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1. INTRODUCTION

In a previous paper (1) we have argued that the classical e-
quations of motion for a particle subject to a non-holonomic
constraint cannot be equivalent to equations derived by the
vanishing of the first variation of an action functional. This
result immediately raises a few questions that we will try to

answer and clarify in this paper.

Hertz (2) was one of the first to question the variational prin
ciple of classical mechanics based on the non-holonomy of cons
traints. The original enunciation of Hamilton's principle refers
specifically to holonomic systems. When one considers non-holo-
nomic constraints the variational principle can be generalized
by treating the constraints as subsidiary conditions to the first
variation of the action integral. The issue usually raised around
this point is whether the varied paths are among geometrically
possible paths or not. A recent exposition on this old problem
is given by P. Sussekind Rocha (3) in his essay on D'Alembert's
principle. A better known discussion is that given by Pars (4)

in answer to a similar question posed by Capon (5).

The lack of a Hamiltonian formalism for non-holonomic systems
makes the quantization of such systems a very difficult task

and inapplicable te standard procedures. Therefore, we have
turned our attention to the analog problem of deriving the diffu-
sion equation for such systems. Even here the problem escapes
standard procedures for deriving the diffusion equation as 1in

general Liouville's measure is not invariant.



In this paper we discuss the diffusion equation for particles in
a Riemannian space subject to a single constraint. We further
discuss the implications of the holonomy and non-holonomy of this

single constraint.

In section two we discuss holonomy in the Tigth of gauge theory
and in section three we derive in a detailed way the diffusion
equation for such systems. Section four does the same for the
case of non-integrability of the constraint and section five
studies the 1imit of the two equations derived when the non-inte-
grable constraint converges to an integrable one. Section six
exhibits an example obtained by simulation and 1in section seven we

draw the conclusions of this paper.



2. HAMILTONIAN FORMALISM FOR PARTICLES SUBJECT TO HOLONOMIC

CONSTRAINTS

The purpose of this section is to derive the Hamiltonian for

a particle constrained to move on the surface.

¢(p) = 0, ———zd’i ——34’1 # 0 (2.1)
q 39

imbedded in a Euclidean n-dimensional space.

This is accomplished by Dirac's formalism for singular

Lagrangeans.
The Lagrangean for the system may be written as
'I. .9
L = 54 q 4 ad (2.2)
where o is a Lagrangean multiplier and must be considered a
new dynamical variable, adding to the configuration a new

dimension.

Since & is absent from the Lagrangean, the momentum B R

canonically conjugate to o , must vanish identically , i.e.,

which defines a primary constraint
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We may now construct Dirac Hamiltonian, writing

Hy = L p.

p = 7 Pj Py ~o¢-ub (2.4)

where u is an undetermined function of p,q and a.

Consistency with the constraint imposes that the arbitrary
function u in H must be such that all time derivatives of B
vanish. This requirement generates a new set of constraints.

and therefore we have:

X' =g =0 (2.5)
2 _ s _
X = B —{B’HD} - ¢ = O (2 6)
3 -7 99 -
X" =8 = ERAL 0 (2.7)
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EBsa Pk Py P O (2.8)
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where {, } is the notation for the Poisson bracket

The Tast eq. fixes the only undetermined function in the
generalized Hamiltonian, eq. (2.4), exhibiting the fact that
all the four constraints given by eqs. (2.5) to (2.9) are
second class constraints. These four constraints reduce by

four the dimension of the phase space and therefore by two



the configuration space. These two dimensions of the «confi
guration space can be seen to correspond to the additional

dimension due to the inclusion of o as a new dynamical va-
riable and the dimension corresponding to the motion in the
direction normal to the surface ¢ = 0. This is easily seen

if we perform the canonical transformation generated by
= f' P, (2.10)

where f' are functions of the old coordinates and Pi are the

new momenta.
We define fi as follows
f' = Q'(q) for i =1, ..., n-1, (2.11)

Where Q1 are the new coordinates caracterizing the points on

the surface ¢(q) = 0. We may choose Q1 in such a way that

J
—?-9—{—3—"-1? =0 , o= 1.....n-1
09" 4q

Besides we assume

f" = ¢(q) . (2.12)

The old momenta are given by



5F 3¢ agd
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which can be solved for Pn' We get

