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ABSTRACT

The semiclassical 1/N expansion in the strong coupling regime for spinor quarks was
developed and the form of effective action was obtained. An extremum of the effective
action that arises in the calculation of the hadronic correlation functions in the large ¥V
limit corresponds to a topologically non-trivial configuration of the gauge field. This con-
figuration forms a chromoeletric Nambu string with additional spinor terms that contain
in particular the Polyakov spinor factor. In the case when real quarks forming hadrons
are replaced by scalar particles the above correlators yield the standard dual resonance
amplitudes.
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1 Introduction

This research investigation has as scientific goals the development of methods which stay
beyond the frame of perturbation theory and allow one to draw up the physical con-
sequences of non-Abelian SU (N) gauge theory when N > 1 ( at the strong coupling
regime), clearing the color confinement problems. Concretely, the questions are:

1. Using of the 1/N expansion as a semiclassical expansion over parameter 1/N, which
plays, in the large N limit, the same role as does Planck’s constant % in ordinary
quantum mechanics. The aim is the extraction of the effective string dynamics from

QCD;

2. The non-perturbative calculation of the hadronic field correlators, taking into ac-
count quark’s spin and flavors;

3. Investigation of the consequences which follow from large N QCD as a topological
theory and the application of these results to the hadron physics in the frame of
QCD.

1.1 Background and Scientific Significance

The structure and interaction of hadrons are defined by the dynamics of their constituent
quarks and gluons, which are the more fundamental fragments of matter. The non-
Abelian character of the color interactions in QCD leads to growing up of the effective
coupling constant at large distances, where the hadrons are formed. This circumstance
gives rise to the necessity of development of non-perturbative methods, which allow to fill
the gap connected with long standing problems of color confinement and the mechanism
of generation of the string-like configurations of the gauge field, which are responsible for
confinement. One of such methods is a semiclassical 1/N approximation. The effective
string dynamics can arise actually in the frame of this approach.

1.2 Preliminary Studies

In recent years I have been working on the topological trend in the semiclassical 1/N
approximation and effective string dynamics in SU {N) gauge field theory. I have found
that, within the scalar quark approximation, the open string binding quarks in a hadron is
obtained from non-perturbative calculations of the hadronic field correlators when N > 1,
at the strong coupling regime. This approach differs from others attempting to decide this
problem (lattice calculation, loop equations, etc.) and stays nearer to Witten’s conception
of the master field. A topologically non-trivial configuration of the gauge field, which forms
a chromoeletric string, provides the steady extremum of the effective two-dimensional
action arising in the calculation of the correlators in the framework of the semiclassical
1/N expansion for the 4-dimensional gauge theory. This string is a Nambu string with
extra constraints, which restrict the space of quantum states. One of this constraints is
a consequence of topological quantization of the chromoeletric flux on the string world
sheet. This flux quantization follows from the condition that saddle point solutions of the
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effective field equations must be single valued functions. This leads to the quantization
of the string action.

The partition function of the string is expressed only in terms of the Euler character-
istic of the string world sheet. This means that the SU (N) gauge theory reduces to a
topological field theory in our approximation. The Weyl anomaly, which is proportional
to the Liouville action, is eliminated by the second constraint of the constant scalar cur-
vature R at arbitrary dimension of target space. This string is a non-critical one (i.e. out
of dimension D = 26).

The procedure for renormalization of the string tension was determined.

The Gell-Mann-Low function for the running coupling constant in the non-perturbative
phase of SU (N} gauge theory is identical to the first term in the expansion of the j-
function at the strong coupling approximation in the field theory on a lattice. The cal-
culation of the chromoeletric string correlators in the scalar quark approximation yields
the Koba-Nielsen formula for the dual resonance amplitude. The above differences are
displayed mainly in the calculation of the partition function but, as it turns out, disappear
from the expressions for the correlators [1].

