−1 = hJt+L + · · ·+ hJt+L+J−1 = J − l)

=
∑

all arrays(J,l)

pr.([aJt,···,aJt+J−1]J,l) pr.([aJt+L,···,aJt+L+J−1]J,l/[aJt,···,aJt+J−1]J,l), (A9)

subindices J and l in the arrays indicate the total number of columns and the number

of columns with equal elements respectively. If incompatible with the form of the array,

then pr.(arrayJ,l)=0, e.g. pr.(

[
1 · · ·00 · · ·0

]
J,J

) = 0, since in this case (l = J) all columns

should have identical elements.

Besides, we have

pr.([aJt,···,aJt+J−1]J,l) pr.([aJt+L,···,aJt+L+J−1]J,l/[aJt,···,aJt+J−1]J,l) =

pr.(aJt) pr.([aJt,···,aJt+J−1]J,l) pr.([aJt+L,···,aJt+L+J−1]J,l) pr.(aJt+L/aJt+J−1), (A10)
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where the probabilities will be defined in the following paragraphs:

• pr.(aJt) in Eq. (A10) is the probability that the first column of the first array (i.e.

2× 1-array at position Jt) be equal to a given aα, 1 ≤ α ≤ 4.

• The probability pr.(arrayJ,l) in Eq. (A10), is the probability of having two given

sequences of length J corresponding to rows A and B of the array. This probability

is not that of finding the sequences at a given position of the samples but that of just

having a given sequence without caring for the position. Thus, if we interchange all

1’s in the array by 0’s and vice versa, as well as if we interchange rows, or reverse

the order of the columns, the probability is the same.

• In order to calculate the conditional probability pr.(aJt+L/aJt+J−1) in Eq. (A10),

we must now consider the last column of the first array and the first column of

the second array. Here, the “distance” k between the arrays, that is, the difference

between the first site of the second array (Jt+L) and the last site of the first array

(Jt+ J − 1) is k = L− J + 1, so that, we just have to replace L in Eqs. (A5)-(A7)

by L− J +1. Thus, let us define the following probabilities: P+
J = probability that

the last column of the first array and the first column of the second have two or

none equal elements and P−
J = probability that those columns have only one equal

element:

P+
J = p++

J + p−−
J = (1 + (2p− 1)2(L−J+1))/2,

P−
J = p+−

J + p−+
J = (1− (2p− 1)2(L−J+1))/2,

where p++
J , p−−

J , p+−
J and p−+

J were calculated in the same way as the probabilities

in Eqs. (A5)-(A7), corresponding to J = 1, but substituting L by L− J + 1.

Considering that the arrays with l = λ and l = J − λ (with, 0 ≤ λ ≤ J) are obtained

one from the other by interchanging 0’s and 1’s in one of the rows and also considering

that
4∑

α=1

pr.(aJt = aα) = 1, then, from Eqs. (A9) and (A10), the contribution Ml,J−l =

Ml +MJ−l is:

Ml,J−l = 2 P−
J pr.(

[
0 · · ·0 · · ·

]
J,l

) pr.(

[
0 · · ·1 · · ·

]
J,l

)
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+ P+
J

((
pr.(

[
0 · · ·0 · · ·

]
J,l

)

)2

+

(
pr.(

[
0 · · ·1 · · ·

]
J,l

)

)2
)
, (A11)

where, there is an additional 1/2 factor if l = J − l.

Since pr.(

[
0 . . .1 . . .

]
J,l

) = pr.(

[
0 . . .0 . . .

]
J,J−l

), then, we just need to know pr.(

[
0 · · ·0 · · ·

]
J,l

).

! For l = J, 0, from Eq. (A11), we obtain Ml=J,0 = P+
J ×

(
pr.(

[
0 · · ·0 · · ·

]
J,J

)

)2

. It is

easy to see that pr.(

[
0 · · ·0 · · ·

]
J,J

) = (p2 + (1− p)2)2(J−1), then, we have:

Ml=J,0 = (1 + (2p− 1)2(L−J+1))/2 (p2 + (1− p)2)2(J−1).

! Now, let us calculate pr.(

[
0 . . .0 . . .

]
J,l

) when, l �= J, 0. Let us define

VJ,l = pr.(

[
0 . . .0 . . .

]
J,l

) , (A12)

WJ,l = pr.(

[
0 . . .1 . . .

]
J,l

) (A13)

and

R = R(p) = p2 + (1− p)2. (A14)

It is easy to see that:

VJ,l = R VJ−1,l−1 + (1−R) WJ−1,l−1, (A15)

WJ,l = (1−R) VJ−1,l + R WJ−1,l. (A16)

Then, we get the following recurrence relation:

VJ,l = R VJ−1,l−1 + (1−R) VJ−1,J−l, (A17)

which solution is:

VJ,l = RJ−1(σ1(R, J, l) + σ2(R, J, l)), (A18)

where

σ1(R, J, l) =
l−1∑
k=1

(
l−1k

) (
J−l−1k−1

)
(1− R

R
)2k, (A19)

σ2(R, J, l) =
l−1∑
k=0

(
l−1k

) (
J−l−1k

)
(1− R

R )2k+1, (A20)
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thus,

WJ,l = VJ,J−l = RJ−1(σ3(R, J, l) + σ2(R, J, l)), (A21)

where

σ3(R, J, l) = σ1(R, J, J − l) =
l∑

k=1

(
l−1k−1

) (
J−l−1k

)
(1−R

R )2k. (A22)

Note also that σ2(R, J, J − l) = σ2(R, J, l).

By substitution in Eq. (A11) we obtain:

Ml,J−l =
1
2 (VJ,l +WJ,l)

2 + 1
2 (2p− 1)2(L−J+1)(VJ,l +WJ,l)

2. (A23)

Then:

M = MJ,0 +
[J
2 ]−1∑
l=1

Ml,J−l +
1
2 M[J

2 ],[
J
2 ]

= MJ,0 +
1
2

J−1∑
l=1

Ml,J−l. (A24)

Subcase (b): 1 ≤ L ≤ J

In this case we have two arrays of 2×L elements and k = J−L+1. Since the calculation

of M will only depend on the size of the arrays and on the “distance” k, then case (b) is

reduced to case (a) just by inverting the roles of J and L, being M(p, J, L) = M(p, L, J).
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CAPTION FOR FIGURE

Figure 1: M(p, J, L) vs p as obtained from Eq. (5). (a) J = 1 and different values of L;

(b) J = 3 and different values of L ≥ J . Values of L are indicated on the figure. Scales

are the same in both graphs for comparison.
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