THE q-DEFORMED WIGNER OSCILLATOR IN QUANTUM MECHANICS

R. de Lima Rodrigues*
Centro Brasileiro de Pesquisas Físicas (CBPF)
Rua Dr. Xavier Sigaud, 150,CEP 22290-180,
Rio de Janeiro, RJ, Brazil August 2003

Abstract

Using a super-realization of the Wigner-Heisenberg algebra a new realization of the q-deformed Wigner oscillator is implemented.

PACS numbers: 03.70.+k, 11.10.Ef

Dedicated to the memory of Prof. Jambunatha Jayaraman, 28 January 1945-19 June 2003.

[^0]
1 Introduction

In 1989, independently, Biedenharn and Macfarlame [1], introduced the q-deformed harmonic oscillator and constructed a realization of the $S U_{q}(2)$ algebra, using a q-analogue of the harmonic oscillator and the Jordan-Schwinger mapping. The q-deformation of $S U(2)$, denoted by $S U_{q}(2)$, is one of the simplest examples of a quantum group.

The deformation of the conventional quantum mechanical laws has been implemented via different definitions and studied by several authors in the literature $[2,3,4,5,6,7,8,9]$. Also, recently Palev et al. have investigated the 3D Wigner oscillator [9].

The main purpose of this work is to set up a realization of the q-deformed Wigner oscillator [2].

2 The q-deformed usual harmonic oscillator

In this section, we consider the q-deformed ladder operators of the harmonic oscillator, a^{-}and its adjoint a^{+}, acting on the basis $\mid n>, \quad n=0,1,2, \cdots$, as $[1] a_{q}^{-} \mid 0>=$ $0, \quad\left|n>=\frac{\left(a_{q}^{+}\right)^{n}}{([n]!)^{\frac{1}{2}}}\right| 0>$ where $[n]!=[n][n-1] \cdots[1]$. The classical limit $q \rightarrow 1$ yields to the conventional ladder boson operators $a^{ \pm}$, which satisfies $\left[a^{-}, a^{+}\right]=1, \quad a^{-} \mid n>=$ $\sqrt{n}\left|n-1>, \quad a^{+}\right| n>=\sqrt{n+1} \mid n+1>$.

On the other hand, $s u(1,1)$ algebra satisfies the following commutation relations $\left[K_{0}, K_{ \pm}\right]= \pm K_{ \pm}, \quad\left[K_{+}, K_{-}\right]=-2 K_{0}$ and the Casimir operator is given as $C=K_{0}\left(K_{0}-\right.$ 1) $-K_{+} K_{-}$, where $K_{0}\left|0>=k_{0}\right| 0>$ and $K_{-} \mid 0>=0$. A usual representation for this algebra is given in terms of the ladder operators $a^{-}=(x+i p) / \sqrt{2}, \quad a^{+}=(x-i p) / \sqrt{2}$. The $s u(1,1)$ generators are given as $K_{0}=\frac{1}{2}\left(N+\frac{1}{2}\right), \quad K_{+}=\frac{1}{2}\left(a^{+}\right)^{2}$ and $K_{-}=\frac{1}{2}\left(a^{-}\right)^{2}$, where $N=a^{+} a$. Thus, the Casimir operator is given by $C=-\frac{3}{16}$. This system has two different representations whose k_{0} is $\frac{1}{4}$ and $\frac{3}{4}$.

Its q-deformation, $s u_{q^{2}}(1,1)$, is given $[3]$ as

$$
\begin{equation*}
\left[\tilde{K}_{0}, \tilde{K}_{ \pm}\right]= \pm \tilde{K}_{ \pm} \quad\left[\tilde{K}_{+}, \tilde{K}_{-}\right]=-\left[2 \tilde{K}_{0}\right]_{q^{2}}, \quad[x]_{\mu} \equiv\left(\mu^{x}-\mu^{-x}\right) /\left(\mu-\mu^{-1}\right) \tag{1}
\end{equation*}
$$

In Ref. [4] was found a realization of the $s u_{q^{2}}(1,1)$ in terms of the generators of $s u(1,1)$. The q-deformed ladder operators satisfy

$$
\begin{equation*}
a_{q}^{-} a_{q}^{+}=[N+1], \quad a_{q}^{+} a_{q}^{-}=[N], \tag{2}
\end{equation*}
$$

where N is the number operator which is positive semi-definite. The q-analogue operators can be found in terms of the usual ladder boson operators a^{-}and a^{+}.

