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ABSTRACT. The purpose of this paper is to show that if f is

a diffeomorphism of a compact manifold whose Birkhoff center,
c(f), is hyperbolic and has no cycles, then f satisfies

Axiom A and is Q-stable. To obtain a filtration for c(f),

the concept of an isolated set for a homeomorphism of a compact
metric space is introduced. As a partial converse it‘is proved
that if c¢(f) 4is hyperbolic and f is Ql-stable, then c(f)

has the no cycle property. It is also given a characterization

of Q-stability when c(f) is finite.

INTRODUCTION

In this paper we consider a diffeomorphism f of a
compact manifold M whose Birkhoff center is hyperbolic.
We prove that if the Birkhoff center of f is hyperbolic and
has no cycles, then £ satisfies Axiom A and is {l-stable.

We denote by "0 = Q(f) the set of non-wandering points

of f. Smale's Axiom A requires:

(a) 0 has a hyperbolic structure.

(b) The periodic points are dense in Q.

In Smale's paper about (Q-stability [ 9], he proved that
if f satisfies Axiom A and_has no cycles, then f is
l-s5table (for easier proof see [ 6]). Later on, Newhouse [ 5]
showed that if the closure of the a-1limit set of f, denoted
by L7, is hyperbo;ic and does not admit cycles, thén f
satisfies Axiom A and has no cycles, and therefore f is

{l-.stable. In this paper we obtain the same conclusions by

requiring the condition of hyperbolicity and the property of

having no cycles for a subset of L7, the Birkhoff center of
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f, denoted by c(f). We define c(f) to be the closure of.
the set {x e M | x € a(x) N w(x)}, where a(x) and w(x)
are the @~limit and w-1limit sets of x for f. Our main

result is the following theorem:

Theorem-B - If c(f) is hyperbolic and has no cycles, then
f satisfies Axiom A and has no cycles. In particular f is

l-stable.

We also prove, following [7], a partial converse of

this result.

Theorem C - If c¢(f) is hyperbolic and f is {l-stable, then

c¢(f) has the no cycle property. In particular, c(f) = Q(r).

In order to prove Theorem B, we initially consider a
homeomorphism f of a compact metric space XK. We introduce
some concepts which generalize others used in the study of a
diffeomorphism of a compact manifold. 1In this contex’, the
basic concept introduced is the one of isolatéd set for a
homeomorphism. As we show in Proposition (1.2), isolated
sets have a fundamental property valid, in the case of a
diffeomorphism, for hyperbolic sets with local product
structure: 1if there exists a decom?osition having no cycles,
we may obtain a filtration for the elements of this decom-
position., We show then that if c(f) is isolated and sat-
isfies the above hypothesis, then c¢(f) coincides with the
non-wvandering set of f, Q(f). More explicitly, we say that
a compact set A < K is isolated for f 4if it is invariant
by f (i.e.. f{(A) = A) and there exists a neighborhood U

of A such that A is the maximal invariant set for f.
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in Uj; that is, N f£(U) = A. We then prove the fol=- -
nez ‘
lowing theorem:

Theorem A - If c¢(f) 4is an isolated set for f and admits
a decomposition c(f) = A; U...U A& into isolated sets

having no cycles, then c(f) = Q(f).

From this theorem we prove the main result of the
paper, Theorem B, as stated above., The idea of the proof is as
follows. Let f be a C¥ diffeomorphism, r =2 1, of a compact
¢ manifold without boundary, whose Birkhoff center c(f)
is hyperbolic. From Anosov's Closing Lemma we can show that c(f)
coincides with the closure of the sef of periodic points of
f, denoted by P. Then using Newhouse's theorem [5] rela-
tive to the decomposition of P into basic sets, we obtain
a decomposition of c(f). Theorem B then follows, showing

that this decomposition satisfies the hypothesis of Theorem A.

