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ABSTRACT

Through cumulant expansions of the free energy and
the susceptibility, a new variational procedure is proposed with
the purpose of improving the standard Variational Method in Equi
librium Statistical Mechanics. The procedure is tested for two
types of classical anharmonic single oscillators, namely those

whose elastic potential is proportional to x2n

(n=1,2,...) and
those of the type axz-kbx4, whose exact free energy, specific
heat and susceptibility are herefn established. Although conver
gence problems (similar to those appearing in the asymptotic
series) exist (at least for the free energy) in the T1imit of
high perturbative orders, great improvement (typically of the
order of 40 with respect to the standard Variational Method) is
obtained in all the physically meaningfull situations and quite
satisfactory description is provided (with a "single shot") for

both 1imits T+0 and T+« simultaneously. Incidentally a new

recursive relation among cumulants 1is established.



I - INTRODUCTION

The Variational Method (VM) in Equilibrium Statis-
tical Mechanics (for general purposes see Refs.[ﬁ-B]) enables
the approximative calculation of the thermal behaviour of vari-
ous quantities (free and internal energies, specific heat, sus-
ceptibility, equations of states among others) for a great va-
riety of systems. For example problems 1like superconductivity
[9_]]]’ iso]atedEB’g’]ZJ or coup]ed[]‘g:I anharmonic oscillators
(eventually within the context of structural phase transitions
[]4']9], pur‘e[]'3’5’7’20’2]:I and randomtzzj magnetism as well
as nuclear reactions[23] have been treated within this frame-

work.

The VM has the advantage of leading, for all tem-
peratures, to results which are qualitatively correct (some no-
torious counterexamples do exist however; for example the use
of a non interacting spins. trial Hamiltonian, i.e. the Mean Field
Approximation (MFA), to treat the one-dimensional Ising ferro-
magnet leads to a non vanishing critical temperature, which s
definitively wrong), but has the disadvantage of being a "single
shot" procedure, in the sense that the improvement of its re-
sults requires, for a giVen problem, a new choice for the trial
Hamiltonian (noted JWFO), i.e. the complete reformulation of
the treatment. Other "single shot" procedures (usually better
than the MFA, in what magnetism concerns) do exist in the 1it-
erature, for example Onsager's Reaction Field Approximation
(RFAY [24-28] nich, contrarily to the MFA, satisfies the fluc-

tuation-dissipation theorem but does not minimize a certain free



energy. The RFA unfortunate]y is, 1ike the VM, not exempted from
some notorious wrong results (it leads, for example, to a van-
ishing critical temperature for the two-dimensional Ising

ferromagnet).

Contrarily to the VM, the formulation of the per-
turbation techniques (for instance the low- and high- temper-
ature series) usually allow for successive approximations to
the exact result, but present the disadvantage of describing
only one region of the domain of variation of the external
parameters of the problems (in the example we have just quoted,
T>0 or T>» but not both as well as intermediate tempera-
tures). The idea of formulating procedures which ally the ad-
vantage of the VM (full description) with that of the pertur-
bative techniques (possibility of successive approximations )is no
doubt a quite tempting one. The Zubarev's Green function tech-
niques constitute of course a successful attempt in this sense
but we are presently interested in those whose formal struc-
ture is close to the VM, within this line an interesting self-
consistent procedure has been introduced[29’30] a few years
ago to treat random magnefismo In the present work we intro-
duce, through cumulant expansions (see for examp]eRefSOEﬂ,3ZI)
and in principle for all kinds of systems (whose Hamiltonian
will be noted J*P), another type of self-consistent procedure
which extends the VM and which will therefore be referred here-
after as to the Extended Variational Method (EVM). In order to
verify its performances, we test it for classical anharmonic
single osci]]ators (which are exactly solved herein): although

the procedure 1is, as we shall see, not exempted from defects



(coming essentially from the possible inexistence, in general,
of a condition playing for the EVM a role similar to the one
played by the Bogolyubov (or Bogolyubov-Peierls) inequality for
the VM), it provides algorithms which very sensibly improve

(typically 40 times better) those associated to the VM.