P = ] B p

v, 22, 3q"

i

what shows that

From these results we see that the four egs. Xi=0 eliminate the
two pairs of canonical variables: (a,B) and (¢,Pn). The
Dirac Hamiltonian in the reduced space of (Pi’Qi)’ i=1,...,n-1,

is given by

N NS I
H = > g % % . (2.13)
where
s n i J
913(0) =5 5Q 2Q

k=1 aqk aqk

is the metric tensor of the surface ¢ = 0



3. DIFFUSION EQUATION FOR PARTICLES CONSTRAINED TO SURFACES

In this section we derive the diffusion equation for an
ensemble of non-interacting particles, subject to white

stochastic forces, moving on a surface.

We start from the Hamiltonian, obtained previously

1 -iJ
H = — P. P.
2 | v

where §'Y is the metric tensor.

Hamilton's equations are

1 _ oH N
Q p; "9 P, (3.1)
_.'k
_ 9H ] 5gY
P - m—— = - g .
; v X o Pi Py (3.2)

Let us assume a stochastic force acting on the particles with

a white correlation:

<Fl(t) Fo(t')> = 2K aij s(t-t") (3.3)

and consequently,

<Filt) Fy(e)> = <gk Fkey) Fi(t')> = 2K G5 8(t-t').
(3.4)



The viscosity is introduced as the tensor

_ — aH
fi ==Y 95 P (3.5)
From these considerations we finally arrive at the egs. of
motion:
i H
Q' = (3.6)
3
. 5H - oH
P, = - =20 - g.. 20+ F,
i 8Q1 ij an i

To arrive at the Fokker-Planck equation for the distribution
G(P,Q,t) one must calculate the correlations of the dynamical
variables at two instants of time and we obtain from eq.(3.4)
and (3.6):

<AQ1> g—l;— At

]

<AP1> At

I
1
I
<
@«
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<aQ’ P> = 0(At
> = q. .
<AP1 APj 2K g1JAt

with these results we write down Fokker-Planck eq. as:

906G 3 oH 9 oH - oH
—_— = - - G + v + G
ot 8Q1 [ BP1 J api { 301 ij 5PJ
+ K g 226
9i; L ,

which can be rewritten in the following form:

oG _ = ) oH - 9°G
—t T {G,H} =¥ 9543 3Pi l j G J + K G 55—

(3.7)

Obviously any function of H vanishes the 1left-hand side of
eq. (3.7). In particular the function describing the
thermal equilibrium

6o(P.0Q) = 27! exp (-gH) (3.8)

vanishes also the right-hand side of eq. (3.7) and is therefore

the equilibrium solution of the Fokker-Planck eq. if:



The equation above exhibits the te1ation between the
viscosity and the strength of the stochastic forces for a
given temperature (B=1/kT). The coefficient Z is the
partition function and here it plays the role of a

normalizing factor.

It is important to observe that the left-hand side of eq.
(3.8) describes the purely mechanical motion of the system.
The remaining two terms on the right-hand side are of
stochastic origin and are responsible for carrying the system

to its equilibrium distribution.

Let us define the density at equilibrium as

g =c¢g . (3.10)

n-1 (n-1)/2.1/2 1/2

. _ _ o1 2m g

po(Q) - [i_I:(]jPi Go(PsQ) =7 { B J

The constant ¢ is actually irrelevant to our purpose since it
is related to the total number of particles put into the
system, and the equations are homogeneous of the first degree.

We have also set g=det(g..).

13

To obtain the diffusion equation, we shall follow the same

steps as in ref. (7).

We introduce an operator defined as



AG(P,Q,t) = __m h dp.G(P,Q,t) (3.11)

where G(P,Q,t) is any function of Q,P and t. It is easy to
verify that A is idempotent (A2=A) and its action is to
extract from any distribution function G(P,Q,t) its component
that corresponds to a uniform temperature everywhere but

with the same spatial distribution as given by G(P,Q,t), i.e.
AG = G (P.Q)e(Q,t) (3.12)
We may rewrite the Fokker-Planck equation as

56

5T - (FO + P]) G (3.13)
where
_ 9 - oH oG
Fp 6 =K 5P, 975 |BG =P * P (3.14)
J J
and
H 206G . 9H oG
r, 6 = {H,6} = —2H_ - i (3.15)
1 aQ1 aPi aPi aQ1

Our purpose now is to derive from eq. (3.13) a closed equa -

tion for p(Q,t)
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We have:

9P _
S0 3t = AlTg *+ Ty) (& + 6p)
with
G] = AG , G2 = BG
and

where I is the identity operator.

