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ABSTRACT

A conjecture is proposed for the approximate
critical frontiers of the g-state Potts ferromagnets on
planar lattices. This conjecture is verified, within a
satisfactory degree of accuracy, for a variety of planar
lattices (as well as for the first and second neighbour
square one), and enables the prediction of a consider-
able number of new results (29 independent critical

points and a few critical lines).

Reduced title: Potts Ferromagnet on Planar Lattices.



Titre: Conjecture sur la frontiére critique du modéle de

Potts ferromagnétique sur des réseaux plans.

Résumé:

On propose une conjecture sur les frontiéres critiques
approchées du modéle ferromagnétique de Potts 3d q états sur des
réseaux plans. Cette conjecture est verifée avec une precision
satisfaisante pour une varieté de réseaux plans (et aussi pour le
réseau carré avec premiers et seconds voisins), et permet de
prédire un nombre considerable de résultats nouveaux (29 points

critiques independants et quelques lignes critiques).



It is well known that the ferromagnetic g-state
Potts model presents a second-order {first-order) phase
transition for all dimensionalities d>1 and number of states
qsqc(d)(q>qc(dn; in particular qc(2)=4. We remind that g=2
corresponds to the 1/2-spin Ising model, and the g=+1 and
g+0 limits correspond respectively to the standard and tree-

like bond percolations(l’z)

. The critical frontiers associa
ted to the anisotropic square, triangular and honeycomb
lattices are presently, as far as we know, the only ones to

(3)

be exactly known for all g. And of course several other

planar lattices have been solved for q=2(4). In the present
work we make a conjecture which essentially states that the
knowledge, for a particular value of g(l<gg4), of-umasimpkés)
paramagnetic—ferromagnetic critical frontier (CF) associa-
ted to any given planar lattice. (isotropic or not, homo-
geneous oOr not) enables one to calculate, at least approxi-

mately, the critical frontier associated to the same

lattice for the other values of g(lg<ggd).

Let us consider a single Potts bond ( coupling
constant J); it is convenient to introduce a variable t(q)
(referred hereafter as thermal transmissivity, see Refs.
(6-8) and references therein) defined as follows
-qJ/k T
t(q) l-e B

= —qI /KT (J>0) (1)
B

1+(g-1)e



It is interesting to remark that the t(q) -variable precisely

coincides, for all g, with the p-variable Stephen(z)founds in

teresting to work with. Let us stress that't(l)=l—e—J/kBT

(1)

is
precisely the variable isomorphic to the occupation proba-

bility of the standard bond percolation problem. It is straight

forward to verify(s) that the equivalent transmissivity téq)
of a series array of two bonds with transmissivities tiq) and
téq) is given by
() _ . (q@) _(q)
ts = tl t2 (2)
whereas for a parallel array it is
(@)D _ ,(q)D ,(q)D
tp =t t, (3)
where we have introduced(B) the dual(g) transmissivity
o q_ (q)
e vi (4)
1+ (g-1)t ‘9
Let us now introduce(7) a new  variable s(q)
through the relation
(@ 1n[1+ (g1t @]
S = (5)
In g
We verify a remarkable property, namely,
S(q){t(q)D}r= l_s(q){t(q)} (6)

i.e. the s-variable transforms, under duality, like a proba-

bility. We verify as well that, in the limit g+, s(l)=t(lx




We are now prepared to state our conjecture. We shall assume
known, for a certain planar lattice, the CF for a fixed value q;

(1<quqc(2)), namely, the equation

(g.)) (a)) (q )
¢{sl ° 'Sq ° reeerS, ° t=o0 (7)
(qy)  (qp) (q,)
where Sq 1Sy reessSy are associated to the independent

coupling constants Jl'JZ""’Jn of the system under consider-

ation. Our conjectural statement will be that the equation

) {s{q), séq),..., s(q)} =0 : (8)

n

represents also, either exactly or within great accuracy, the
CF of the corresponding g-state Potts model for - the other

values of q(lsqsqc(Z)).

Anisotropic Square Lattice - The bond percolation CF for this
(10)

lattice is given by
p; tp, =1 (9)
which, within the present framework, will be generalized into

s{q)+séq) =1 (10)

(3):- critical temperature for any value

which reproduces the exact
of g. We see, therefore, that for this system . the present
conjecture is rigorously true (0<g<4). Moreover, this might

happen only for this lattice, as a conseguence of its self-

duality.