IT - EXTENDED VARIATIONAL METHOD

IT.1 Free energy

Let us here assume for simplicity that the real and
trial Hamiltonians AAPand A*{L commute (i.e. either <classical
systems or quantum systems with [Jﬁn &H%] =0). The free ener-

gy associated to Hamiltonian A*P is given by

F=-d1n Tr e'B&* (1)
B
or <dentically by
FoF -1 qn <o B(dF- HFo), (2)
o} (e}
B
with
Foz-X1nTre® )*g (2')
° B

where g = 1/kBT and <eee> denotes the canonical thermal mean
value associated to the distribution law P exp(- BJ"FO)°

Through formal expansion F can be rewritten as follows:

(3)
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where Kj is the j-th order cumulant associated to (&*- Jﬁ;ﬁ
In order to illustrate this point let us first introduce the

moments {uj} through

<(H-4p ) > (3-1,2..) (4)

Hi



and the centered moments {“3} through

J
wps < [(df-df ) - b -af > T s (5e1,2,.00)  (5)

J

The first four cumulants are given by

A
w—

n

=
—

_ - 3 _ .
Kg = Uz = 3upuy + Zup = uj

2 4 2 .
Kg = g = Auguy + 12007 - 6uy - 3, £y

and in general [33j

n,
F-1 i il
k. =J3r 1 (1) (n-1)r W | ————— (6)
J i=] n.!
{n;} 1
i
J
where n = ] n. and {n.} refers to all sets of integers that
. i=1
J
satisfy ) i n, = j. Remark that for jz4 it will in general
i=1
be Kj # uj . A recursive relation can be established among
the cumulants, namely
Jj-1
= -1 i [
kg o= Uy J Y 1[iJ My Ky (7)

i=1

This relation (never registered in the literature as far as we
know) is very convenient for operational purposes as it straigh
forwardly provides the expansion indicated in Eq.(6) for the
J-th order cumulant once the preceding ones are known (we have

used it in Section III to obtain the results associated to

values of j up to 28).

Let us now introduce, by truncating expansion (3),

the 2-th order free energy
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(-§)f__ ‘ (2=1,2,...) (8)
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We remark that F(]) EFO + <$f— &&;> is precisely the standard

(0]
VM free energy which satisfies F(])zF' (Bogolyubov inequality).

It is clear that one should like that

vim FCY 3P Ty = F(T) (9)

g0 ©

no matter the choice for the functional form of &fo, but there
is no reason for being so in general. Furthermore for a given
trial Hamiltonian }ﬁ; depending on the parameters {B}, there
is no general reason for relation (9) being true no matter the
choice of the parameters {B}. However if we take into account

that F does not depend on {B}, a natural choice for {B} is to

Took for those values which satisfy

sF () 1By 5 T)
9B

-0 (2=1,2,...) (10)

thus extending the standard VM minimization equation. If we
call {B(Q)} the parameters satisfying Eq.(10), then F(Q%{B(z)(T)}{U
will be the present g2-th order approximation for the free ener-
gy F(T). Let us anticipate that severe problems will appear con-
cerning Eq.(9); let us however stress that the violation of Eq.
(9) does not necessarily imply the violation of
AN C A S IR I LRI T4 D)
Lo a1 d T’

(i=1,2,...) (11)

and we can therefore have an unsatisfactory convergence for the

free energy simultaneously with a satisfactory convergence for



let us say the specific heat (see Section III).