In Section 1 we establish some notation and introduce
the definitions in the context of compact metric spaces.
In particular, we define an isolated set for a homeomorphism
of a compact metric space, which generalizes the idea of
hyperbolic sets having local product structure for a diffeo-
morphism of a compact manifold. In analogy to the invariant
manifolds of a hyperbolic set [3], we associate invariant
spaces to an isolated set. We obtain, in this context, well
known results for diffeomorphisms, including a filtration

lemma, that we use in the proof of Theorem A.

In Section 2 we restrict our considerations to diffeo-

morphisms of a c” compact manifold, We restate the defi=-
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hition of a hyperbolic set having local product structufe for
a diffeomorphism and recall some known results. These results
enable us to show that such sets are isolated. Also the in-
variant manifolds coincide with the invariant spaces as de-
fined in Section 1. We prove Theorem B making use of Anosov's
Closing Lemma, Newhouse's theorem for the decomposition of P

and Theorem A,

In Section 3 we prove Theorem C. For this purpose, we
introduce the concept of F-stability; that is, the stability.
of the closure of the set of periodié points of a diffeomor-
phism f. We prove that if P = EE;TFS-,iS hyperbolic and f
is 5~stable, then P has the no cycle property. This result
is similar to the one known as {l-explosion, In fact, the
proof of the above result is essentially the same given by
Palis in [7].

We observe that to prove-our main result, we need to
consider the restriction of a diffeomorphism to certain
invariant subsets of the ambient manifold, which do not have
in general a differentiable structuref This is the main
reason to study isolated sets for homeomorphismé in the first-
part of the paper, where.Theorem A is proved.

We also point out that Theorem B implies a positive
answer to a question posed by Néwhouse in [ 5].

This work corresponds to my doctoral thesis at IMPA,
under the guidance of J. Palis. I ﬁish to thank him and

R. Mané for suggestions and encouragement.



1. ISOLATED SETS

In this section we will define isolated sets for a
homeomorphism of a compact metric space K, which generalize
the idea of hyperbolic sets with loéal product structure of a
diffeomorphism, In analogy to the invarignt manifolds of an
hyperbolic set for a diffeomorphism, We will associate two
invariant spaces, called the unstable and the stable space,
to each isolated set for a homeomorphism, We can therefore
consider the notion of cycles in a disjoint family of isolat-
ed sets,

The basic result of this section is Proposition (1.2).
From it we obtain a Filtration Lemma (1.8) and Lemma (1.9)
which will be used to prove Theoreﬁ A,

-Heré f dis a homeomorphism of a compact metric space
K. We denote by P the set of periodic points of f and

by € the set of non-wandering points of f. That is,

Q= {x € K | given a neighborhood UcC K of x and
n > 0, there exists n € Z with |[n| > n_
such that £ (U) N U £ ¢} .
For a subset Dc K, D will denote its closure in K, and
int D will denote its interior in K. For sach x € K, we
denote by 6(x) the orbit of x, and by @_(x) and Q+(#)
the negative and positive orbit of x, respectively. Let
x,y € K. We say that y € a(x) if there is a sequence of
integers n, + o such that f-ni(x) 4y as i =4 o, 1In a
similar way, we define w(x) to be the set of y € K such

that there is a sequence of integers n, + o such that



-n.

F '(x)*y as i+ o. The set @&(x) is called the G-limit’
set of x and w(x) dis the w=1limit set of x. Notice that
a(x) (or w(x)) is closed, non-empty and invariant under f,

tﬁat is, f(a(x)) = d(x), for every x in K.

Definition - A compact subset A € K dis disolated for the
homeomorphism f: K -+ K 4if it is dinvariant under f, that
is f(A) = A, and if there is a neighborhood U of A

such that N £(U) = A.
' nez

- In the sequal A c K is assumed to be an isolated
set for f¢ As in the case of hyperbolic sets for a diffeo-
morphism, we associate to an isolated set A, invariant

S u :
spaces, W (A) and W (A), called the stable space and

unstable space of A, respectively, defined as follows:

wi'(A) = {x € K | a(x) € A} and

wo(A) = {x € K | w(x)c A}.

