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ABSTRACT

We have investigated third order corrections and
finite conduction band effects on the indirect exchange inter-
action assuming a large energy gap compared to the valence
band width. We regain an oscillatory expression in which as
opposed to the Bloembergen-Rowland formula the energy gap as well
as the conduction band modifies both the magnitude and phase of

the oscillations.



1 - INTRODUCTION

The polarization by local magnetic moments of conduc-
tion electrons in a metal results in the well known RKKYl indi-
rect exchange inte:ractionl—16 which is the result of a perturba-
tion calculation up to second order in the contact interaction .
The RKKY mechanism has been noted however to be ineffective in
semi~conductor insulators and alloys. But there is a corresponding
effective interaction between local moments mediated by the pola-
rization of valence band electrons through virtual transitions .
An evaluation of the integrals in a realistic case is not elemen-
tary so Bloembergen and Rowland2 calculated the interaction in se
cond order by assuming that the energy gaps were much greater than
the valence band width. The Bloembergen-Rowland (BR) formula was
later extended to the semiconductorss's.

The third order perturbation series term of the RKKY
interaction has been investigated and suggested3 to be important.
Estimates of the conduction band width in rare earth systems indi
cates that it is important to consider the fact that the band
width is finite and should be considered in the indirect exchange
interaction models4. We have investigated in this paper third or-
der corrections and finite conduction band effects on the indi-

rect exchange interaction in the BR approximation.

2 - FORMULATION OF THE PROBLEM AND DISCUSSION OF THE RESULTS

Using the formulation of second quantization the co-

tact term reads
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The third order correction reads
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We note that in the BR approximation lower filled bands are assum-
ed to have such a large difference with the conduction band that
their contribution is neglected. Converting summations into inte-

gration by using ) = [?/(2n)3 J dgw and with the aid of the re-
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of the indirect exchange interaction has been attributed at least
in part to arise from a Kondo effect and incorrent account of the
motion of the atoms due to phonons.

The fact that Ann is infinite is not interesting since
Ann is a self energy, range independent, and does not give inter-
action between two different spins3.

In order to make (C&n) the second divergent term of

C convergent we replace the upper limit « for k

nn and k3 by a

1

Keutt-off = kc.o. and obtain
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Thus in third order the indirect exchange interaction has for

large kc o the asymptotic form
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Comparing with the usual BR result eq. (2) we find

then to be of the same order if

1T2

kKeo. T w'T
In Eu0 and EuS for example, we have7 (Eu0) = 0.32 eV and
I'(Bus) = 0.2 eV; J = Ql, where Q 1is the atomic volume,
0" (Eu0) = 0.4 and a'(Eus) = 0.3, o' = me/m', m is a free
electron mass kT = 27r/aO (3/n)1/3, a, is the lattice parameter
kp(Bu0) = 1.20 {1 » kg (Eus) = 1.04 1, Using these values we
obtain kc.o.(EuO) = 2.29 kT(EuO) kc.o.(EuS) = 2.05 kT(EuS).

Thus for these systems to which the BR model has
been applied7 the third order contribution will be of the

same order of magnitude as the second order contribution if
kc.o. is of the same order of magnitude of kT.

At least a rough estimate of the conduction band
width in these systems indicates that it is important to
consider the fact that the band width is finite4.

We thus considered it of interest to derive a
general formula for the third order contribution introducing
the finite conduction band width (Eg + 'ﬁZWZ/Zm‘) as a
variable parameter.

In our third order model with a finite conduction
band we replace all upper limits o« in Ann’ BnQ and Cmn by
a finite W.

Straightforward integration then yields
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k=W
B = ReSi(u) where Si is the sine integral function
k=0
k=
D = Imci(u) where c, is the cosine integral function
k=0
u = R(/E i + k) R=R R,
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We note that Si(u), (B = ReSi(u)) is an entire func-
tion of u; on the other hand ci(u), (D = Im ci(u)) is an infini-
tely many-valued function of u whose circuit relation is

m

ci(ue™ 7T) = ¢ci(u) + mri. We have used the principal part (m = 0)

in our calculations of ¢ ¢C vs q (Figs. 1-3) since for each

B’
curve, O = arctg (¥y'/z) is mantained fixed for a given y' and
z.

In Figs. 1 and 2 we plot ¢c vs g for different values
of z (conduction band width parameter) and y' (energy gap para-
meter). The Bloembergen-Rowland formula (¢BR) is given for com-
parison. It may be noted that the third order perturbation series
term correction with finite conduction band effects included (¢C)
is also oscillatory with g (distance between localized magnetic
moments) as in the BR model. The phase, frequency and magnitude
of the oscillations are however strongly modified. The term ¢B
(Fig. 3) mainly damps without changing the sign of the exchange

interaction.



As expected both d¢B/dy' and d¢c/dy' are negative,
that is the interaction decreases with increasing values of y'
(energy gap):. On the other hand both d¢B/dz and d¢c/dz are pos-
itive, i.e., the interaction increases with increasing values of
z (band width parameter). We also note that ¢B' ¢c and ¢BR are of
the same order of magnitude when z is of the same order as kT.

Of interest is the fact that opposed to the second or
der BR term, the energy gap in the third order term (¢c) not only
damps but modifies as well the phase of the oscillations (sign of
the exchange interaction).

Qur calculations indicate that ¢c also oscillates with
z (band width parameter), i.e., the exchange interaction is alter
natively ferromagnetic and antiferromagnetic.

Band theoretical parameters such as the energy gap and
conduction band width thus appears to play a more important role
in our third order term and may thus be useful for correlating the
band structure of rare earth systems with their magnetic properties.

The influence of third order matrix elements of  the

f0nn<n|Hin m> where |n> and |m> are excited states are not

|
t
taken into account in the BR formula which is obtained by a per-
turbation calculation up to second order. The explicit calculation
of these matrix elements in the present paper suggest that they
may considerable contribute to the interaction between two nuclear
or ironic spins.

We would like to note however that other factors may

also significantly affect the exchange interaction, such as finite

temperatures, mean free path effects, non-spherical Fermi surfaces,
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a more realistic expression for the exchange integral and higher
order contributions. Some of these effects are presently under

investigation by our group.
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FIGURE CAPTIONS

Fig. 1 - ¢c and ¢BR vs q (distance between magnetic moments) ,
y = 5.0 (energy gap) and several values of z (conduc-
tor band width parameter).

Fig. 2 - ¢C and ¢BR vs q (distance between magnetic moments) ,

z = 2.0 (conduction band width parameter) and several

values of y (energy gap).

Fig. 3 - ¢B vs q (distance between magnetic moments), z = 2.0

(conduction band width parameter) and several values

of y (energy gap).
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