IT1.2 General static mean values

We shall now restrict the discussion to classical
systems. Let ¢ ({x} , {p}) be a function of the dynamical vari-
ables of the system ({x} and {p} respectively denote the gener-
alized coordinates and momenta). We are interested in the mean

value associated to J*P namely

Tr ¢ e B
<¢ > = (12)
Tr e-B‘”|>

Let us consider the Hamiltonian

o= Mo (13)

and its partition function
]
20 = 1r 7B &F (14)

It is straightforward to prove (in analogy to the fluctuation-

dissipation theorem) that

<> =-Lqjpani’ (15)
x>0 9

If we now expand (-B']

¢n Z') following Eq.(3) and then truncate,
we obtain possible successive approximations, noted <<b>(2): of
the mean value <¢>. In analogy with Eq.(9) and by introducing

the solutions of Eq.(10), one should like that

1im <<p>(2)

(BT 5 T) = <o (T) (16)

Q>0

The procedure we have just outlined provides, for the first three.

orders of approximation, the following expressions



<¢>(]) <> (17-a)

0]

<¢>(2) = <q>>o-6 [<¢ (H-HO)>O-<¢>O<”-MO>O ] (17-b)

<¢>(3) =<¢> -8 [<¢ (J«?-MO)>O-<¢>O<M-MO>O]
2
+ -6-2— [<¢(H-Jﬂ’o)2>o - <¢>O<(3-rl’— J-r?o)2>o +

+

2 <ol g 52 - 2P dE ) <P afo>o] (17-c)

We shall use these expressions in Sections III and IV to calcu-
late the isothermal susceptibility («< x2>). The approximation
< ¢ >(1) corresponds to the standard VM., We shall next test the
EVM on classical anharmonic single oscillators associated to

pure (Section III) or mixed (Section IV) elastic potentials.

ITI - FIRST APPLICATION: PURE ELASTIC POTENTIAL

ITI.1 Free energy

Let us consider the following Hamiltonian

2

&P = ;E + px2n (b>0; n=1,2,...) (18)

where for simplicity odd powers have been avoided in order to
eliminate thermal slipping of the center of oscillation ( as a
matter of fact no particular difficulty appears if a potential
b|x|° with positive real o is considered). The semi-classical

partition function is given by

7 = %I dpj dx e_B**

2n+1 kBT
=——-———-I‘[ J (19)




where h is Planck's constant and the standard Gamma function has

been introduced. The associated free energy is given by

F =-kBT ¢n Z (20)

Let us now introduce the following trial Hamilto-

nian:
- P+ B «x (B>035=1,2,...) (21)

The associated free energy is given by

Foo= - kgT 2n Z_ (22)

, 1/2s
/8T mkpT . [25+1] [LBT]

° h kZS B

Through use of relation (8) we obtain the following 2-th order

approximative free energy

2 (%)
(,Q) _ a.
i=0 u1
where
kg T : n/s
u = B | B (24)
b kBT
and, for 2=1,2,...,
L
2
O (25.a)
2s i=1 i

alt) . ﬁ—lﬁfj.+ 1} al21) (0<i<2) (25.b)
1



-1 0
agt) - (Cib <g [bxzn] b [*E‘]ng/s (25.c)
L kBT

where Kg[bxzn] is the 2-th order cumulant associated to bx2n

(instead of Jﬂ’- 5%0)0 To be more explicit Kz[bxzn] is given by

Eq.(6) where

Ui[bxzn} BN, B J (26)
B

For example

2n+1
a§1) = _fl_éé_) (27.a)

r

n:'_,
—

S

a — - - —r
2 Y ] Py (27.b)
1 o T
\25) f;']
S;
and
{ _ __'3}
P(6n+]] I,[4n+1] r[2n+1J P[2n+1)
(3) 1 2s 2s 2s 2s
ag”’! = — {——= - 3 . +2 |—
3. 1 ] 1 (1
r{— r| — r|— r{—
I 4 B - B -
L 4 )

(27.c)

Let us now introduce an adimensional free energy

f(Q) through

o) = - F (28)

kBT
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The use of Egs.(19), (20) and (23) immediately leads to

