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ABSTRACT

We propose a Mandelstam-Wilson phase factor approach to the solve problem of handling
correctly fermions fields on lattice. We apply this approach to fermionize exactly Q.C.D
(U(o0)) at the leading limit of the strong coupling limit.
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One of the long-standing unsolved problem in the lattice approach to Q.C.D. is how to
handle discretized fermionic fields ([1]). In this rapid communication we propose a solu-
tion for the above mentioned problem by considering as the Q.C.D natural field variable
to discretize in lattice the Mandelstam-Wilson phase factor defined by the color singlet
quark currents. Additionaly, we show the usefulness of this propose by obtaining in a
unambiguously way the associated Q.C.D Nambu-Jona-Lasinio fermionic model, which,
upon being bosonized, leads to low energy theory of meson and baryon of Q.C.D.

Let us start our study by considering the Euclidean Q.C.D. (U(N,)) generating func-
tional for the color singlet scalar and vectorial quark currents.

Zio(a), @) = [ D7 IAu@) eap (-] [ d'a Tr(Fu(4)0))
{[ Dbl eap (- [ #oblind, +imadv)io)
o (= [ #al@W) o+ LB + BB+ Brrokl) ) @

Where 13), (=) are the independent Euclidean quark fields, o(z), 8(z) and J, (), ku(z)
are the external sources for the scalar, scalar-axial, and axial-vectorial Q.C.D. quark cur-
rents. A,(z) denotes the U(N,) gluon field.

The framework to obtain effective quark field theories in Q.C.D. consists in trying to
integrate out the gluon degrees of freedom in the above written functional integral ([2]),
namely

Wl = [ D@ eap (-~ [ TrEA(E)
cap (s [ ol o))A,(0)) 2

Our idea to evaluate equation (2) is, firstly, introduce a Lattice Space-Time and writing
the associated (gauge-invariant) lattice path integral. At this point we put forward our
idea to treat unambiguously the fermionic fields on Lattice. Since it is impossible to
have well-defined procedure to define massless Fermion Fields on the usual Lattice {z, =
[nu),n,. € Z} {with spacing a) ([1]) we propose to consider directly the bosonic quark
Fermion current on the lattice by means of its associated Mandelstam-Wilson phase factor

®a([n]) = ezp (ia(H(r*)¥)([n,])) (3)

Note that the above written Phase Factor has index (i, ) on the group U(N) and a
index « related to the Lorentz Group as it should be.
The associated gluon U{N) group-valued Mandelstam-Wilson phase factor is still given

by
Ui ([na]) = exp(iaAu([na])) (4)

At this point of our study, we remark that the Quark-Gluon coupling in Lattice may
be written as a product of the Mandelstam-Wilson Phase Factor Eq. (3) and Eq. (4)
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since we have the usual lattice result

lima? | 3 T {(Un(inal) — 1 )(é.-([nal) 1 )}]
{Inai}
—ig / &'z A, (z).(F719)(z) | (5)

The gauge-invariant Lattice version of the Gluon Functional Integral Eq. (2) is, thus,
given by

IA['lb: J’] = fDH[Un([na])] crp (—é z: Trw‘“(U(D) + h-c))
{Ine]}

X exp (—a’ Y Troter [hc+ (Up(na]) = 1 )(@u(lna] - 1 )]) (6)
{Inal}

The advantage of this Lattice Phase Factor approach to analyze Eq. (2} is its allowance
to exactly integration of the Lattice Gluons Phase Factors in both perturbative and non-
perturbative regime. Let us show its usefulness by evaluating in closed form Eq. {6) in
the leading limit of the number of colors and in the leading limit of strong coupling as in

Ref. ({3]) - Eq. (3.17)).

I, ,9% — 00, N, = o0 = f DA[U[n)lezp{—a® D Treior(Uu([ral)-Bu(lnu]) + hoc)}
{[ral}

_ eap { (Aa00l0) X&) §~ 7y, [(Bullmad)dullna))?] } (™
¢ {lnal}

where A(a) is the Q.C.D. strong coupling phenomenological scale with dimension of inverse
of area (the gluon non perturbative condensate) which by its turn is Lattice spacing
dependent. The formal continuum limit ¢ — 0 of the result Eq. (7), after a Fierz
transformation, leads to the following quartic fermionic action in the continuum

1,97 — 00, N,  o0] = ezp { I [ ata{()? - (roo)?
Nc
S BPHP ~ o) | ®

Here the fermionic effective coupling constant g% is defined in the continuum by the
formal limit g3 = lim,—o Ag.c.p.(a).a? and signaling the usual Q.C.D. dimensional trans-
mutation phenomena.

