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ABSTRACT

Through a real space renormalisation group approach, the
g-state Potts ferromagnet correlation length on hierarchical lat-
tices is calculated. These hierarchical lattices are build
in order to simulate hypercubic lattices. The high=and-low
temperature correlation length asymptotic behawviours tend
(in the Ising case) to the Bravais lattices correlation length
ones when the size of the hierarchical lattices cells tends
to infinity. We conjecture that the asymptotic behaviours
for several values of g and d (dimensionality) so obtained are
correct. Numerical results are obtained for the full tempera-

ture range of the correlation length.

Key-words: Potts model; Correlation Length; Hierarchical lattices.



1 INTRODUCTION

The study of Bravais lattices through the use of hierarchi

cal ones (which are nottmnslationally invariant) has received a grow

ing attention in the last few years, especially in thearea of phase transi-
tions (Reynolds et al. 1977, Yeomans and Stinchcombe 1979, Bleher
and Zalys 1979, Berker and Ostlund 1979, de Magalhaes et al.
1980, Lewy et al. 1980, Curado et al. 1981, Griffiths and Kaufman
1982, Kaufman and Griffiths 1984),.

The question whether the limit of functions calcu-
lated on families of hierarchical lattices, with basic cells
(Melrose 1983a) of increasing size b (see, for example, fig 1),
converges to the respective functions on Bravais lattices is a
point that is not clear today. An argument that favours the
convergence is obtained if we adopt the Melrose (1983a) defini
tion of dimension (D) and connectivity (Q) of hierarchical lat
tices (On whose values depend the critical exponents). For
example, in fig., 1,the limit b » « leads to D=2 and Q=1 whkh
coincides with the values of the square lattice. Other arguments
are given in several works which exhibit an apparent convergerce
towards the corresponding results in Bravais lattices (Curado
et @al. 1981, Martin and Tsallis 1981, Oliveira 1982 Kaufman and Mon 1984,
Hauser and Tsallis 1984, Curado.et al. 1984). However, Tsallis anéAImavy
1981, Tsallis 1984, have provided results for the correlation
length initial exponent (b =2,3,4 and 5) which suggest that the
convergence, if it exists, is not so clear.

In this work we investigate this problem through another point
of view. We calculate, within the framework of real space re-
normalisation group (RG), the Potts model correlation length

for hierarchical lattices and investigate how both high and low

temperature asymptotic behaviours converge to the true hyper



cubic lattice correlation length as b > «,

2 POTTS MODEL ON HIERARCHICAL LATTICES AND RG

The families of cells that we choose for simulate hypercu-
bic lattices are shown in fig. 1 for d = 2 (square lattice),
in fig. 2a for 4 = 3 (simple cubic), fig. 2b for d = 4 and so
on. The reasons for the word "simulate" are the following:

£) the intrinsic dimension D and the connectivity Q of these
fanilies of cells lead to D=d and Q=d -1 as b->» (d is
the dimension of the Euclidean space where the cells are
embedded, see Melrose 1983a), This leads toD=1+Q in that lim
it, which is typical for Bravais lattices.

A4) the number of sites and bonds, of a basic cell with size band

intrinsic dimension D (embedded in a Euclidean space of di

mension d) are

~.Q - _pnd-1
sites b*(b=1) +2 =D (b-1) + 2, (1)
_.D_ .d d-2 2
Nbonds_-b =b" + (d~1)b (b=1) (2)
which yields
N
1im —m =4 (3)

b>» “sites

as for a d-dimensional hypercubic lattice.
In order to build a model on these cells we associate with
each ©Of their sites a Potts variable 0;(=0,1...,g-1) and to

each bond of the cells a coupling constant J > 0. The interac
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tions between the variables are given by (Potts model)

o= qIs . (4)

<14j> i3

where 60.0. is the Kroenecker's delta and <i,j> meaﬁs nearest
neighbou;sjsites.