Note that we can write $\left.\left|n>=\frac{a_{q}^{+}}{\sqrt{[n]!}} \frac{\left(a_{q}^{+}\right)^{n-1}}{([n-1]!)^{\frac{1}{2}}}\right| 0>=\frac{a_{q}^{+}}{\sqrt{[n]!}} \right\rvert\, n-1>$ so that we obtain

$$
\begin{equation*}
a_{q}^{+}\left|n-1>=[n]^{\frac{1}{2}}\right| n>\Rightarrow a_{q}^{+}\left|n>=[n+1]^{\frac{1}{2}}\right| n+1>. \tag{3}
\end{equation*}
$$

Also, from (2) and $a_{q}^{-} a_{q}^{+}\left|n>=[n+1]^{\frac{1}{2}} a_{q}^{-}\right| n+1>$ we get

$$
\begin{equation*}
a_{q}^{-}\left|n>=[n]^{\frac{1}{2}}\right| n-1>. \tag{4}
\end{equation*}
$$

It's easy to verify that $\left[N, a_{q}^{+}\right]=a_{q}^{+}, \quad\left[N, a_{q}^{-}\right]=-a_{q}^{-}, \quad\left[N, q^{N}\right]=\left[a_{q}^{-} a_{q}^{+}, q^{N}\right]=$ $0, a_{q}^{-} a_{q}^{+}-q a_{q}^{+} a_{q}^{-}=q^{-N}$. We will show that a structure of this type exists for the Wigner oscillator.

3 The q-deformed Wigner Oscillator

The one-dimensional Wigner super-oscillator Hamiltonian in terms of the Pauli's matrices $\left(\sigma_{i}, \mathrm{i}=1,2,3\right)$ is given by

$$
H(\lambda+1)=\left(\begin{array}{cc}
H_{-}(\lambda) & 0 \tag{5}\\
0 & H_{+}(\lambda)
\end{array}\right), H_{-}(\lambda)=\frac{1}{2}\left\{-\frac{d^{2}}{d x^{2}}+x^{2}+\frac{1}{x^{2}} \lambda(\lambda+1)\right\}
$$

where $H_{+}(\lambda)=H_{-}(\lambda+1)$. The even sector $H_{-}(\lambda)$ is the Hamiltonian of the oscillator with barrier or isotonic oscillator or Calogero interaction.

Thus, from the super-realized Wigner oscillator, its first order ladder operators given by [2] $a^{ \pm}(\lambda+1)=\frac{1}{\sqrt{2}}\left\{ \pm \frac{d}{d x} \pm \frac{(\lambda+1)}{x} \sigma_{3}-x\right\} \sigma_{1}$, the Wigner Hamiltonian and the WignerHeisenberg(WH) algebra ladder relations are readily obtained as

$$
\begin{equation*}
H(\lambda+1)=\frac{1}{2}\left[a^{+}(\lambda+1), a^{-}(\lambda+1)\right]_{+},\left[H(\lambda+1), a^{ \pm}(\lambda+1)\right]_{-}= \pm a^{ \pm}(\lambda+1) \tag{6}
\end{equation*}
$$

Equations (6) and the commutation relation

$$
\begin{equation*}
\left[a^{-}(\lambda+1), a^{+}(\lambda+1)\right]_{-}=1+2(\lambda+1) \sigma_{3} \tag{7}
\end{equation*}
$$

constitutes the WH algebra [2] or deformed Heisenberg algebra [5, 7].
Let us consider an extension of the q-deformed harmonic oscillator commutation relation,

$$
\begin{equation*}
a_{W}^{-} a_{W}^{+}-q a_{W}^{+} a_{W}^{-}=q^{-N}\left(1+c \sigma_{3}\right), \quad c=2(\lambda+1) \tag{8}
\end{equation*}
$$

as a q-deformation of the Wigner oscillator commutation realization. These operators may be written in terms of the Wigner oscillator ladder operators, viz.,

$$
\begin{equation*}
a_{W}^{-}=\beta(N) a^{-}(\lambda+1), \quad a_{W}^{+}=a^{+}(\lambda+1) \beta(N), \quad N=a^{+}(\lambda+1) a^{-}(\lambda+1) . \tag{9}
\end{equation*}
$$

Acting the ladder operators of the WH algebra in the Fock space, spanned by the vectors

$$
\begin{gathered}
a^{-}(\lambda+1)\left|2 m>_{c}=\sqrt{2 m}\right| 2 m-1>_{c}, \\
a^{-}(\lambda+1)\left|2 m+1>_{c}=\sqrt{2 m+c+1}\right| 2 m>_{c}, \\
a^{+}(\lambda+1)\left|2 m>_{c}=\sqrt{2 m+c+1}\right| 2 m+1>_{c}, \\
a^{+}(\lambda+1)\left|2 m+1>_{c}=\sqrt{2(m+1)}\right| 2 m+2>_{c},
\end{gathered}
$$

we obtain a recursion relation given by

$$
\begin{equation*}
(2 m+2) \beta^{2}(2 m+1)-q(2 m+1+c) \beta^{2}(2 m)=q^{-(2 m+1)}(1-c) \tag{10}
\end{equation*}
$$