After substituting Eq. (8) into Eq. (1) we get our propose fermionization for quantum
chromodynamics in the very low energy region with the gluon field U(N.) integrated out
for large N, in the sense of ref.[3].
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We remark that by introducing the Hubbard-Stratonovich Ansatz to linearize the
quartic fermion interactions we obtain the U(1)-chiral scalar and vectorial Q.C.D. (U{o0))
meson theory which differs from that considered in reference [4] by using phenomenological
guessing arguments.

Zlo + 28, Ju+ whi = [ DFGIDTIADF 10"k

Nc 1 - 1 A 1 2 ]. a
exp (—-g[d‘:c [(502 + Eﬂ’) + (EJ‘: + Ekﬁ)]) (=)
det™ [ivd+ (0 + )+ BB+B) + (L + L)+ Pkt k)] 9)

Note that in Eq. (9) (6++s8) and (J, +7sk,) should be identified with the U(1)-chiral
scalar and vetorial low energy physical meson fields.

Let us comment that dynamics for the physically identified meson fields above comes
from the evaluation of the quark functional determinant. In the limit of the heavy scalar
meson mass (¢} — oo one can easily implement the technique of refs. [5] to get the full
effective hadronic action in terms of 1/(§) power series.

In the case of Baryon-like field excitations of the form B(z) = &itpi(2);(z)¥i(z)
it is still possible analyze them in our proposed framework. For this task we consider

a Hubbard-Stratonovich Ansatz to write the generating functional for the Baryon-like
excitation B(z), namely

2k = [ D¥IAIDF D[4, D" D" )

cop (= [ @B+ 0B +iaPrAut(2))

cap (- [ alk(o)eanb(a)0n(a)])

ezp (—i / d‘.—c[,\,,,(z).A,,(z)]) (10)
relll)izes e(lfé :t)i Oa,rll'fa U(N) indexes and the auxiliary fields (A, A) belong to the adjoint ‘U (N)-

After integrating out the gluon field A,(x) as in Eq. (7) and the quark field as in Eq.
(9) we get our proposed effective Q.C.D.-Baryon field theory

7= [ DF6)D"A1DF D" [k,IDF 41D

exp (-—g%:/d‘m [%&3 + _;_32] (z) + [%f: + %feﬁ] (z)) exp (—i/d‘zTrw;w()\A)(x))
det {[iv0 + (& +168) + (Ju + 16ha)]85 — hvs |
erp {-— / dz d‘y k(a:)(e.-_,-;,A_,-;,(z)[(i'ya +a+ 755 + j,, + 75122“—

=N (@ )6 ¥ Age(y))k(y) | )
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It is instructive remark that Eq. (11) indicates the impossibility to consider baryons
excitations without interaction with the meson excitations in a effective Q.C.D. field
theory.

It is worth point out that strong coupling corrections from the neglected gluon field
kinetic action in Eq. (7) are straightforwardly implemented in lattice by using the usual
Q.F.T. perturbation theory with the external lattice gluon source coupling J,([rn,].Uu(In,]).

f[&bs {53 N, — °°] = J,.[lri?—;o (ezp {—:?Trmlor Z (%(D) + hc) }

{ [ P Widndlezs ("""’-‘3&“’ L S Trutnl@lna] + )@l + umD* | b
| ’ {inal}

12
with 12

) ] ) & 6
Z Treator (ﬁ(n)) - Z Treer (6'};11 [na] 6Jm["a + am] SJ-m [na] ‘SJm—m [na] * h-C-)

{nul}
(13)

The associated 1/g? corrected fermionized Q.C.D. (U(o0) effective theory will be given
by non-local current-current quark correlation functions averaged with the fermionized
strong coupling g2 — oo Q.C.D. (U(00)) theory Eq. (8).

Finally, one can take in principle corrections to the large N, limit in the lattice result
Eq. (7) by using Eq. (3.12) of reference [3].

Work on these above mentioned corrections and its implication for Q.C.D. low energy
nuclear physics as in ref {6] will be reported elsewhere.
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