If U 4is a compact neighborhocod of A such that

N (V) = A, we define wi' (L,U0) = N £™(U) and
oc
nez n=0
W% (A,U) = N £7(U). Thus we have W (A= U £7WS (A, 0),
loc loc
n O n=0

u ' n, u ' s u
wiA)= U £ (WlOC(A,U)) and wlOC(A,U) ﬂ.wloc(A,U) = A.

n=0

We consider in WiOC(A,U), c = s,u, the topology
induced by the metric in K.
Let U be a compact neighborhood of A such that

N fn(U) = A. If V idis a compact neighborhood of A in
necZz
s

Wi, (A,U)  such that f(V) ¢ V, we call the set D = V-f(V)

a fundamental domain for wioo(A’U)' In a similar way we



define a fundamental domain for W:OC(A,U). We observe that-
if x € W2 (A)-A, then there exists a integer k such that
fk(x) € D. If DN A =¢ we call D a proper fundamental

domain,

(1.1) Proposition - If A is an isolated set for f, then

5 . « ' .
p° = wioc(A’U) - f(WlOC(A,U)) is a proper fundamental domain

for Wioc(A,U).

Proof: We need only to prove that A is contained in the

interior of f£(W]_ _(A,U)) in wioc(A,U). In fact
f(WiOC(A,U)) = £(U) n wioc(A’U)’ thus A < f£(int U) N

n oW (A,0) e £(w]  (A,U)) and f£(int U) 0 W]  (A,U) is an
open neighborhood of A in WiOC(A,U). So we have

p° n A = 3.

The following fact is a basic one for_our study since
it enables us to obtain several results, including a fil-
tration lemma, which we will use in the proof of Theorem A,
Notice that it generalizes an analogous result for hyperbolic

sets with local product structure for a diffeomorphism [4].

(1.2) Proposition - Let V be a neighborhood of Ds in K.

Then U'= W) _(A,U) U 6 (V) is a neighborhood of A in K,

where ¢ Vv = U (V). : ’
* nz0

Proof: Let us suppose the statement is false. Then if W

is a neighborhood of A in X, we have W ¢ U’', that is,
there is a sequence Xn € U-U’ which converges to x din A,
Since x, ¢ W' (A,u) = N £™(U)  we have @_(xn) ¢ U. For

loc n=0

each n, let m_ =2 O be such that f-k(xn) € U for Osksm_,



) -(mn+l) - --mn : v
but f (x,) ¢ U. Thus y_ = ¢ (x,) € U-£(U). We

assert that. m =+ ® as n + o, Indeed, given N € zt  take

N ) ,
M > O such that x_ € N fk(U) for every n = M., Then
k=0

f_k(xn) € U for a< k< N and every n=z= M, thus m > N
for every n > M proving the statement. We can assume that
y, converges to 1y € U. We now claim that vy € WS(A)-A.

It is clear thét y € A since A < int £(V), thus all we
need to prove is y € WS(A). But if vy ¢ WS(A) there exists
k > 0 such that fk(y) d U, so for n sufficiently large

-m_+k

we have fk(yn) =f B (xn) ¢ U. Since m, 4 o as n- o,

0« mn-k < m, for mn sufficiently large, which gives a
contradiction. Thus vy € WS(A) and we can choose ko € Z
such that fko(y) € D°. Then fko(yn) = f-mn+k°(xn) e v
when n is large and sg X, € u’ contradicting our

assumption./

(1.3) Lemma - Let A,,A, © K be isolated sets for f such

that Al N A2 = ¢. Then

~ “~

(1) WA 0 WI(A,) £ = W(A) 0 F°(A,) £ ¢

”~ ~

(1) WA N FN(A,) £ = WI(Ay) N WI(A,) £ o

where

wc(Ai)

e}
1% (Ai)-Ai

W(ny)

I

w“(Ai) - A; for i=1,2 and o=s,u.

Proof: Let U be a compact neighborhood of A2 such that

N () = A and let D° = DS(Az,U) be a proper funda-

H
nez 2 s
mental domain for wloc(AZ’U)'



el

(i) Let x, € W (A,) such that x =+ x € Wi (n,) N A,, and

let F = U G(K ). Then FC Wu(Al) and so we need
n=0 s :
only to prove that F N D~ # ¢.