Let us observe that

o GO =T, G0 =0
as already discussed.
We further have

Ty A=A Ty = 0

and therefore

(3.16)

(3.17)
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FO AG = FO(GO p) = GO FO p =0

as Ty is a differential operator only on the momentum

variables.

We also have

KG
Ay 6= —O |map, 2o | 5, |66 gfg+ggJ=o
c Y§ J& i J J
assuming that
P.G >0 and 28 50 as P.> to
i an i

By similar arguments we can also prove that

AT, A=0 (3.18)

Making use of egs. (3.17) and (3.18) in eq. (3.16) we

obtain
G, 22 = AT, G (3.19)
0 ot 1 2 '
To proceed we must obtain the equation for GZ‘ Applying

B to both sides of Fokker-Planck equation we get
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or, again making use of eqgs. (3.17) and (3.18):

862
—'BT = (B F] + FO) G2 + F-I G-l (3.20)
The previous equation can be formally integrated as
t ] ]
G2 = 0 exp (BIH + FO) (t-t') I G] dt (3.21)

where we assume that Gz=0 at t=0. The meaning of this initial
condition is that we start with a system in thermal equili -

brium and therefore AG = G at t=0.

Substituting eq. (3.21) into eq. (3.19) we have

t
—p__. = -F 1 !
G0 X3 A I { exp [(B Ty + FO) (t-t )] F1 G] dt (3.22)

From eqs. (3.19) and (3.20) we observe that ry is the
operator responsible for thermal fluctuations of the system.
We make the simplifying assumption of neglecting higher order

corrections 1in BF] and thus

t
op_ . ' '
Gy 5t~ = A I JO exp [}O(t-t )J I G] dt
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It can be proved that

and therefore we have

t
Gn —£ - AT l exp [i-Y(t—t') r. G, dt'
0 "5t 1], L 1™ :

We make a further simplification, by assuming F] G] to vary

slowly in time intervals of the order of Y-] and so we
get
6, —2 = _1 12 g (3.23)
0 29dt Y 1 1 )

3gij =im =3jm
k% -9
oQ mk mk
and
y _
- 3v/g
T J
ij /§ 9Q

we finally arrive at the diffusion equation:
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= - /Dg_ Q! {513/—5—‘%%’] (3.24)
where

D = 1/(vB) (3.25)

The operator on the rigth-hand side of eq. (3.24) is the

Laplacian operator in the Riemannian space and D s the

diffusion coefficient.

It is important to observe that eq. (3.24) is the diffusion
equation not only for partic]es moving in a generalized
configuration space with metric given by the tensor gij
but is also for particles subject to arbitrary holonomic
constraints, as the elimination of the constraints always

leads to a Hamiltonian unconstrained motion in a reduced con

figuration space with a modified metric.
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DIFFUSION EQUATION FOR PARTICLES SUBJECT TO NON-INTEGRABLE

CONSTRAINTS

Let us begin by considering the Lagrangean

i3 &
9;5 9 9% -Xa;q (4.7)

N[ =

which describes a particle in a Riemannian space, subject to

the constraint

a. 4" =0 (4.2)

Proceeding = similarly to what we have done in section 2, we

obtain as primary constraint the equation

where I is the canonical momentum conjugateto A and , as secondary

constraint the following equation

A+ al p; = 0

These Tast two equations can be used to eliminate I and ) from

the extended Hamiltonian and we obtain



_]7—

1 i3 Ak
=29 05 P Py (4.3)
where
i i i '
L= L - . 4.4
Q' =6 j-aa ( )

So far we have not made use of the fact that a1d1 is not inte-

grable. Let us first assume that aid1 is integrable, i.e.

a-=T—89
i i
9q
where ¢ is the integral of eq. (4.2) and T is the integrating

factor. In this case we have
{Qbs H}: 0

and ¢ plays the role of a generator of gauge transformations
and must be treated as a first class constraint for the
system described by H.

The transformations generated by ¢ are

1]
o

e{qi, ¢}

qu

Il
1
m
’g
n
!
™
~
L}
—
Q

Spi

elp;, ¢}

and therefore ¢ changes only the component of p parallel to a.