P{zm) g (%)
2n Zn u i
f(z)(n,s;u) = N |—— + L) : (29)
F[25+1) zZn i=0 u'
2s
n XN if u > o (29")
2n
v oattt ifu- 0 (29")

Through these reduced variab]es, the whole discussion of the
thermal behaviour of F(g) consists now in verifying how close to
zero is f(z) for the single chosen value of u. In the Timit u >,
f(z)(u) is a monotonically increasing function of u (see Eq.(29"))

whereas in the T1imit u->0 it depends on the sign of az(z) (see

,g,’Ql) > 0 (2/=-| ,Zgooo)g thEY‘E"

fore f(z) monotonically decreases (increases) for increasing u

Eq.29")) hence on (n,s,2): if n>s then a

and odd (even) values of 2; for n<s the behaviour is Tless regqu-

Tar., If we extremize f(z) we obtain

%
% .

R Y C2 T A B , (2=1,2,...) (30)
2n gy

whose roots will be noted u(g) (only real positive roots are
physically acceptable). For n=s and all values of %, the Eq.(30)

L)

admits the solution u( = ] which Teads, through Eq.(29),

to f(z)ﬂﬂz))= 0 as expected.

In order to study the possible convergence prop-

erties we have computationally discussed the cases n=1,2,...,

50, s=

1,24...,50 and j=1,2,...,28 (after this limit some com-
putational complexities appear, and in any case 28 is large

enough to have a good idea of the general behaviours). For
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n>s (n<s) the roots u(g)

(whenever there are) present a tendency
to grow (decrease) with increasing &. For all the cases we have
studied we observed that: (a) 2=1,3 lead to an unique root of Eq.
(30) which corresponds to a minimum of f(z)(u); (b) 2=2 provides
no roots for Eq.(30); (c) 2=4 provides roots for Fq.(30) in a
very small number of cases; (d) 2=5 provides a solution of Eq.(30)
which corresponds to a minimum of f(g)(u) (if s=n>2 other two
real positive roots exist which practically collapse with that of
the minimum); (e) for & 3 6 a more and mere complex structure
appears for f(z)(u). The whole study exhibits that, for arbitrary
pairs (n,s), f(z)(u(z)) unfortunately does not converge, for in-
creasing %, towards the exact solution (namely zero): it is first
approached and then abandoned (thus presenting a certainsimilar-
ity with asymptotic series). As an illustration we present in Fig.1 and
Table 1, for n=2s=2 , the evolution, in the plane f(g)(u(z))- u(zh
of the minimum of f(z)(u) (the minimum corresponding to the high-
est root of Eq.(30) if there are more than one). In order to see
the influence of (n,s) we have introduced an <mprovement factor
(for the free energy) through the definition

u1(c1,3) _ f(1)(l‘(1)}/1c(3){l1(3)) (31)

The results are presented in Table 2 (similar results have been

obtained by comparing let us say f(3)(u(3)) and f(s)(u(S)

)). We
remark that unless we consider completely wunphysical regions
(n=50 and s=1) the result provided by f(3)is better than that

provided by f(1); typically for n=2 and s=1 we obtain u£]’3)= 41,
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IIT.2 Specific heat

Let us now discuss the specific heat CE-]XdZF/de)
associated to the Hamiltonian (18). From Eqgs.(19) and (20) we
obtain[]z]

k
c=-8 |14+1 (n=1,2,...) (32)
2 n
This expression generalizes the classical gquipartﬁﬁon> principle
(n=1 and n+>~ respectively correspond to a harmonic oscillator
and a particle in a box). If we take into account that fU”(u)
is a pure number then Eq.(28) immediately leads to dZF(R)/dT2

d2F/dT2 hence

c(®) - ¢ (2=1,2,...) (33)

To all orders and through any trial Hamiltonian of the type (21)
the present formalism provides the exact answer for the specific

heat,

IIT.3 Susceptibility

If the oscillator carries an electric charge 'q, its
isotherma] susceptibility for vanishing external field is given,
through the fluctuation-dissipation theorem, by