Given any neighborhood V of Ds, with VN A2 = ¢,
let U = w ool U) U 6 (V) and k > 0 such that x,_€ U’.
Since x; g W (Az) (recall we have X € Wu(Al)) there is
n
n, = 0 such that x,_ € f k(v). Thus U 6(x ) N V # ¢ for
k k >0 n
every V, which implies F N p° £ 0.

~

(ii) From (i ) it suffices to prove that if W (A Y n WA )¥¢
Then xa(Al)n Ay # 6. If x exv(Al)n W’(Az), then
o(x) c wu(Al) N A,, thus a(x) c w” (Al) n A, since

Alr\]\2=¢./

Let Al’AZ""’A < K be disjoint isolated sets for £,

L
Definition - A cycle for the family {A. i3 is a
. i=1,404.,4
AU
sequence A. ,...,A. such that A, = A. and W (A, )N
i i,

ig i iq K j

n WS(A. Y £ 9 for 1< j< k.
T+l
Remark: The sequence Ai ""’Ai = A is a cycle if there
1 k

are points such that X , a(xi) < Ay
J J

xl,-'-,xk

MCW

and w(x) < A, for 1< j < k.
1541 :

(1.4) Lemma ~ Let {Al’°"’AL] be a family of disjoint

isolated sets for T having no cycles such that K c |J W (A )
— i=1
Then if Wu(Ai) n w (Aj) # ¢ there exists a sequence

- . _ ’ »~ 153
Aj = Ajo""’AJk = A; such that W'(A ) n w° (A ) £ ¢

for 1s & < k.
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Proof: Lemma (1.3) 1mp11es that W (A ) N W’(A ) £ ¢. Let -

x € W (A.) n ws (A, ). Since ko U W (A ), there is
1 Jo i=1 .
1< j, 4 such that x € W (A. ). Then x € fJu(Aj ) n
1

n w° (AJ ). But x € W (A ) n W (A ) and so, by Lemma (1.3)
o Ji

(ii), we have W (A.) n wo (A. ) # ¢. Now assume A, ,...,A .
i J1 Ji Jp
are defined for p < 4 such that Aj # Ai for 1< O < p,
: (04

-~

A, )nN WA, )#£¢ for 1<osp and W (A.) N
Jo 1 1

Jo - .
N wA. )#£e¢. If j_# i we can obtain A by the same
process used to get Aj . Notice that the assumption of no
, 1
cycles implies that A, # A. if & £B. Since 1< j, s 4

we must have = i for some @ which proves the lemma,

Ja
(1.5) Lemma - Let A be an isolated set for f and x € K.

If a(x) N A £¢ but x ¢ W'(A), then
(1) a(x)n W) #¢
(i1)  a(x) n W) £ ¢.

Proof: (i) Let U be a compact neighborhood of A such that
N fn(U) = A, and let D° = DS(A,U) be a proper fundamental
ziiain for .Wioc(A’U)' It suffices to prove that given a
neighborhood V of D° .such that VN A = ¢, we have

G_(x) nNnvge. By Proposifion (1.2) we know that

U = loc(A U) U 6,V is a neighborhood of A. Since a(x) n
N A #Z¢, there exists k > O such that f‘k(x) € U'. But

x € W'(A), thus f-k(x) 4 W?OC(A,U) and so f-k(x) e (V)

for some n = 0, which implies 6_(x) N V # ¢.

(ii) Let U be as above, such that x ¢ U, Since

£(w],  (A,U) € Wi o(A,U) we have 6 _(x) N Wi oo (A,0) # 9.
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-1)
f k(

Let x x) € U, with ny 4 o as k - «, such that

k=
. s
X+ z€ A.. Since x 4 WlOC(A,U) we have @+(xk) & U. For

each k> 0, let m_ = O be such that fm(xk) € U for

k
Mes1 My
O< ms< m but £ (Xk) ¢ U. Then Ve = T (Xk) e (U -
- f'l(U)) and m_-n_< O, that is vy, € & (x) for if not
ny,
we would have O < mny < m. and so iy L(Xk) = x € U, which

is a contradiction, We state now that my - as Kk &4 o,
Indeed, given N € Z', there is k_ > O such that

