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I. INTRODUCTION

The relativistic Dirac oscillator proposed by Moshinsky-Szczepaniac [1] is a spin 1
2

object with the Hamiltonian which in the non-relativistic limit leads to that of a 3-
dimensional isotropic oscillator shifted by a constant term plus a �L · �S coupling term for
both signs of energy. There they construct a Dirac Hamiltonian, linear in the momentum
�p and position �r, whose square leads to the ordinary harmonic oscillator in the non-
relativistic limit. The Dirac oscillator has been investigated in several context [2–8]

The R-deformed Heisenberg algebra or Wigner-Heisenberg algebraic technique [9] was
recently super-realized for the SUSY isotonic oscillator [17,18]. The R-Heisenberg algebra
has also been investigated for the three-dimensional non-canonical oscillator to generate
a representation of the orthosympletic Lie superalgebra osp(3/2) [12].

The R-Heisenberg algebra has been found relevant in the context of integrable models
[13], and the Calogero interaction [14,15]. Recently it has been employed for bosonization
of supersymmetry in quantum mechanics [16], and the discrete space structure for the 3D
Wigner quantum oscillator [20]. In this work, we obtain the complete energy spectrum
for the Dirac oscillator via R-deformed Heisenberg (RDH) algebra.

II. 3D WIGNER OSCILLATOR

In this Section, we provide a three dimensional representation of the Wigner system
with its bosonic sector being the 3D isotropic oscillator (assumed to be of spin-1

2
, to aid

factorization).
The R-deformed Heisenberg (or Wigner-Heisenberg) algebra is given by following (anti-

)commutation relations ([A,B]+ ≡ AB +BA and [A,B]− ≡ AB −BA) :

H =
1

2
[a−, a+]+, [H, a±]− = ±a±, [a−, a+]− = 1 + cR, [R, a±]+ = 0, R2 = 1, (1)

where c is a real constant associated to the Wigner parameter [17]. Note that when c = 0
we have the standard Heisenberg algebra.

It is straightforward, following the analogy with the Ref. [17], to define the super-

realizations for the ladder operators a∓(�σ · �L + 1) for HW ≡ H(�σ · �L + 1) taking the
explicit forms

a∓ = a∓(�σ · �L+ 1) =
1√
2

{
∓Σ1

(
∂

∂r
+

1

r

)
± 1

r
(�σ · �L+ 1)Σ1Σ3 − Σ1r

}
(2)

which satisfy together with HW ≡ H(�σ · �L + 1) all the algebraic relations of the RDH

algebra with the constant c
2

replaced by (�σ · �L + 1) and R = Σ3. Note that (�σ · �L + 1)
commutes with all the basic elements (a∓ and HW ) of the RDH algebra.

It may be observed that the RDH algebra that gets defined here is in fact three
dimensional (one dimension for r and two for (�σ · �L + 1)) and is identically satisfied on
any arbitrary three dimensional wave function.

On the eigenspaces of the operator (�σ · �L+1), the 3D Wigner algebra gets reduced to

a 1D from with (�σ · �L+ 1) replaced by its eigenvalue ∓(�+ 1), � = 0, 1, 2, · · · , where � is
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the orbital angular momentum quantum number. The eigenfuncitons of (�σ · �L+1) for the
eigenvalues (� + 1) and −(� + 1) are respectivaly given by the well known spin-spherical
harmonics y∓.

Now, considering simultaneous eigenfuncitons of the mutually commuting HW and
(�σ · �L+ 1) by

ψW,+ =

(
R̃1,+(r)

R̃2,+(r)

)
y+, (�σ · �L+ 1)ψW,+ = (�+ 1)ψW,+, (3)

and

ψW,− =

(
R̃1,−(r)

R̃2,−(r)

)
y−, (�σ · �L+ 1)ψW,− = (�+ 1)ψW,−, (4)

(where the use of the subscript +(−) indicates association with [y+(y−)], we observe that
the positive semi-definite form of HW the ladder relations and the form of HW dictat that
the ground state energy E(0)

w (�σ · �L+ 1) ≥ 0, where EW (�σ · �L+ 1) indicates a function of

�σ · �L+ 1, is determined by the annihilation condition which reads as two cases.