2

X7 = 9 < x2 > (34)

kBT

which, for the Hamiltonian (18), leads to[]z]
2 1.
r(1/2n) b1/n

(n=1,2,...) (35)
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The first order approximation associated to the
trial Hamiltonian (21) is, through use of ¢ = x2 into Eq.(17.a),

given by

1/s
(1) _ g% r(3szs) [K8T]

TG T(/zs) g

|
—

w

()]
—

If we now use Eqs.(27.a) and (30) for g=1 we obtain

r (2]
ull) 2pn 27

i

hence (through Eq.(24))

2n F{Zgz]) b s/n
(1) - kT

1 B
| — kBT
2s

~Substituting this expression into Eq.(36) we obtain finally

1/n 1
T(1/2s 2 — =1
x§]) i} ( ) r(3/2s) T (kD" (n,s=1,2,...)
) r'2”+] r(1/2s) b1/n
n
&

(37)

thus obtaining the exaet thermal dependence but a wrong numeri-
cal factor (excepting the cases (n=1; ¥ s) and of course n-=s
where the full exact answer is obtained). Eqs. (35) and (37)

enable the calculation (see Table 3) of the factor

q§1) = x%l)/xT (38)
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We verify that qil) > 1 (<1) if s>n(s<n),

We recall that no second order approximation exists
as Eq.(30) admits no positive real roots for =2, By following,

for 2=3, the same procedure we have just outlined for 2=1, we

obtain
')
X(3)= 252 435 41 2sy . .1
T 2 _
2s 1 1/n
P[Zs) [U(3)]
3 2n+1 2n+3
L, nts+] P[EE) "[25)_1‘{25)”"'?'“
s r(1/2s) T(1/2s) T(1/2s) [”ﬂﬁ%l
u
3 2n+] 2n+3 4n+3
T[z's] ) T[—?-?) +T{ 7e)
r(1/2s) F(]/Zs I'(1/2s) I'(1/2s) 2r(1/2s)
3 4n+1
F{ZS) - ' o2 1,
o (k7] "
2r(1/2s) T(1/2s) 1 J1/n
(3)

(39)

where u(3) is the (physically meaningful) root of Eq.(30) with
% =3; we obtain once more the exact thermal dependence but a
(slightly) wrong numerical factor (excepting the <cases (n=1;
¥ s) and of course n=s where the full exact answer is obtain-

ed). Egs. (35) and (39) enable the calculation (see Table 3) of
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the factor

qi3) = x§3)/xT (40)

We verify that q(3) £ 1 if s<n. In order to measure how many

times X$3) is better than x%l) we have also indicated in the

Table 3 the <mprovement factor

L)
u)((1,3)E Xpoxp oo 79y (41)
XT'X']('B) 1- q>((3)

We remark that in all the cases the third order approximation is
better than the first order one; typically for n=2 and s=1 we

obtain u§1=3) ~ 39,

IV - SECOND APPLICATION: MIXED ELASTIC POTENTIAL

IV.1 Free energy

As a second test of the EVM let wus consider the

Hamiltonian
I = 2 v bx? sex (b,c>0) (42)

Its associated free energy is given by

1
mbm kgT\1/2 p2/gc kT )
F=- kBT an |- 5 e K]/4(b /8¢ kBT) (43)
2 ¢ch
3 [kgT)?
v F(c=0) + 7°¢ |— if T-0 (43')
b

| /KT
n F(b=0) + L(3/4) p /B PFT e e (437)
r(1/4) c
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where K (Z) is the standard Bessel function and where

, 1172
Fc=0) = - kgT an |[ZB1 T
2
b h
and
1y [2m kBT]”2 ke T 174
F(b=0) = - kgT an |4 |3 |—- B
Lz 4 h2 J C