N

x, € N f"n(U) for every k 2 k_, since x
n=0

A.  Then f"(x

x converges to

€ U for O< n é N and so m,_ = N for

i) K

every k = ko. We can assume that Yy .converges to

T, -
y € U - £77(U), and we state that y € W (A). It suffices
to prove that vy € W'(A), since A C int f-l(U). If

y.Q Wu(A), there exists j > O such that f-J(y) ¢ U.
Thus, there exists ko > 0 such that for every k = ko we
m -j- _J'

have m-j > 0 and f K "(x.) = £"7(y,.) ¢ U, which is a
contradiction since 0 < mk-J < m, . /
From this lemma we obtain immediately the following

result.

(1.6) Corollary - If {Al""’AL} is a family of disjoint
| L
isplated sets for f such:.that a(x)c U A, for every
i=1
x € K, then a(x)c Ai for some i=1,.,..,L{, that is,

L
K= U Wu(Ai).
i=1

In the proof of the Filtration Lemma below, we will

need the following lemma that appears in [ 9].

(1.7) Lemma ~ Let F ©be a compact f-invariant subset of K
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and Q be a compact neighborhood of F such that () £7(Q)=
v nz0
= F., Then there is a compact neighborhood V of F such

that Vo Q@ and f(V) c int V,

(1.8) Filtration Lemma - If {Al,...,AL} is a family of

disjoint isolated sets for f having no cycles such that

4

a(x)c U A; for every x € K, then
i=1 ' .

(a) There exists a filtration for the family, that is,

there are compact sets ¢ = Ko c Kl C...C K& = K

. . n
such that f(Ki) c int K; and ng f (Ki-Ki_l) = Ay

L
(b) a(r)c U ay.

i=1
Proof: (a) We define the following relation on {Ai}L :AisAj
- i=1

if there is a sequence A, = A. ,eee,A. = A, such that
J Jo Jx 1

ﬁu(A. ) N WS(A. ) # ¢ for 1< & < k. By the assumption
Jo, -1 9, ,

of no cycles this relation is a partial ordering. It induces

a total ordering Al < A2 <o o< AL of the family where

Ny <Ay if Ay s Ay but Ay # Aj- We define X, by

induction. Let Ko = ¢ and assume we have defined compact

sets ¢ = KO jus Kl T Kj for Jj < 4 such that

(1) f(Ki) c int K,

= A for O0< i< j.

(11) N (K -k, ;) 5

nez

Let F

U Wu(Ai). We claim that F is closed and
is j+1 _
FN A, =¢ for k> j+l. Indeed, let (xn) be a sequence
in F converging to x € K. We can assume that for every

n> 0 we have x € Wu(Ai) for some fixed i € j+l1l. TYrom

Corollary (1.6) we know that there exists 1< k < 4 such
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u
that o(x) c Ak; that is, x € Wu(Ak). Then x € W (Ai) N
n Wu(Ak). By Lemma (1.4) we conclude that A s A; and so
k < i< j+l; that is, x € F. Clearly F N Ak = ¢ for
k > j+1.

Now let Q< K be a compact neighborhood of F such

£
that QN ( U Ay) = ¢. Thus N £(Q) = F for if
i>j+1 n=0
x € N fn(Q), then f—n(x) € Q for every n = O, that is,
nz0
6 (x) c @, and so a(x) < Q. Thus a(x) < A; for some

i< j+1, so x € U Wu(Ai) = F., Since F is invariant
' i< j+1
by f we can use Lemma (1.7) and obtain a compact neighbor-

hood V,c @ of F such that £(V)) c'int(vj). Let

= . .o . i . J ed
Kj+l K; U V,. Then we have f(KJ+l) C int K, , and we ne

only show that () fn(Kj+ First we observe

-K.) = A
ncz J

1 j+1°

that S = N £%X, .-K,) is closed for if x, € S is a
- J+1 3 k
ncz - n
sequence converging to x € K, then £ (x) € Kj+l for every
n € 2 since Kj+l is compact. Suppose, to achieve a

contradiction, that there exists n € Z such that fn(x) (= Kj'

fn+l

Then fn+l(x) € int(Kj) and so (xk) € int K for large

k, which contradicts the fact that x, € S. Thus a(x)c S

k

for every x € S, so a(x)c Aj for every x € Sj; that

+1

is, sc WA Similarly w(x) € S for every x € S.