Thus we choose as gauge condition the equation
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The equation above, together with the equation

can be used to reduce the phase space of the system by a
canonical transformation in which ¢ plays the role of the n-th
variable similarly to what we have done in section 2.

The Hamiltonian in the reduced space have the form

_ 1 =-aB _ _
H* = 5 97" p, R asB= T,...,n-1
- where
- s
(9: = | %8) R
1] h 5
HE
0 1——;
HE
%)
and H* is the same as the one given by eq. (2.13) and

therefore the diffusion equation is given by the eq.(3.23)
as was shown in the previous section.

If the eq. (4.2) is not integrable, no further invariance
appears in the system and we have to deal with the
Hamiltonian H given by eq. (4.3) defined in the whole 2n -
dimensional phase space. The presence of the constraint s

manifested by the fact that the metric

is singular. To overcome this difficulty we consider the



system described by the following Hamiltonian

He) = 9 (e) Pi Pj (4.5)
with

§13(e) = "% o) (o) (4.6)
and

o (e) =6 - (1) ala

with this procedure the metric given by eq. (4.6) is no Tonger
singular and

g = det (g.;.) = g/¢

1J

With this modification the steps described in section 3 can be

reproduced and we arrive at the diffusion equation

9P =D

= 3, (V9 0, Kie) ayo)

J

NIE

and we observe that the 1imit when €»0 exists and is

0 1 T
28 =D — 9 (Vg 91J QI; akp) (4.7)
Vg

which is the equation that describes the diffusion of a particle
subject to the non-integrable constraint ajd1 = 0 , which is

structurally different from eq.(3.23) for integrable constraints.
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5. HOLONOMY AS A BIFURCATION SET FOR THE CONSTRAINED DIFFUSION

EQUATION

We will now discuss the behaviour of eq. (4.7) when the cons -
traint becomes integrable.
Llet us first consider the space spanned by all 1-forms 1in a

n-dimensional Riemannian manifold.

To every 1-form w = aidqi, we have a constrained mechanical
system and we are interested in how one system changes into
another as we change the constraint continuously. One can
introduce in the space of forms a topology* that guarantees
the convergence of the exterior derivative and the exterior
product- implying therefore that the set of integrable 1-forms

is closed. This is easily seen using Froebenius theorem

which says that w is integrable if and only if

w A dow =0

Thus, if Wy is a sequence of integrable 1-forms that converges

to w then

W A W, = 0::9u)A dw = 0

* For example the topology in the space of 1-forms induced by
the following distance

n; -a'.
d(w,w'): SUD /|9 (a_i a 1) '
XN _ aq_l]...aq_i ‘

. . . n i
{1,1q,...,y§
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what proves that the set of integrable forms is closed.

If w is integrable and £ non-integrable then

is non-integrable. Thus, every integrable 1-form w can be reached
by a sequence of non-integrable 1-forms what shows that the set
of integrable 1-forms does not have interior what shows that it

is a meagre subset of the set of 1-forms.

These results justify to take the Timit in the diffusion eq.(4.7)

for the non-integrable constraint and we have

3
[T | i gk
st TV N (@g E aka

with the only difference that

a.='T———r
J an
and
2 jk 3¢ 3¢
T ¢ —-——k-='|
3g7  aq

Under these assumptions one can prove that if p is a solution of
the equation above, pf(¢) is also a solution .

To study the 1imit of the intégrable case we set
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f(o) = 8(¢)
as a necessary boundary condition.

Now we can take tha coordinate system such that qn=¢ . In this

case we have

with

and

p = 5(q1...qn_]) 6(9)

Substituting this into equation (4.7) we have:

QW
o]
I
o
Lo

— = qOB -
_;%:T:_—_ o 9nn 75 9 %°

(o3
t|

This equation, except for the special case in which 9y IS
constant, does not coincide with the correct equation for the

diffusion with holonomic constraint obtained in section 3.