III. THE DIRAC OSCILLATOR MODEL

Adding an ”anomalous momentum” in the form of a (nonlocal) linear and hermitian
interaction,

�α.�π ≡ −iMωβ�α.�r = (�α.�π)†, (5)

in the (noncovariant) Dirac free particle equation with mass M and spin- 1
2
, in the natural

sistem of units,

i
∂ψ

∂t
= (�α.�p+Mβ)ψ, (6)

one obtains the equation for the Dirac oscillator [1]:

i
∂ψ

∂t
= {�α.(�p+ �π) +Mβ}ψ, (7)

where M and ω are, respectively, the mass of the particle and the frequency of the
oscillator, and the matrices (�α, β) satisfy the following properties:

[αi, β]+ = 0, [αi, αj ]+ = 2δij1, β2 = 1 = α2
i , (i, j = 1, 2, 3). (8)

Writing the Dirac spinor in terms of the upper and lower components, respectively, ψ1

and ψ2,

Ψ(�r, t) = exp(−iEt)Ψ(�r), Ψ(�r) =
[
ψ1(�r)
ψ2(�r)

]
(9)

the standard representation of the matrices �α and β.
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IV. THE DIRAC OSCILLATOR VIA RDH ALGEBRA

In this section, we implement a new realization of the Dirac oscillator in terms of
elements of the R-deformed Heisenberg algebra. To solve the Dirac equation, following
the usual procedure, we consider the second order differential equation,

H̃Dψ(�r) = Eψ(�r), (10)

where H̃D is a second order Hamiltonian,

H̃D = H2
D +M21, Ẽ =

E2 −M2

2M
. (11)

In the spherical polar coordinate system, we obtain the non-relativistic form of the Hamil-
tonian of Ui [19], for an isotropic 3D SUSY harmonic oscillator with spin-1

2
.

We consider a unitary operator in terms of the radial projection of the spin,

U =
[

1 0
0 σr

]
= U−1 = U †, (12)

to obtain the following relation between the transformed Dirac Hamiltonian, H̃D, the 3D
Wigner Hamiltonian, HW , and the SUSY Hamiltonian, HSUSI [19]:

HSUSI = UH̃DU
† = HW − 1

2
{1 + 2(

�
σ · �L+ 1)Σ3}ωΣ3. (13)

A. The energy spectrum of the Dirac oscillator

The energy spectra of the operators H̃D and HSUSY are identical, since these opera-
tors are related by a unitary transformation. However, the relation between the principal
quantum number N and the angular momentum (�) is different, in each case. Obvi-
ously, the energy spectrum associated with the two types of eigenspaces belonging to the
eigenvalues ±(� + 1):

Case(i) → �σ · �L+ 1 → �+ 1 = j + 1
2
, j = �+ 1

2

ẼN
 =
E2 −M2

2M
=

{
2mω = Ẽ+

N(
+1),

2(m+ 1)ω = Ẽ−
N
,

(14)

where m = 0, 1, 2, . . ..
Case(ii) → �σ · �L+ 1 → −(�+ 1) = −(j + 1

2
), j = (�+ 1) − 1

2

ẼN
=
E2 −M2

2M

=

{
(N + j + 3/2)ω = Ẽ+

N
, N = j − 1
2
, j + 3/2, j + 7/2, . . . ,

(N + j + 5/2)ω = Ẽ−
N(
+1), N = j + 1

2
, j + 5/2, . . ..

. (15)
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V. CONCLUSION

In this work we investigate an interesting quantum system, the so-called Dirac os-
cillator, first introduced by Moshinsky-Szczepaniak [1]; its spectral resolution has been
investigated with the help of techniques of super-realization of the R-deformed Heisenberg
algebra.

The Dirac oscillator with different interactions has been treated by Castaños et al. [7]
and by Dixit et al. [8]. These works motivate the construction of a new linear Hamilto-
nian in terms of the momentum, position and mass coordinates, through a set of seven
mutually anticommuting 8x8-matrices yielding a representation of the Clifford algebra
C�7. The seven elements of the Clifford algebra C�7 generate the three linear momentum
components, the three position coordinates components and the mass, and their squares
are the 8x8-identity matrix I8x8. Results of our analysis on Dirac oscillator via the Clifford
algebra C�7 are in preparation.

In a forthcoming paper we show that the Dirac oscillator equation can be resolved alge-
brically without having to transform it into a second order diferential equation. Therefore,
the important connection for the Dirac 3D-isotropic oscillator with the linear ladder oper-
ators of the R-deformed Heisenberg algebra, satisfying the concomitant general oscillator
quantum rule of Wigner, have explicited in this work.
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