Per forming the partial trace over the "internal" sites (full
circles, see figures 1 and 2) of the choosen cell we renarmali
ze it into a smaller cell (b') with a coupling constant K'.This
can be done in a simple way adopting the break~collapse method
(I'sallis and Levy, 1981). Using the transmissivity

1 - e—qK

t = K = ——_ 5
1+ (g-1)e” % B ()

we obtain recursion relations in the form

RO, (£1) = RO(t) . (6)

where Rg(t) =N§(t)/Dg'(t) being Nld) (t) and D.S (t) polynomials func
tions of t.

For example to b=2, b'=1 and d=2 (fig. 1) we have

£ o RE(£) = 2t2 4+ 2¢% +5(g-2)t" + (g-2) (g=3)t° 1)
2 1+2(q-1)t3+ (g-1)t" + (q-1) (g-2)t°

e

It is important to observe in the two dimensional case that
the cells are self-dual (see Melrose 1983b), like the square lattice, and yield
the correct critical temperature of the square lattice Potts model

for any wvalue of b.




The break-collapse method enables us to calculate the asym

ptotic behaviour (Curado et al. 1981, Hauser and Tsallis 1984,
k_T
Curado et al. 1984) of these functions RO (t) for t»1(—— > 0)

and t - 0(kBT/J->W). The results are

pt?+ 2(b=1) ‘2t + ... (t-0) (8a)
R? (£) "¢
b
_ab (=8P - B2 (g- -1)° G———‘t>b” :
1 qb(1q> g[b?(g-1) + 2 (b l)].q ..
\ (£~ 1) (8b)
([ ae _
pd 1P 4 o (a-1) 4 2 (b-1) 2P L. (k- 0) (9a)
SYEPR
d-1 d-1
-t\ b 2d~-1, d-1 -t\ b +- 2(d-1)
das> 2 l—b——> - - b -1(1——>
( ) aq (lq q (b-1) 3
\

(t~>1) (9b)

where in eq. (9b) we have indicated only the first daminant
terms which contribute to the asymptotic correlation length
behaviour in the b + « limit. We remark that the two-dimensional
case is different from all the d > 2 cases, because of its
peculiar topological features. Ir example if we break  one
“horizontal"(*) bond (any one) of figure 1lb(b = 3, d4d = 2)
and collapse the rest of the horizontal ones, the

resulting graph is different from that obtained if wé col-

lapse all the horizontal bonds..Howewer if we break one hori-

zontal bond of figure 2(b=2 &r 3, d= 3)' and collapse the fe—

(%)

We define a "horizontal" plane as that determined by all ho
rizontal bonds located at a same "distance" te an arbitrary
vertex (terminal), where '"distance'" means the minimum number
of bonds that connect the bonds of the plane to this vertex,
In. a cell of size b there are b-1 horizontal planes, see

figures 1 and 2.
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maining horizontal ones we obtain the same graph that is obtained
if all the horizontal bonds are collapsed. This result is true

for all d > 2.

In order to obtain the longitudinal correlation length (mea-
sured alorg one axis of a hypercubic lattice) as a function of
temperature, we must have another equation besides of (6). This
new equation arises from the well-known length scaling  under

the RG operations. So, we obtain

g(rt) = &3 (10)
b/b'
We observe that eqg. (10) remains invariant when it is multi-

plied by any factor c(g;d) independent of T but that may de-
pend of g and d. This factor cannot be obtained °*within the

present formalism.

3 TWO DIMENSIONS: ASYMPTOTIC BEHAVIOUR AND NUMERICAL RESWLTS OF g

The asymptotic behaviours of the correlation length gb B!
¥
are obtained through the use of equations (6) with 4 = 2, (8)

and (10) (Curado et al. 1981). We obtained the following éxpressions:

-1 £n(b/bY 2 b-1 T kT
o™ - B0 (). 2 o) et e 2

(b-b")

(11)

, k T

(12)