1.3 Research Design

The research design is the generalization of the above results to the case of realistic quarks
possessing Lorentz spin and flavor degrees of freedom. For realization of this design it is
necessary to start using spinning particle propagators, which are defined as a path integral
over additional Grassmanian variables describing the quark spin in the presence of the
external gauge field. Afterwards, it is necessary to determine the form of the effective
spinor action corresponding to non-perturbative phase of QCD at leading order in the
parameter 1/N. The variation of this action will lead to the equations of motion and
corresponding boundary conditions for the gauge and quark fields.

Then, it is necessary to find the steady (topologically non-trivial) solution of these
equations, which describes a string-like configuration of gauge field binding quarks in the
hadron, to substitute this solution into the effective action and to sum over the string world
sheets. It will allow to calculate the partition function and correlators of the chromoeletric
string binding spinor quarks.

In the next stage one will have to investigate the analytical properties of the scattering
amplitudes for hadrons and elucidate the hadron mass spectrum.

In order to reach these aims one suggests to use analytical methods. Then, at the final
stage for obtaining of quantitative predictions for interaction cross-sections, invariant mass
distributions, etc., and the comparison of these results to the experimental data, it will
be necessary to use extensive computer calculations.

2 Connected Part of the Hadronic Field Correlators

To extract the effective string dynamics from QCD, let us consider the 1/N non pertur-
bative evaluation of the hadronic field correlator

K(1,..n) = (M (21) M (22) ..M (z,)) (1)
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in the strong coupling regime
N> Nel > 1, (2)

where e is the gauge coupling constant.
M (z;) is a field operator of the constituent meson (pseudo scalar)

M (2:) = ¥ m (2:) (Tod)run (15) ga Ve (3)

Here 9 (z) is a quark field, 7, is a flavor symmetry group matrix, e, § are the Lorentz
spin group indices and c is an index of the color gauge SU (N) group {c =1, ..., N).

The operator (3) is a color singlet. The correlator (1) is given by the following path
integral

K(,.,n)=2" / dp [A] DYDYy MY [ M (2)) ... M (z,)}, (4)

where Z is a normalization constant and
4 a a,puy = oc’ c
Srulav)= [t [-165, @6 @) + B @) (B - m) v @)

g ) f . )\a a CC!
DL, = (7")5a D, fo’:(aﬂ—ae?Au) . (5)

Let us take the integration over ¢ and . After this, the connected part of (4) is

K(,..,n)=2" Y () ] du[A] [det Sp (A)] ' e*SralAlx

perm
(:L'i y :I:k)

x Tr {H [iTa,7sSF (Zis Tisa; A)]} ) (6)

i=1

where

Tr {f[ [v5SF ($i=$i+1;A)]} = [(’Ys)ga SFay (371:5923«4)] X

x [(9),5 S0 (22,735 A)] - [(95) s S (s 213 A)] (7)

the symbol P stands for the parity of the permutation of the fermion fields, and the quark
propagator is given by

5S¢ s (@ 5 A) = < ‘T(d’c(fﬁ l!’,e (m))‘ >
= <x',a,c‘z‘§F (A)l:z:,[)’,c'>, (8)

with »
Sr(4) = (D (4) ~mo) ©)

having diagonal structure in the flavor indices (if there is not involved an electroweak
field).



b CBPF-NF-029/95

Consequently, we have the Chan-Paton factor in (6), Tr{7,,Ts,...Ts, }, where a; =
1,...,8 for the SU (3) flavor group.

Formula (7} can be written as a path integral over trajectories in superspace by using
a representation for the Fermi particle propagator [2] [3]. In the coherent basis (up to
integral terms) we have the following expression:

Y55F (531,-'52; A) =
z2=xlv2}

= [ PamDUO)DEODIODXNDEGDEME,  (0)

z1=z(m)

where (see [3], [4], [5])