R

2mm kyT 1/2 kyT 1/4
- kT 2n |1.8128 |— B B
W2 c

Let us now introduce the following trial Hamiltonian

"
n
3
+4
o
x
N

(8>0) (44)
whose associated free energy is given by

? 1/2 _‘
_ . AL

The use of Eq.(8) for 2=1 1leads to

k,T) 2
1 b-B 3 B

whose minimum is located at

plt) - 2 [b + /b2 4 12¢ K T) (47)
The substitution of this equation into Eq.(46) leads, in the
limit T+0, to the exact answer (Eq.(43') and, in the 1limit

T+wo, to
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(1) 1 Vs V2 {ong kT 1/2.,kBT velr o L kgt
FUU n o kT an [T B — ¥ =
31/4 n2 ¢ 2/3 ) ¢
1/2 1/4
domm kT4 K, T N Ko T
= - kT 4N 1.7293 |— B —E— ¢ D B (48)
h2 c 2/3

The thermal dependences are the exact ones; the pure number in-
side the logarithm is 4.6% wrong; the pure number in front of
the term VT is 14.6% wrong (T(3/4)/ T(1/4) =0.3380 and 1/2/3
= 0.2887).

Let us now consider the third order approximation,

The use of Eq.(8) for 2=3 leads to

2 2 3
F(3) g, b= | ReT 3 [ReT), 12T (kT
0 2 B 4

B 2 B

N
N

(49)

whose minimum is located at B =B(3) where

[5(3)}6 - 3b{3(3)]5 + (3b% - 18c kyT) [5(3))4

T- b3)[8(3)}3+ (120¢? k212 - 18b%c kT (3(3))2

+ (36bc k 5 B

B

- 120c% k212 803 J207¢3 1303 - 0 (50)
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This equation leads, for T~>0, to

c k.T
B(3) n b4 o —B (51)
b
where o satisfies
3 2
a” - 18a° + 120a - 297 = 0 (52)
1/3 1/3
hence o =6+ [____._/5379] ) [._____/3379} . 6.71902 (52')
2 2

Eq.(51) substituted into Eq.(49) leads to the exact answer (Eq.
(43')). In the 1imit T+=, Eq.(50) provides

B/ ac kT (53)

which, substituted into Eq.(49), leads to

1/2 1/4
o1 m kT K.T
(3) o - kgT 2n [1.8107 ———-_E_] t_ﬁ_
2 J L C
h
kgt
+ 0.3367 b J—— (54)
C

which once more contains the exact thermal dependences but (slightly)
wrong numerical factors: the pure number inside the Tlogarithm is
0.1% wrong and the one in front of VYT is 0.4% wrong; we see that
the third order perturbation is about 40 times better than the

first order one.

Iv.2 Specific heat

By derivating twice Eq.(43) we obtain the specific
heat C=- T d%F/dT% associated to Hamiltonian (42):



(2)

£ [u®] & 1000

2 u

1 3 47.2

2 ;3( F

3 6.719 1.15

4 ZF F

5 13.74 - 1.35

6 19.52 -1.61
7 26.22 -1.78

8 33,85 - 1.90

9 42.43 -1.98
10 51.95 - 2.045
11 62.41 - 2.092
12 73.82 - 2.129
13 86.18 -2.158
14 99,48 - 2.183
15 113.8 -2.197
16 128.9 - 2.216
17 145.1 -2.226
18 162.2 - 2.241
19 180.2 - 2,249
20 199.2 - 2.256
21 219.2 - 2.265
22 240.1 -2.271
23 262.0 -2.273
24 284.8 -2.278
25 308.5 - 2,283
26 333.2 -2.287
27 358.9 - 2.291
28 385.4 - 2.293