It 1is interesting to note that if in eqg. (12) we adopt for the

invariant factor the value c(g) =g we obtain qJ/kBT as a "na-
tural" variable of this equation suggesting that this can be
the correct value for this constant. The same is not possible
to do in eq. (l11) where there is no factor that leads to a
"natural” variable. The exact longitudinal correlation length

of the square lattice Ising model (g=2) is known (Onsager 194,

Fisher and Burford 1967, Baxter 1982)and is the following

-1 _ J _ 27
EEX = f,n coth ﬁ k——rf T > TC (l3a)
B B
k. T k T
‘ B 2J B
noAn 5 ———-—kBT —5 > ® (13b)
-t 2d L .
Eex = BT Ln coth T < T, (14a)
B B \
k. T - k. T
2J B B
v kBT[l -5 exp(—ZJ/kBT)..._ 5 7 0 (14b)
Therefore, the asymptotic behaviours of egs. (11) and (12)
[this with c(g) = g = 2:] in the limit b » « reproduce - the

exact asymptotic behavioursgiven by expressions (13b) and (14b)
respectively. So, we conjecture that the asymptotic expres-—
sions given by egs. (11) and (12) are the correct ones for the

square lattice, in the limit b-»>«, for all qg.

It is interesting to note that, as E-l = Y/kBT (v =surface
tension), the term £&nb/(b-1l) of the eq. (12) (where we put
' =1 because in this case our treatment corresponds to uni

form hierarchical lattices) is associate with the zero tem-
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perature surface entropy (9y/9T) 6f the hierarchical lattice
(of size b) as we can see from eq. (15) in the work of
Curado et al. 1981, Also, following the comments and nomen-
clature of Kaufman and Griffiths 1984 we can see that, for the
hierarchical lattices of this section, the ground state de-
generacy D with antiperiodic boundary conditions and order
N =1 (basic cell) are given by D =b leading the following ex
pression for the degeneracy at Nth order DN
N
D = (P =LY (b-1).

This degeneracy arises when we associate a state o to one
terminal (surface site for Griffiths and Kaufman 1982) and a
state B(dne of the remaining g -1 ones) # o to the other one.

The surface entropy per unit area at 0°X provides the same

term of the equation (12)

Zim €%«&1DN = %%%.
N> b
We also remark that £im %%% + 0 leads to the correct sur
brreo -

face entropy of the Potts model on the square lattice with
antiperiodic boundary conditions.
This same term (£nb/(b-1)) appears in equation (11)andcan

be associated with the zero temperature surface entropyof the

dual hierarchical lattice. As the hierarchical lattices pres-
ented in this section are self-duals (for any b), their sur-
face tension are the same as those of their‘ dual lattices. So, we
can associate the dual lattice surface tension to the inverse

of the original lattice correlation length (for T‘>TE).
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Along the lines of Curado et al. (1981) we
use equations (6), (10), (11) and (12) to obtain the numerical
results for the correlation length as a function of the tem-
perature. They are shown in figures (3) and (4). In figure (3)
we plot the ib'b.corresponding to b=2,3 and 4 (b'=1) for the
case g =2 (where the exact answer is known) and we note that
the RG results tend to approach the exact answer for
increasing b. In figure (4) we plot the RG results for typical
values of g. We note that for a fixed T/Tc(q)the‘correlation
length decreases as g increases. This can be intuitively
understood as the higher probability that two variables be-
come uncorrelated if there are more states to choose.

To analyse the behaviour of the éb pt hear TC,
\i

T~TT (G) \)b'b'(q)

4

(<) I (P .
Ep,pr ™ At()?b. T (@ , (15)

we studied the amplitude A (q)(TﬂiTC(q)) for several values

b,1

of q with b=2,3,4 (the critical exponent v b.(q) has Dbeen
\]

studied in previous works, see for example Tsallis and Lievy

1981). Some values of them are shown in Table I. The results for

T

< Tc(q) are obtained dividing those of Table I by cl(q).