We may therefore conclude that the holonomic mechanical systems
are bifurcation points for the diffusion equation for general

constrained systems.
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6. AN EXAMPLE

To illustrate the previous result, let us consider the diffusion
of particles subject to the non-integrable constraint

w' + aw =0

dependent on a parameter o and in which

o x]dx] + x2dx2 x3dx3

w' = + =0
B2 Y2 (6.1)

The leaves of the foliation given by eq. (6.1) are ellipsoids
of revolution around the X3 = axis with y/8 being the ratio
of the ellipsoids axes. We consider only the equilibrium dis -
tribution and we can easily see that the eq.(4.7) has in this

case the solution
p= const.

so long as the constraint remains non-integrable . In the 1imit

a»0, the density stays constant on each leaf and we set
p= const &(¢)
on the leaf ¢=0 of w'.

The predicted surface density on ¢= 0 is therefore

pdo = do f const JV¢|6(¢) d¢

= const |v¢l|do for ¢=0 (6.2)
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On the other hand, the surface density predicted by eq.(3.24) is
pdo = const do. (6.3)

and we observe a clear disagreement between the two predictions
when |Vo| is not constant. This is so because as we observed in
the previous section the diffusion equation for non-integrable
constraint does not converge to the diffusion equation for the
integrable case.

To illustrate further this fact we simulated the statistical
equilibrium of particles on the ellipsoid given by

2 2 2
9 (x] + X, ) + Xq~ = 9 (6.4)

The simulation was made by considering one particle moving on
the surface of the ellipsoid suffering collisions with other
particles of equal mass and given temperature (g=1) . The
collisions occured at every unit of time interval and the
particle was observed after each collision, fourty thousand
times. We considered these observations of the same particle
at constant intervals of time as representatives of the
canonical ensembles and the projected density of particles on
the X3@xis and the equatorial plane were observed.

In fig. (1) we exhibit our data for the particle distribution as a
function of X3 together with the two predictions given by
eqs. (6.2) and (6.3). The simulation data are plotted as circle
points and the predictions given by eq (6.3) and - eq (6.2)
are represented respectively by the continuous and the dashed

curves. We clearly see that the data agree with the prediction
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of eq. (6.3) what shows that the diffusion eq. for a non-integr-
able constraint gives the wrong limit when the constraint
converges to an integrable one.

We can understand these results in a simple way by considering
Fig. 2.The integrable case predicts a constant surface density.
By considering the volume between two ellipsoids of the same
foliation we can argue that to have a constant volumetric den
sity on the equatorial plane implies a different volumetric
density at the poles. Therefore, the constant volumetric
density everywhere prediéted by the diffusion equation for
non-integrable constraint cannot be reproduced when the
constraint is integrable. In physical systems in which the
non-integrable constraint changes to an integrable one, we
would suddenly observe a change in the spatial distribution of
particles when the constraint became integrable. We must
observe on the other side that the Hamiltonian description for
non-integrable constraint does not give the correct dynamical
equations and the discontinuous behaviour may not correspond to

the actual physical situation.
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7. CONCLUSION

We have derived the diffusion equation for holomomic constraints,
eq. (3.24), and non-holonomic constraints, eq. (4.7), under the
assumption that the dynamics for the non-holonomic case is given
by Hamilton's principle.

Though Hamilton's principle does not give the same dynamics, it
is a natural extension of the dynamics of holonomy into the realm
of non-holonomy. We say natural in the sense that the non-holono-
mic equations of motion go. continously into the holonomic ones.
This does not guarantee the continuation of the diffusion equations
for the two classes of constraints. In fact we have shown that the
holonomic set of constraints is a bifurcation set for the diffusion
equation. This immediatly raises the question as to the nature of
the diffusion equation for the +true non-holonomic dynamics. In a
previous paper (7) we showed , for a restricted class of
non-holonomic systems, those for which Liouville's measure is
invariant, that the true dynamics gives the same diffusion equation

as the one obtained by Hamiltonian dynamics. Unfortunately this
class is too restricted to permit a generalization. Therefore ,
the derivation of the diffusion equation for the true dynamics

remains an open problem.
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FIGURE CAPTIONS

Fig.

Fig.

1 - The particle distribution for the constraint given by

eq. (6.4). The horizontal scale is x3/Y. The simulation
data are plotted as black circles. The continuous
curve is the theoretical prediction given by eq. (6.3),
and the dashed curve is the prediction given by

equation (6.2)

The section of two ellipsoids of the same folliation
given by eq. (6.1). The shaded areas are the cross-
sections of two volumes with the same basis on the
ellipsoids. We can observe that the equatorial volume

is smaller thar. the polar one.
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