T2 T2
S [2, v U5, My 1o £] = /d'yL _ /d’r(Lu-i-Lm F Line),
T1 1

A .
Ly = = 50" (&, — ixthu) — 5¥*4, (1)
A ' .
L = —5mb + = (sths + moxess) (12)
Lint = iécéc + eéc (%) (Aﬁj:ﬂ - %Aw#Gﬁku) €C’= (13)

and %, = dz,/dv, etc.
The variables x, ¥, ¥s, { are anticommuting, A and z, are commuting, A () is the
one-dimensional metric on the trajectory of the particle with spin.
The action S is real, gauge invariant and it is reparameterization invariant if a change
of the parameter ¥ — %' is accompanied by the variable transformations
A= XN = a4y = _A,
d,Yl' ,Y.I'

X
x—x = o (14)

with z,, ¥, ¥s5, { unchanged.

In addition, each of the three pieces of L (11}, (12), (13) is invariant up to a total
v-derivative under the following infinitesimal supersymmetry transformation generated
by an anticommuting variable o (7v):

oz = io)”,

Y a (¥ — Exyp
6’1’() — ( A? ),
oA = —iary,

dx = 2¢,

‘511’5 = My,
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68 = ea™ A, (-/;) £o. (15)

This invariance is essential for eliminating the non-physical degree of freedom 4.
After discarding internal quark loops, which are O (1/N) (that is, letting det Sp — 1)
we have the following expression for each part in the sum over permutations (6):

K(1,..,n) =2 Tt {T,,..T,, } x
x [ DA, (2) Dy (3) D (1) Do (1) DA () P (1) DE () D () {9

x e~G&O¢ (1VE, (0 )} (16)

where

S A2, 2, s s M 0 &0] = 2 f &GS, (£) G5 () —

frla (o) (G- ea) o

l fdfy { i‘\d) — iy, + 3 (1})51115 + muX’%) _

— jeAPrPrGEE, (%) gd} : (17)
cc!

In (17) v is the parameterization of the closed contour I' (0 < v < 1) defined by the
closed curve z, (), ,(0) =z, (1). The z, are the coordinates of the quark trajectory,
forming a closed contour T, passing through the fixed points z; (i = 1,...,n), z; = z (%),
as is shown in Fig.1.

Xn

xh-]_

%

Figure 1: contour I' passing through z; = z ()
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3 The Semiclassical 1/N Approximation

The semiclassical 1/N expansion is used for the calculation of the correlators (16). Ac-
cording to F. Berezin and L. Yaffe {6] the parameter 1/N plays in the large N limit the
same role as does the Planck constant A in ordinary semiclassical approximation in quan-
tum mechanics. To leading order in 1/N it is necessary to take into account only the
contributions from planar (in color space) gluon diagrams. This statement means that is
necessary to sum in the path integral (16) only a certain subclass of the gauge fields whose
contribution is the most important in the above approximation. We will use topological
arguments to look for the above subclass of this field configurations.

For the semiclassical 1/N approximation to be applicable it is necessary to have a
stable extremal. It is well known that, in non-linear theories the stable field configurations
are given by the topologically non-trivial solutions of the classical equations of motion
(instantons, monopoles, g-model solutions, etc.}.

On our task, the variation of action (17) 6S/6&, = 0 leads to the equation of motion
for the color spinor fields & {7),

dfc - /\a a . ] a v
=i (7) (- pra), oo

The formal solution of eq. (18) is

&) = [Pew e [ ar [, - DrvrGa 3| 000, (19)
0

cd

where &4 (0) is the initial condition.
The non-abelian value Pexp {...A,...} in (19) has the correct behavior under gauge
transformations

Ay (@) ~ A2 (2) = ©(2) A, (D)0 () - £ (3,22 07 (0),

G (8) = Q(3) G () 27" (2),
Pexp{..A,.} > Pexp{..A}..} = Q(z (7)) Pexp {...A,..} Q7 (2 (0)) .