Anisotropic Triangular and Honeycomb Lattices - The bond

percolation CF frontier for the anisotropic triangular lattice

is given by(lo)

1-p;-P,"P3+pPP,P5 = 0 (11)




(fof the honeycomb lattice do pi+l—p1 vi). Therefore, within
the present framework, the CF for any value of gq(l<gg4) is

approached by

@) _(q)__(q), (q)_(q)_(q) _ ,
1-s,%" -s, Sy ¥ s, s, 0 (11*)
Let us now compare this eq. with the exact(3) one. We imme-

diately verify that they coincide whenever one of the three
coupling constants vanishes (anisotropic square lattice limit).
Next we perform the comparison for the maximal error case,

namely, the isotropic limit. Our conjecture leads to s(q)=2 sin =~

: 18
for this lattice, whereas the exact answer is given by
(q) .
T -2 cos [l arc cos (g - l) ]- X (agd) (12)
1-¢ (@) q 3 2 q

The results are presented in the Fig. 1. We remark that the

error is smaller than 2.4% for 1l<gg4. It is straightforward

to verify(ll) that, in the g~0 1limit, t(q)ﬂJl - LYq, hence
s(q)'bl + %EE , where L is a lattice-dependent ' pure number
2 nq

(L = 1, f?, 1//3 for the sqharé, triangqular and honeycomb
lattices respectively; as a matter of fact for any pair of
dual lattices it holds LD=1/L). The non-vanishing error comes
from the tendency of s(q) towards 1/2, and its smallness from

the infinite slope at g=0.

"Inhomogeneous" 4-8 Lattice and its Dual - The exact CF's

associated to the Ising model in the "inhomogeneous" 4-8 lattice
(figure 10 of Ref.(4)) and its dual (squaré lattice with non-
crossing diagonal bonds) are known(4). Since there 1s a

straightforward relation between the CF's of any pair of dual

lattices, we shall restrict our discussion here to the 4-8



lattice (we note J, and J., the coupling constants respectively

1 2
associated to the different bonds which are in a 2:1 ratio).
The exact CF in the 5{2)_552) space is represented in Fig. 2.
(2)
We may verify that s(2)=s(2) =0.6792, dSl - and
1 2 ~- 0.414
(2)
ds, S(2)__l
» =
5(2)— 1 A s(z)—l (A=1.39) 2
) 5 1

In the present framework, this CF should, within

satisfactory accuracy, be the same for g#2; let us compare it

(12)

with a recent conjecture (completely unrelated to the

present one) for bond percolation in the same system, namely

'(1) (1))2 (1))3] _
3{52 —1/2) —4[[1—51 ] + [l—sl ) ] -0 (13)
(1) ¢ (1) .5 6801 (which com-

1 7S,
and 0.684(1%)

(15)

From this equation it comes that s

(13)

pares well with 0.675+0.027 , 1s included in

the conjectural interval 0.645-0.707 , and whose discrepan

(1) ,.. (1)

cy with the value 0.6792 is only 0.13%), dsl 2

= ~3/7
s£1)=l

=~ -0.429 (whose discrepancy with the value -0.414 is 3.5%),

/ds

and the same assymptotic behaviour mentioned previously for
g=2 is satisfied with A=4/3 (which differs by 4.2% from1l.39).
As we see, the CF's associated to g=1 and g=2 are satisfacto-
rily coincident, therefore we conjecture that eq.(13) or the

one corresponding to Fig. 2 can be used as. well for all

values of g (l<g<4).

Some Other Planar Lattices - The exact critical points for

the isotropic Kagomé, Diced, 3-12 and = Asanoha ( Hemp-Leaf)
lattices (see figs.14, 15 and 19 of Ref. (4)) are known' %
only for g=2. Thus by imposing the exact critical value:s(z)

to be equal to s(q) we have obtained the critical points in-

dicated in the Table which compares well with previous g=1



(14,15) (14)

results . For the Archimedean
(14) (1)

lattices we used

Neal estimates' for P, =S to predict the critical

points for g#l1 shown in the Table.

Some First- and Higher-Neighbour Lattices - The present

conjecture, mainly supported by the probability-like trans-
formation of the s-variable under duality, is not expected
to necessarily lead to satisfactory approximate CF's for
non-planar lattices. For example, for the sc lattice (fcc,

(2) (20) (20)

bee) t(2) ~ 0.2181 0.1017¢%9)  0.156129)) hence s(? =

0.2846 (0.1398, 0.2093), whereas t 1) =s(M e 0.2526+0.0013

(21) (0.119:0.001 %%, 0.1785+0.0020 (%2

), therefore there
is a discrepancy of about 13% (17%, 17%). Althoughthe first
and second as well as the first, second and third neighbour
square and triangular lattices are not strictly planar (in
the sense that they cannot be embedded in the plane; remark
however that their three-dimensional extension is a finite
one), we have also considered them in this work since our

(1) (2)

conjecture is well verified (s equals s within a 0.4%
error) for the first and second neighbour square lattice
(see the Table). Therefore, we have used the Ising critical

temperature(l7’23)

to predict the g#2 critical points for
the three last lattices of the Table.