j+l)'

Thus using the dual of Lemma (1.5) we can conclude that

s u s
sSc W (Aj+l). Then S C W (Aj+l) n w (A, Now we

J+l) = Aj+l'
observe that by Corollary (1.6), XK = U Wu(Ai) and so
i=1

KL = K,

4
(b) It suffices to prove that if y € XK - U A, then there
i=1
exist vy’ €. o(y) and a neighborhood V of vy’ such that



ik

(V) n V= ¢ for every n > O. Choose Aj such that

a(y) C.Aj c (int Kj) - Kj-l' .Take vy € 6(y) such that

@_(yl) c Kj-Kj_l. Since vy, ¢ \., there exists a number

J
Ng
n > 0 such that y, = f (yl) 4 Kj_Kj-l° But ®+(Y1) c Kj’
n .
and thus f °(y;) € K,_;+ Let m = O be such that
f-(mo+l)

(v2) € Ky

f (y2) € Kj-l for 0 < m¢g m but
7 ~Mg .
Then y = f (yz) € K. -~ f(Kj-l)' Take a neighborhood

J

W& int Kj 1 of f(Kj l) and a neighborhood V of vy’

such that WN V = ¢ and f£(V) € W. Thus we have £ (V) c

c fn-l(W) Cc W for every n > 0 and so VN fn(V)-= ¢ for

n>9./

(1.9) Lemma - If {A A

is a family of disjoint

13

isolated sets for f having no cycles, and if x € K

1?0

L 4
satisfies a(x) ¢ U Wu(Ai) (or w(x)c U Wu(Ai))’ then

4 u i=1 i=1
xe U wi(a,).
i=1

: X
Proof: First we will show that if a(x) c U Wu(Ai) but
' i=1
x g U Wu(Ai), then we can get a cycle. Choose A, ,
i=1 - 1
1< i; £ 4 such that a(x) N A, # ¢. Since a(x)c A. ,
. ll ll
from Lemma (1.5)(i), we have a(x) N f»’s(!\:.L ) £ ¢. But by
4 ‘ 1
assumption a(x) c U Wu(Ai), so there exists 1 < i2 s 4
i=1
Au ~S )
such that W (Aig) N W'(Ail) £ ¢, and o(x) N ./\i2 £ .
Ifr iz = il we have a cycle., If not, we repeat the process

and obtain 1% i. s 4 such that W2(A. )N (A, ) £ ¢
3 ig 12

and a(x) N A; # ¢. Continuing as above, since there are
3
only finitely many sets Ai’ we eventually get a cycle.,
’ 4
Similarly we prove the statement when w(x) c U Wu(Ai)

i=1
using the dual statement in Lemma (1.5) (ii). Vi
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(1.10) Lemma - Let x € K. If y € a(x), then given ¢ > O
there is a sequence Yy = yo,yl,...,yk = Yy in a(x) such that

a(f(y;_,)»v;) < e for 15 js< k.

Proof: Given € > O, let O < § < €/2 such that if p,q € K

and d(p,q) < 6, then d(f(p),f(q)) < €/2. Since £ ™(x)
converges to a(x) as n =+ o, there is n_ > 0 such that
a(t™™(x),a(x)) <&, ¥ n=> n_. On the other hand, since

y € a(x) there are n k 2 0 such that n; - k 2 n_,

1’ 1

a(s Y(x),y) < 6

and
-n_+k

a(s 1 (x),y) < s.

1(x). since ny-k=2n, if 1< js k then

a(e3(x ) a(x)) = ae L (x),a(x)) < 5.