This exponent is an element of SU (V) the color group. It is defined on the contour I" and
maps [ into the group SU (N). This mapping is trivial for V > 2 since the homotopical
group 7 [SU (N)] = 0. The single exception is provided by the case of quasi-abelian
gauge field in (19). In that case we have a mapping of I into the subgroup U (1}. The
first homotopical group of the mapping m [U (1)} = Z, where Z is the group of integers.
Moreover, since £ () in (19) is a solution of the differential equation (18) we demand that
it is single valued on the closed contour I'. Hence, if we neglect temporarily the (second)
term with magnetic moment of the quark in formula (19), we will have the quantization
of chromoeletric flux of the quasi-abelian gauge field on the arbitrary surface ¥ with
boundary 9% = I'. A specific example of this type was realized in my paper [7]. This
quantization of the flux can stabilize the field configuration only if it is the whole flux of
field, but not of some random part of it. Since the contour I' forms a one-dimensional
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boundary, this requirement can be satisfied only by quasi-two-dimensional fields of the
following type

45 (2 ()], = ‘Z—“':ifAﬂv‘ (2)

“living ” on surfaces £ with the boundary 9% = I'. Here the equation z, = z,, (2*) defines
the imbedding ¥ into external flat target space (i =1,2;a=1,..,. N> -1, p=1,..,4).

) (20)

Thus the topologically non-trivial conﬁgurations{A, £ [A]} are realized in the subclass of

quasi-two-dimensional fields A only. Consequently, at the semiclassical 1/N calculation
it is necessary to take into account the contribution of such fields only.

The selection of this subclass of the fields (20) is carried out by inserting under the
path integration sign DA% (z)... in the correlator (16) the corresponding projection

operator
= [Pl @), {466, - 4 @) -
_ /D £ (2)]5 D [A% (2)] o I (A (2) 2 (2)) 6 { [2“;‘;‘ A% (2 )] T A (a:)} (21

Here J5; (A, ) is the Jacobian of the transformation to the new variables A% (z), z, (2).
Integration over the initial fields Aj (z) with the help of the é-functions, contained in II,
reduces the calculation of the vacuum expectation value in (16) to the integration over
two-dimensional field A% (2)y for fixed surface ¥ and subsequent summation over the
surfaces ¥. As a result of the transition to the new fields the two-dimensional Y-M action
arises on each surface,

Bff [A 511" U) T!’s; 1X] /d’zz\"' _hh“hknG?k n—

1 (a? o _fd ...
—pdy=|—+imi | +i pdyl. | — —ieAidt ) ELut
3\ iy cd
ox az

f ay {575 — i (1) () + i (s + moxs ) -

Aa
-G EmE () e, (22)
ce
where
o = AL — L A% + ef AL AL,
_ . )
W= grel, o = he, = K, (23)
with ‘
h=dethy, hi=(0z,/02") (8:1:"/62") (24)

being the induced metric on the world sheet X, € = e/6, a two-dimensional charge and
8, a ultraviolet regulator with dimension of length {6 has the meaning of a little (but
non-vanishing) thickness of the surface X).
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The spin field ¥* can be expanded into tangential and transverse parts,

2 2
Y=l gt ol = ek, ¢ = (9Pt m, (25)
k=1

k=1

where e}, =0, 4,k =1,2.
After this, the term w“'gl}p in the action (22) is represented as

"l’”@[-’# = wﬁ‘w"ﬂ + d’in-u + 2wi@bllu'
The field ¢/, has not any interactions and one can take Gaussian integration over it

——

T

1 .
= const - exp {—5 fd'}"‘,bi‘r'@bm} ’

T
where const = det (d/d7). _

It results that the kinetic term of the tangential field d)ﬁ‘@b” u is cancelled and ¥ is a
non-dynamical field.

Now we have the following effective action on each surface 3,

1 .
S;ff [Aagazaﬂ;a 1)[)5: )\: X] = _Z / dzzv mhhllhknG?k ?n_

>

1 22k . _ ~f(d ..

—=¢dy| hjw——+2Amg | +i ¢ dyle | —— — teAiz Eat+
2 A dy cd
8T 33
1 . i . i = )ta . i
+3 jgd’Y {z%z P — AP YEGLRE, (?) ot (’ébs?/)s + most)} ; (26)
o g

where hy = (9x,,/02°) (03 /02%).