In the Table we present the critical points for
several isotropic and homogeneous lattices and values of q.
The‘estimated error bars simultaneously take into account

the values available in the literature as well as the error

(exactly known for the triangular and honeycomb lattices)



introduced by the present conjecture. Cross-checking, by other
procedures, of the critical points appearing in this Table, as

well as of the critical lines associated to the 4-8 lattice

would be very wellcome.

We are indebted to G.Schwachheim, S.V.F.Levy and

E.M.F.Curado for useful remarks.
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CAPTIONS FOR FIGURES AND TABLE

FIG.

FIG.

TABLE

1

2

Comparison between the exact and conjectural
critical points for the isotropic triangular
and honeycomb lattices (the analytic extension

for g>4 has been represented as well).

The exact para(P) - ferro(F) - magnetic cri-
tical frontier of the 4-8 lattice Ising model

(as a matter of fact the prOposed(lz)

g=l cri
tical line is indistinguishable from the g=2

one, within the present scale).

Critical points for isotropic and homogeneous
g-state Potts ferromagnets in a set of lattices.
t(q) and s(q) are related to kBTc/J through
egs. (1) and (5); (...) denotes an exact value.
For the triangular and honeycomb lattices the
exact, rather than the conjectural, values are
indicated. The region delimited by a heavy
line contains results that, as far as we know,
have not yet been checked by any other proce-

.,.

dure. This central value has been adopted

after consideration of the Ising critical lines
associated to the case where the first and se-

cond coupling constants are not necessarily

equal,
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TABLE

gular Lattice

. g=1 q=2 g=3 qg=4
Lattices 3 3) (4) (4)
S _ () £ (2) . (2) S (3) e s &
Square 1/2 (10) 1/2 0.414... (4) /2 0.366.. .(3) 122 1/3 ()
Triangular | g 3¢7,..00 | g 342... 0.268... % | 0.340... 0.227..83) 1§ 339, 15
Honey comb 0.653... 0 0.658. .. 0.577... % | o.660... 0.532..8 | 0.661... 1/2¢3)
0.679%0.006 11,y | 0.679... 0.60L... 4 | 0.6790.003 ~0.554:0.003 | 0.679%0.005  0.521%0.006
4-8 0.680£0.005 7%
0.675%%4027
0.684
[0-645,0. 707](15)
I\ n—Crc;”' ' .
DiagonaiSIng 0.32120.006 0.321... 0.249...‘4) 0.321#0.003 0.211%0,002 | 0.321+0.005 0.187£0.004
Square-Lattice
0.521 04006 0.521... 0.435...4) | 0.52140.003 0.387:0.003 | 0.521#0.005 0.354#0.005
Kagomé Q- 526 (1
E f0.522,0. 52;](15)
Diced 0.479%0.006 0.479... 0.353...(4) 0.479+0.003 0.346%0.003 | 0.479+0.005 0.3140.004
3-12 8 3@2 201 0.740... 0.671... 4 | 0.720%0.005 0.628:0.006 | 0.740:0.008  0.597:0.010
Asanoha 0.260£0.011 0.260... 0.197... 4| 0.26020.005 0.165£0.004 | 0.260%0.008 0.144%0.005
(4,6,12) 0.693(14) 0.693£0.002 0.617+0.013| 0.693x0.017 0.571#0.020 | 0.693:0.021 0.538%0.025
N e i
(3,4,6,4) 0.525(14) 0.525io.oﬁ2 0.4390.012| 0.525:0.017 0.390%0.017 | 0.525:0.021 0.35720.020
(3,3,3,3,6) | o 430 (34) 0.43920.012 0.356%0.011| 0.439%0.017 0.310¢0.015 | 0.439:0.021 0.279:0.018
N -
33348 ™ 0.42219 0.422+0.012 0.340%0.011) 0.422%0.017 0.295:0.015 | 0.422%0.021 0.265:0.017
18t ang 224 0.249+0.011 0.249:0.007  0.188%0,006 T 10.249:0.008  0.157:0.006 | 0.249:0.009 0.137+0.006
Neighbour (12) 0.189
Square Lattice 0.250%0.003 8.188 %g
J184418
- - . _0.199 N
12% ang 2% 0.155+0.004 0.1550.001 0.1135:0.0010 | 0.155:0.002  0.093:0.001 | 0.155:0.003 0.080%0.002
Neighbour Triam 0. 1135( 7
gular Lattice 0 1131(23)
188 22 ang 359) 0.15420.004 0.154:0.001  0.1130%0.0010 ° | 0.154:0.002  0.0920.001 | 0.154:0.003 0.080%0.002
Neighbour 0 1130\23)
Square Iattlce °
1§t 24 a3 0.099+0.003 0.099:0.001  0.0711:0.0010 | 0. 099+0.002  0.057£0.00L.| 0.099%0.002 0.049:0.001
Neighbour Trian- - 0 0711(23)