Thus there exists v € a(x) such that

d(fj(x'),yj) = d(£9(x' ),a(x)) < &,

41
a3 (x') 00y ) < ¢ /2.
Then putting Yo = Vi =Y we get, for 1< js Kk,
d(£ (v 1)»vy) s alely; 1), 9(x")) + a(r(x"),v,) < e/2+8 < e

proving the lemma. /,

(l.ll) Lemma - Let (Zn) be a family of compact subsets
— nez*

of K, invariant by f such that if n > m then ZnAC Zm'

n) +
For each n € 727, 1let x, € Zn and v, € Q(xn) be such that

y, converges to, vy € X = N + Zn. Then, given ¢ > 0, there
nez
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is a sequence y = Vo1 YyreeesVy =V in X such that

d(f(yj_l),yj) <e for 1< j< k.

Proof: Given ¢ > O, choose O < § < ¢/3 such that if

p,q € K and d(p,q) < &, then d(f(p),f(a)) < e/3. Taken

ng € z¥. such that if x € Zn , then there exists vy’ € I
o

such that d(x,y’) < 8. Take n > O such that v, € a(xn)c

cz and d(y,yn) < &. From Lemma (1.10) we know that
o

there is a sequence y = zé,zl,...,zk =y, in a(xn) c
c £ such that d(f(zj_l),zj) <e/3 for 1< js k. Let
’ [o]
Y, = ¥y =y and Y5 € £ be such that d(yj,zj) < § for
1< < k. Then d(f(y;_;).v;) < alfly_y),f(2;_;)) +
+ d(f(zj_l),zj) + d(zj,yj) <e¢ for 1< j< k, which proves

the lemma., A/

Now we may proceed to the main theorem of this section.

First we give a definition,

Definition - The Birkhoff center of f, c¢(f), is the
closure of the set of points in K whose orbits are recurrent
in the past as well as in the future. That is, c(f) is the

closure of the set {x € K | x € a(x) N w(x)}.

Theorem A - If c(f) 4dis an isolated set for f and admits a
decomposition c(f) = Al Ueool AL into disjoint isolated sets

having no cycles, then c(f) = Q(f).

Proof: From Lemma (1.8) (filtration), it suffices to prove
that a(x) ¢ c(f) for every x € K. Suppose, on the contrary,
that there exists x € K such that a(x) ¢ c(f). Let & be

the family of compact f-invariant subsets L of X, such that
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there is an x é r with a(x) ¢ c(f) N . We order J by
inclusion. Now suppose for the moment that & possesses a
minimal £. Then take x € £ such that o(x) ¢ c(f) n Z.
Since x ¢ a(x) N w(x), we have that either a(x) or w(x)

is a proper subset of X. Say a(x).; Y. Since a(x) is a
compact f-invariant set and Y 1is a minimal, we conclude
that o(x) 4is not in J, that is, a(x) c é w“(Ai).

Thus from Lemma (1.9) we have a(x) < c(r), l;iich is a
contradiction. A similar contradiction follows if w(x) g Z.

Thus, to prove the theorem, it suffices to prove the follow~

ing lemma:
Lemma - & possesses a minimal 2.

Proof: Let g = {Zs, B € B} be any sub-family of & totally

ordered by inclusion. Let I = (] I We need to prove

X
that I € §. If T ¢ &, then g%i) c c(f) h for every

x € %, Tpus by Lemma‘(l.S) the fahily {Al n Z,...,A& N x}
admits a filtration and Q(£f/Z) c _6 A; N EZ. For each

B € B, take Xg € ZB such that ;Zis) & c(f) N ZB. We know

L
that QQé) n (Y Ai) # ¢ for every B € B. Thus we can
i=1
suppose, without lost of generality, that a(xa) N Al £ ¢
for every B € 8. Let U be a compact neighborhood of Al