TABLE 1




" T
1 2 5 10 | 20 50
0 0.047 0.239 0.462
a 0 0.001 0.133 0.438 - -
- o 40,917 1.799 1.054
0.031 0 0.047 0.135 0.253
2 | -0.003 0 0.008 0.088 0.249 -
-9.504 o 6.004 1.537 1.017
0.097 | 0.028 0 0.012 0.044 | 0.1080
5 | -0.041 | 0.0006 0 0.001 0.024 | 0.1083
-2.376 |46.867 o 8.819 1.821 | 0.997
0.132 | 0.055 0.008 0 0.006 | 0.030
10 -0.055 | 0.004 0.0004 0 0.0008 | 0.022
-2.392 |15.292 22.864 % 7.852 | 1.372
0.152 | 0.073 0.020 0.004 0.005
20 | _0.044 | 0.008 0.002 0.0002 0.001
-3.443 | 8.850 8.338 18.539 o 3.963
0.166 | 0.087 0.031 0.012 0.003 0
50 -0,029 = 0.014 0.006 0.002 0.0003 0
-5.671  6.405 4,981 6.021 11.185 "

TABLE 2




TABLE 3

R:\\:\ 2 5 10 20 50
0.854 0.510 0.305
1 0.996 0.728 0.390 - -
38.940 1.800 1.139
1 0.798 0.625 0.473
2 1 0,972 0.799 0.570 -
- 7.151 1.865 1.226
; 1.078 1 0.910 0.818 0.701
0.998 1 0.992 0.927 0.773
-51.747 o 11.857 2.489 1.314
0 1.095 1.055 1 0.947 0.879
0.997 1.001 1 0.995 0.938
-33.773 37.247 o 10.880 1.960
’0 1.101 1.073 1.034 1 0.962
0.997 1.005 1.001 1 0.993
-32.872 15.484 | 27.811 w 5.646
- 1.102 1.079 1.046 1.021 1
0.997 1.007 1.004 1.001 1
-30.484 11.249 | 10,531 16.953 w
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TABLE 3

Selected results obtained for the pure potential
2s
).

The top and intermediate numbers respectively are the

X2n

classical single oscillator ( treated with (X

reduced vanishing field isothermal susceptibilities

(1) ng o(3)
qX an qX
exact result is qX =1); the bottom number is the
improvement factor u§]’3)5 {1— qﬁ])J//[1 -q§3)]
(remark that in all the present cases |u§]’3)| > 1)

defined through Eqs.(38) and (40) (the

(=) means that the computer indications were not

clear enough,
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Fig. 1

Fig. 2

Fig. 3

TABLE 1

TABLE 2

The pure potential case n=2s =2: lTocus of the minima
of the 2-th order adimensional free energy f(l)(u) as
a function of the adimensional variational parameter
u (when more than one minimum exists we have consid-
ered the one associated to the higher value of u) ;

the exact answer is f =0,

"Thermal dependences of the exact, first- and third-

order specific heats of the mixed potential (bx2+cx4)

“classical single oscillator; they all converge to

3 . . . . _ p
T kB in the Timit t>o; t =8 ckBT/b o

Thermal dependences of the exact, first- and third-order:
vanishing field isothermal electric susceptibilities

of the mixed potential (bx2+cx4) classical single

oscillator with charge q; they all vanish in the

limit tsw 3 t=8 ckyT/b%,

See caption of Fig. 1 (we recall that 2=2,4 provide

no minimum),

Selected results obtained for the pure potential
2n 25)

The top and intermediate numbers respectively are the

classical single oscillator (X treated with X
minimized first- and third-order adimensional free
energies f(])(u(])) and f(3)(u(3)) (the exact result
is f=0); the bottom number is the corresponding <m-
provement factor ué]’B)Ef(])(u(]))/f(B)($3)) (remark
that in almost all the present cases lug]’B)l >T1; =)
means that the computer indications were not clear

enough.