4 The Saddle Point Configuration

The variation 655/ /6 A? = 0 leads to the equation of motion for the A% (2) = A on the
fixed surface 3,

8; [V=RG*] - eftey/=RGM* AF = 0, (27)

and to the following boundary condition on 9% = I:

V=RGYE (2 (7)) €153 = €T () 2* — ieA fOC AT ik, (28)
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which takes into account the presence of quarks on the boundary 8%. Here e,; is the

antisymmetric tensor and 7 (vy) is the color spin operator of the quark:

a

o) =6 (F) &),

dT*
dy

according to the equation (18) for £ (v).
The equation of motion (27) is fulfilled by a solution

— efabcAfsz-i + i%fach?kwiwch’

-1

G (2) = ee* 1 (2) (V=R ()
if the color vector I* (z) is covariantly constant

_oar

ab rb
DI (2) 2

—eferP A =0,
and if the following boundary condition

I* (z)lzeaz =T*(v),

holds on 9Z.

(29)

(30)

(33)

In this case, the vector 7° () will be also covariantly constant because the term with

oG *p* T is cancelled and

d7*

d’_}( — EfabcAgszi,

N? -1
T? = T°T% = C, (F) = .
Cy (F) N

The potential A2 corresponding to (31) in the particular gauge in which

I*(z) = const.,

has a form 1o
A =28

(34)

(35)

(36)

(37)

where o; (2) is an abelian two-dimensional field. In this case, the boundary condition (28)
is fulfilled also. After substitution of the self consistent saddle point configuration of the

fields {fi, é } we have the following expression for the action

A

eif 3z 0 1 gk )
S [A,g, ] — ko [ d2vV=h -3 $ dy (ha S +2md ) +
z 85

+ % fd’y {z’%z'iw,- +i (11)51!}5 + mox%)} '

a5

(38)
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e? (N2 -1 el
kp= — [ ———— =20
° 262( oN ) “Tw

Now the correlator has a form

where

Il
™

(39)

L2 lie

K(1,..,n) =" Z ' Tr {T,,..T,,} x

% [ D2, (2) D, (1) Dy (2) Ds (1) DA () Dx (1) DEO) DE (0)  {&. (1) (0)
s 'S5 Tlaux A ps)— edm)sd(cn} (40)
Here z, enters in S¢// through the induced metric hy [z],
v = dlel, Dyl =Dyt (detel) ™! = vV=hDy'. (41)
Then, let us integrate over ¥ and y. After this X will be as

K({,..,n) = "Z ' Tr{T,,..T,,} x

x [ D2,(5) D (3) Dy () DA () DEO) DEO) x {&(DE.(0)

« oi5! [:c,A,wl—Ed(O)sd(ﬂ}} )

S [z, A ¢]—k0/d2z\/_h~—j§d’r( —!-Amu)

' kak Z"Gbi
%;f‘“(/\)a(/\)' (12)
a8

5 The Solution of Equation (18)

Let us consider the solution of equation (18) by taking into account the saddle point
configuration A (37). We have

%‘3=ie (%) gd( i — gryiGe )
fA® a oy ki | A a
=g (?) Eal%a; (2 (7)) 2° + X" (?) Eaeri IV —h. (43)
cd ed

The color vector 7*(z) at the boundary z € 9 equals the color quark spin 7% (7y) (see
equation (33)), that is, becomes the operator in the space of color functions &, (v). The
action of such operators is given by the formula (8]

ar©= [ [t 6.7 0) AR (44)
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where A (£,() is the normal symbol of the operator A4,

- A
469 =S
The application of (44} to the function f (£} = ¢ gives
(3) Ta=cme (45)
ed
that is p
E% =3 [aiz':" - z’e%\w"zb*ek,f\/——h] C, (F)&,. (46)
The solution is A ‘
& (7) = €. (0), (47)
where the phase ¢ (y) equals
¥ ,
¢ () = Co (F) f dy' [j—;ai - m%pka,b"ek,;\/?h] : (48)
0