Also

$$
\begin{equation*}
(2 m+1+c) \beta^{2}(2 m)-2 m q \beta^{2}(2 m-1)=q^{-2 m}(1+c) \tag{11}
\end{equation*}
$$

The q-deformed Wigner Hamiltonian and the commutator $\left[a_{W}^{-}, a_{W}^{+}\right.$], for $c=0$ become the q-deformed harmonic oscillator

$$
\begin{equation*}
H_{W}=\frac{1}{2}\left[a_{W}^{-}, a_{W}^{+}\right]_{+}=H_{b}=\frac{1}{2}([N+1]+[N]), \quad\left[a_{W}^{-}, a_{W}^{+}\right]=[N+1]-[N] . \tag{12}
\end{equation*}
$$

Ten equation (10) and (11) have the following solution $\beta(N)=\sqrt{\frac{[N+1]}{N+1}}$. The general case is under investigation and the results will be published elsewhere.

4 Conclusion

In this work, we firstly presented a brief review on the q-deformation of the conventional quantum mechanical laws for the unidimensional harmonic oscillator. We have also implemented a new approach for the WH algebra. Indeed, the q-deformations of WH algebra are investigated via the super-realization introduced by Jayaraman-Rodrigues [2].

Also, we do not assume the relations of operators $a_{W}^{+} a_{W}^{-}$and $a_{W}^{-} a_{W}^{+}$. They are derived from our defining set of relations $a_{W}^{-}=a_{q}^{-}=\sqrt{\frac{[N+1]}{N+1}} a^{-}$and $a_{W}^{+}=a_{q}^{+}=a^{+} \sqrt{\frac{[N+1]}{N+1}}$, for vanish Wigner parameter ($c=0$) given by Eq. (2). The case with $c \neq 0$ will be presented in a forthcoming paper.

Acknowledgments

This research was supported in part by CNPq (Brazilian Research Agency). RLR wish to thanks the staff of the CBPF and DCEN-CFP-UFCG for the facilities. The author would also like to thank V. B. Barbosa and M. A. Rego-Monteiro by discussions. The author is also grateful to the organizing committee of the Brazilian National Meeting on Theoretical and Computational Physics, April 6 to 9, 2003, Brasilia-DF, Brazil.

References

[1] A. J. Macfarlane, J. Phys. A: Math. Gen. 22, 4581 (1989); L. C. Biedenharn, J. Phys. A 22, L873 (1989).
[2] J. Jayaraman and R. de Lima Rodrigues, J. Phys. A: Math. Gen. 23, 3123 (1990), and references therein.
[3] P. P. Kulish and E. V. Damaskinsky, J. Phys. A: Math. Gen. 23, L415 (1989); H. Ui and N. Aizawa, Phys. Lett. A5, 237 (1990).
[4] T. L. Cutright C. K. Zachos, Phys. Lett. B243, 2237 (1990).
[5] A. P. Polychronakos, Phys. Rev. Lett. 69, 703 (1992); L. Brink, T. H. Hansson and M. A. Vasiliev, Phys. Lett. B286, 109 (1992); T. Brzezinski, I. L. Egusquiza and A. J. Macfarlane, Phys. Lett. B311, 202 (1993); L. Brink, T. H. Hansson and S. Konstein and M. A. Vasiliev, Nucl. Phys. B401, 591 (1993).
[6] K. H. Cho, Chaiho Rim, D. S. Soh and S. U. Park, J. Phys. A: Math. Gen. 27, 2811 (1994).
[7] B. Bagchi, Plys. Lett. A189, 439 (1994); S. M. Plyushchay, Int. J. Mod. Phys. A15, 3679 (2000).
[8] D. Bonatsos, J. Phys. A 25, L101 (1992); D. Bonatsos, C. Daskaloyannis and K. Kokkotas, Phys. Rev. A50, 3700 (1994); E. M. F. Curado and M. A. Rego-Monteiro, J. Phys. A 34, 3253 (2001).
[9] R. C. King, T. D. Palev and N. I. Stoilova, J. Van der Jeugt, J. Phys. A: Math. Gen. 36, 4337 (2003), hep-th/0304136.

[^0]: *Permanent address: Departamento de Ciências Exatas e da Natureza, Universidade Federal de Campina Grande, Cajazeiras - PB, 58.900-000 - Brazil. E-mail to RLR is rafaelr@cbpf.br or rafael@fisica.ufpb.br.