2

Ko, (1/t)t KS, (1/t)

c=k, |3+« 378! 3/4 (55)
"le 2 ok sty 12 k2 1/t)
1/74(1/%) 174!
where
8c k,T
t = B (56)
2

and where standard recursive re1ations[34] for the Bessel func-
tions have been used. As far as we know expression (55) has never

been registered in the literature. It leads to

kaB1-—3—t if t =0 (55')
16
and to
r(3/4)
3 1
C~nk =+
3[4 ST T(1/4) /t_}
= kg [i + 0.2390 -l-] if tsw (55")
4 Jt

The 2-th order approximative specific heat is given

by

o) _ o df MMy
2

(57)

dT
Straightforward calculations lead, in the 1limit T+ 0 to the exact
asymptotic behaviour (Eq.(55')) for both C(]) and C(3) and, in

the 1imit T+, to the following results:

1
LU kg |2+ — L ]: kg [-3- +0.2047 - (58)
oww Tt 4 /T
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and
cB)n kg (24 0.2381 L (59)
4 /T
The pure factors in front of t']/z are respectively 14.6% and

0.4% wrong (see Eq.(55")) . The complete thermal dependences of

C, C(]) and C(3) are represented in Fig. 2.

IV.3 Susceptibility

Through calculation of < x2> we obtain the thermal

dependence of the electric susceptibility, namely

2 K3 /q(1/t)

X = a2 -1 (60)
bt | Ky a(1/t)

This expression (never registered in the literature as far as we

know) Teads to

2
M.m%; P-§1J if t a0 (60")
and
2 /31(3/4) q° 2
X v ) “— = 0,9560 — if t+o (60")
r(1/4) b v b /T

Within the present EVM the use of Eqs. (17.a) and
(17.c) (with ¢ = x2) enables the calculation of the thermal de-
pendences of the first- and third- order approximative susceptibility, 1In
particular, in the 1imit T-0, the exact asymptotic behaviour
(Eq.(60')) is recovered for both X§]) and x§3)° In the other
limit (T >~) the following results have been obtained:



2 2
x{1) n \E— s 0.8165 I (61)
b/ T b/ T
and
.2
X§3) v 0.9524 (62)
/T

Once more the thermal dependences are the exact one and the pure
numbers are respectively 14.6% and 0.4% wrong. The full thermal
dependences of X7 X§1) and X§3) have been represented in Fig.3.

V - CONCLUSION

For classical systems associated to Hamiltonians
3*? (as well as for quantum systems such that J*F commutes with
a trial Hamiltonian ¢h?o) we have performed a cumulant expansion
of the associated free energy (and, for classical systems, of the
susceptibility as well) and have outlined a new procedure (re-
ferred to as the Extended Variational Method) whose purpose is
to improve the results obtained within the framework of the
standard Variational Method in Equilibrium Statistical Mechanics.
A sequence of &-th order approximative free -energies appears
within the present context which exhibits convergence problems
in the 1imit 2 » « (similarly to what happens in asymptotic
series); these problems do not necessarily persist for other
quantities (l1ike the specific heat or the susceptibility). Inci-

dentally a new recursive relation (Eq.(7)) among cumulants is

established.

The whole procedure has been tested for two dif-

ferent types of classical anharmonic single oscillators, namely
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those whose elastic potential is proportional to x2n with n=1,2,...
(pure type) and those whose potential is of the type bx2 + cx4
(mixed type). For both types the exact free energy, specific heat
and susceptibility are established (in the mixed case for the first

time as far as we know) and then compared with successive approximations

(obtained by using trial elastic potentials proportional to XZS
(s=1,2,...) for the pure type and to x2 for the mixed one). In
all the physically meaningfull situations the exact thermal depen-
dences are recovered for all approximation orders and simulta-
neously for both Timits T+0 and T+, Furthermore great improve-
ment (typically of the order of 40) is obtained for the eventually
wrong numerical coefficients (which are nevertheless frequently

quite close to the exact ones and sometimes coincide with them )

by minimizing

instead of

F + < &f- &fo>o

0

in spite of the fact that only the Tatter is justified through
the Bogolyubov inequality. No doubt that the application of the
present procedure to other systems (like simple magnetic systems)
and/or its extension to general quantum ones should clarify its

possibilities and limitations.
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