The first integral in (48) is

1

fd t—iizia,-—fdzf -—lfd%\/—hp- < _
’}(d’)/:_ a1_2z tk\/_—h
a

dL

= /sz\/—_h(*F) = ezfd2zx/—_h, (49)

according to formulae (31) and (37).
The condition of single valuedness for the phase ¢ (y) gives the following result

(1) =27Q, Q=+1,42,.... (50)

(From this we have the first constraint

T|Q| = ko [f d’zv/—h - z'fd’)r)\wkw"ek,‘\/—hh} . (51}

bH o

The second constraint insures the constancy condition of the scalar curvature of the
world sheet L,
R = const. ~ €. (52)

This condition is needed for the topological non-triviality (@ # 0) and provides also
suppression of the contribution from Gaussian fluctuations of the gauge field by a factor

1/N [9].
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6 Path Integral for the Correlator

Let us continue the evaluation of the correlator K. Integration over £ (0), £(0) in the
formula (32) gives a factor N (number of colors) in the expression

K(1,.,n)="NZ'Tx {T,,.. T, } x

X f’D:cp (2) Dz, (7) D (v) DA () exp {iS + constraints} . (53)

According to the character of the saddle point configuration of the fields, the contour
" should be viewed as the boundary I' =0%. To take this circumstance into account one
should introduce into the integral (53) the é-function & [z, (7) — 2, (2 (7))] and integrate
with its help over z, (v). As a result we obtain

K(,.,n)="NZ'"Tv{T,,.. T, } x

x / Da, (2) D () DA (1) 5, (54)

where the integral over xz, (z) is extended also on the second term in the action (42), but
with the points xx on 9% held fixed. Consequently, the last expression may be written in

the form
K (1, 0y Ty ooy Tp) = <j£Hd7"’\ ()6 (ze — z (2 ('yk)))> , (55)

Going over to the momentum representation we obtain

IPk z{z{7))
K (pls ooy Phy o 1pﬂ = f H d?k)‘ )4;;2 : (56)

where the averaging operation is defined by an integral of the type (54), but with points
no longer held fixed.
In FEuclidean space we have

K (p1y oy pn) = /’D:Bu(z) D; (v) DA (y) exp {—S + constraints} x

-mk I(z("ﬁ:)}
] , (57)

H [f drye (1) = @)’

where the Fuclidean action is

. 2
5=k0/d22\/ﬁ+%fd'y(%+)\mﬁ)+

= a%

; P\ d [
+mf‘”(>~)ﬂ()\)' (58)
an
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The factor n! in the above expression is introduced to take into account that the
interacting particles are identical.

In order to evaluate the correlator (57) it is necessary to learn first of all how to
calculate the simpler expression for the partition function

2= [ D5, () D () DA () exp {5711} (59)

In Euclidean space, the quantization condition (51) has a form

7|Q| = ko / zvh —i jﬁ dy p*ier VR | . (60)
bH (i)

As a consequence of this condition, the full partition function (59) breaks up into a
sum of contributions from various topological sectors:

Z=3 Zo, Za=Ze++Zq-. (61)
Q

The calculation of Zj| is made with the help of the relation [1]

/Dﬂ’:” exp —kofdzzx/ﬁ =
>

k
/Dmngab exp ——QE/sz\/&gabaa%abfrp ) (62)
>
which is correct only in the leading order of saddle point approximation. The simbol
= indicates ad difinitio that the integral over inner metric g, is equal to the integrand
evaluated at the saddle point.
Now

) k
Zos = [ D2, (2) Dgus (2) DA () D (Wyexp { -1 [ @2/ 02,00~
b

1 i 1 i\ d [ 2
‘565“(?”’”3)‘%3;{“( a3
afi 9]+ Bf 9]}, (63)

where fi and f, are the constraints that take into account the additional conditions (52)
and (60) and e, B are Lagrange multipliers.