4 d.DIMENSIONS: ASYMPTOTIC BEHAVIOUR OF £(d > 2)

In a similar way, with the use of equations (6), (9) and
(10) we obtain the following expressions for E_l(in the limit

b > ) for dimensions d> 2:



Fooroo J 5T
b'<b
kBT
¥ d> 2 Vq '—'-j.— - °> (16)
fin £ (q; d< 1/ 1) ) 2(d 1)<AB e Ezq(d l):] ~
1
oo b, b kBT d,— 1 kﬂT
b'<b
, kBT
- e vg,vd > 2 57 (17)
The two terms of expression (16) reproduce (with g=2 and

d=3) the first two terms of the high—temperature correlation
length expansions (the only rossible camparison, in the best of our
knowledge) carried outby Fisher and Burford (1967). It is worth-
while to note that in three dimensions the hierarchical lat-
tices we have used aie not self-dual, which exhibits that this

property is not a necessary condition to -obtain the correct re-

sults as might be thought if we look only for the two-dimen-
sional case. For the low-temperature case, eq. (17), we do not
know of any result to compare with. Then we conjecture that the asym
ptotic behaviours of the correlation length of the adopted hi
erarchical lattices, given by equations (16) and (17), repro
duce the exact asymptotic behaviours of the corresponding hy-

percubic lattices.
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5 CONCLUSION

We calculated, with Rs techniques on ‘the family of hierarchical
lattices shown in figures (1) and (2), the asymptotic behav~-
iour of the Potts mddel longitudinal correlation length. In
the limit b » « this correlation length reproduces (in the few
known cases where we can compare) the exact asymptotic behav~
iour of the longitudinal correlation length in the corresponding
hypercubic lattice., For the cases where there are no exact
results to compare, we believe that the asymptotic behaviours
obtained by us are the correct ones in the b+« limit. It is
interesting to note that in several works, with different func
tions (see, for example, the specific heat in the work of Mar
tin and Tsallis 1981, the surface tension in the works of Cu-
radc et al. 1981, 1984, and Hauser and Tsallis 1984), the
convergence  of  the asymptotic behaviours of these
functions (constructed on hierarchical lattices) to the cor-
responding functions on hipercubic lattices as b+« was shown. So, we
believe that the asymptotic behaviours (for a large class of
functions) obtained for these families of hierarchical latti-
ces converge to the exact ones on the corresponding hypercu-
bic lattices as b » =,

Therefore, these results strongly suggest that if any
discrepancy exist between the b +~ « limit of these familiesof
hierarchical lattices, and the corresponding hypercubic lattices
then it must be localized in the neighbourhood of TC. To test this

suggestion, full analytic expressions for arbitrary b would be ne-

cessary. The numerical calculations of the amplitude ofégnearTE seem %o



-11~

converge to the exact values but are not conclusive. Finally
we remark that these R;'s, on hierarchical lattices, are a
good alternative way to high and low temperature series, at
least for the Potts model.

We want to thank especially Professor C. Tsallis for seyv
eral discussions on this problem. We are indebted to A.C.N,
‘de Magalhaes, AM, Mariz, L.R., da Silva and UM.S. Costa for

many valuable discussions. Also we acknowledge I. Roditi.
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CAPTIONS (Figures)

Fig. 1. = Pamily of hierarchical lattices adopted to simulate
the square lattice.,They are self-dual (Vb). The full
circles are the "internal" sites and the open are

the "terminals".

Fig. 2. - Family of hierarchical lattices adopted to simulate (@) the
simple cubic lattice and Q@ the hypercubic lattice
for d = 4,

Fig. 3. - Comparison among the RG-gb'1 results for several
sizes of cells (full lines) and the exact one (dashed

lines) for the cases q=2 (Ising), 4 = 2.

Fig. 4. - RG--Eb 1 results for several values of q and b = 4.
)

CAPTION (Table I)

Table I. - The RG-§ two dimensional amplitude Ab l(q) for sev
. v

eral values of b and g (Tg:Tc(q)). The only exact

value known is the g=2 case where the amplitude

- -1
value is [2 £n(1+ /2]  ~ 0.5673.
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Table I
b d 0.1 0.5 1.0 2.0 3.0 4.0
2 8.130 1.765 1.144 0.805 0.675 0.602
3 6.998 1.596 1.049 0.746 0.629 0.563
4 1.00 0.715 0.604  0.541
Extrap. 4.734 1.258 0.857 0.626  0.534 0.481
linear
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