After introduction into the integral over A (y) of a é-function [1], which takes into
account the condition of agreement between the metric on X and the metric on 9%,

) [A (7) — (gan2®3?) 12 /mo] , we obtain

: k a
Zot = f Dz, (2) Dgas (2) DYy (s) exp —50 / d*2/39" 04,0y, —

=
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_? f{ dsi? — 7” j{ fds -'vauu ($v¢||v)
axr

ik ab
tat | +7Q — kg / d*z\/q + o fds«,b”nw",,aaazﬂabx,, ¢ +
g \/§
pa 8%
Z.k(} Ba'b
+4 dsHy + — & dsphyu)p0atuloz— — ¢ ) (64)
Mo \/5
T B>
where p
ds = (gu2* ) dy, i, = jrs—“,
and H, is the geodesic curvature of the boundary 6% [1].
The term
1
e {5 f ds (hn) 5 (B) )

a5

generates the well known spin factor [10], but there are another terms, which contain the
spinor field ¢. The calculation of the integral over 9 in formula (64) demands further
investigation.

If the Lorentz spin of the quarks is neglected we have the more simple expression for
the action

St = —%fdzz\/ﬁg“baaxﬂabmu — % fds (- 1)+
z 3

+aot | £7Q — kO/d2z\/§ ++4 fds’}ig —ql. (66)
T >

In this case, the partition function Z; is expressed only through the Euler characteristic
x of the world sheet 2 (see [1]). This means that the SU (N) gauge theory reduces to a
topological field theory in our approximation.

Despite the above differences of this approach from the standard string model, the final
calculation of the correlators in the scalar quark approximation yields the Koba-Nielsen
formula for the dual resonance amplitudes [1].

The further taking into account of the contribution of Grassmanian field ¢, in formula
(64) can lead to the shift of the mass spectrum and cure the tachyon problem in the string
theory.

7 Conclusion

In the strong coupling approximation for spinor quarks a semiclassical 1/N expansion
has been developed and the form of the effective spinor action has been obtained. The
topologically non-trivial configuration of the gauge field that forms the chromoeletric
string and binds the spinor quarks in the hadron has been found. The substitution of this
field into the action produces the string action with additional spinor terms which contain
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in particular the Polyakov spinor factor. The other spinor term probably corresponds to
Thomas interaction of the spin in a non-inertial frame.

The author is grateful to Centro Brasileiro de Pesquisas Fisicas, CNPq, to Prof. Juan
A. Mignaco and Dr. Sebastido Alves Dias for hospitality and kind help in the preparation
of this manuscript.

References

1] G.8. Iroshnikov, Sov. Phys. JETP. 70 (1990), 236; 73 (1991} 23; preprint NBI-HE-
92-76, Oct. 1992, Copenhagen; Phys. Atomic Nuclei. 58 (1995), 142.

[2] N.V. Borisov, P.P. Kulish, Theor. Math. Phys. [Teor. Mat. Fiz. 51 (1981), 335);
Fainberg V. Ya., Marshakov A. V., Nucl. Phys. B306 (1988), 659.

[3] A. P. Balachandran et al., Phys. Rev. D15 (1977), 2308.
[4] L. Brink et al., Nucl. Phys. B118 (1977), 76.
[5] F.A. Berezin, M.S. Marinov, Ann. Phys. (N.Y.), 104, (1977), 336.

(6] F. A. Berezin, Comm. Math. Phys. 63 (1973), 131; L. G. Yaffe, Rev. Mod. Phys. 54
(1982), 407.

[7] G.S. Iroshnikov, Sov. Phys. JETP, 65 (1987}, 15.

[8] A. A. Slavnov, L. D. Faddeev, Gauge Fields: Introduction to Quantum Theory,
Moscow, 1988.

9] G. S. Iroshnikov, Sov. Jour. Nucl. Phys., 50 (1989) 524.
[10] A. M. Polyakov, Gauge Fields and Strings, Harwood Acad. Publ., 1987.