4 .
such that ) fn(U) = A, and UnN (U ]\i) = ¢. Since
neZ i=2

a(xs) N Ay, #0 but a(xB) ¢'Al, we conclude from Lemma (1.5)
that Q.(XB) n p® # ¢, where D° = Ds(Al,U) c U is a proper
fundamental domain for wioc(Al)' For cach g8 € 8, choose

y., € a(xs) N D°. Let us take a subsequence such that

B

Yy
Bn

y
. Bn
converges to y € £ N D7, Since y & ¢(rf) N ¥ (recall
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that y € D° and D° N c(f) £ ¢) and I admits a filtration,
there is a compact set K < £ and a point vy’ ¢ 6(y) such
that f£(X') ¢ int K’ and y’ € K -f(K'). Let Wc XK' be an
open set in I such that y' ¢ W and f(K') ¢ W. Since
f(K') is compact, there is an € > O such that if =z € ¥
and d(z,z’) < e for some 2z ¢ £f(X’), then =z € W. From
Lemma (1.11) we know that there exists a sequence
Y = ¥ 4Viseeesy, =y din I such that d(f( ) ) < €

0’ l’ 2 k yj—l ’yJ‘
for 1< js k. We claim that yj € W for 1< j< k.
Indeed, since f(yo) = f(y') € £(X’) and d(f(yo),yl) < €
we conclude that Yq € Wc K'. Let us suppose that we have
proved that vy € W for 1< j< k. Then f(yj) e £(x’)

’ ry

and d(f(yj)’yj+1) < e, so Y41 € W. Thus vy’ € f£(x'),
which is a contradiction., Thus I € ¥, proving the lemma.

We have concluded the proof of Theorem A. We will

use it in the next section to prove our main result, Theorem B.

2. HYPERBOLIC BIRKHOFF CENTERS

In this section we will consider a diffeomorphism of
a compact manifold M. We wili make use of the notation
already introduced in Section 1 together with the concepts of
hyperbolic sets and their invariant manifolds., With the help
of Theorem A and well known results, we Will prove Theorem B.
We observe that from [4], hyperbolic sets with local product
structure are isolated in the sense of Section 1, which

enable us to make use of Theorem A in this context.
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Throughout f dis assumed to be a Cr-diffeomorphism,
r=z 1, of a compact ¢® manifold without boundary. A

compact set A © M is hyperbolic for £ 4if A dis dnvariant

under f, that is, f£(A) A, and Tf 1leaves invariant a

ES+Eu expanding E? and con-

continuous splitting T M

A
tracting ES, That is

lTe(v)| s 1 |v] if v e E”,

|Ire(v)| < »"Yv] i v e BY,
for some constant v, O0< T < 1, and some Riemannian

metric on M, This Riemannian metric is said to be adapted
to A.

Through each point p of A pass two smooth in-
variant manifolds, Ws(p)A and W '(p), tangént to E; and
E;, respectively. These two invariant manifolds are called
the stable manifold and the unstable manifold of p,

respectively [3]. Let us define

wo(p) = {y € M| a(r™(p),£7(v)) s ¢ for n = 0]
W (p) = {yeM| a(r™™(p),r™(y)) s € for n= 0}.
Then, Ww°(p) = U f-n(ws(p)) and W'(p) = U fn(wz)), where
n=0 n=0

d idis the topological metric on M dinduced by a Riemannian
metric adapted to A. Recall that Ws(p) (respectively

u

We(p)) is an imbedded smooth manifold called the local stable

(respectively unstable) manifold of "size €" of p. The

union w“(A) = U w”(p) is called the unstable manifold of
peA ;
A, and similarly W (pA) = U w?(p) 4is called the stable
PEA

manifold of A,
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Definition - A hyperbolic set A has a local product struc-

trure if, for some € > O,

u s

W W c

e (P) N W (a) =
for all p,q € A.

According to results in [4], if A is a hyperbolic
set having a local product structpre, then A dis an isolated
set for f in the sense of Section 1, and W (A) =
= {x € M| a(x) € A}. That is, the unstable manifold of A\
coincides with the unstable space associated to the isolated
set A as in Section 1. Similarly for W (Ap).

We denote by Diff'(M) the set of ¢ diffeomorphism
of M with the uniform C* topology, r = 1. We call
f € Diffr(M) {l-stable if there exists a neighborhood N of
f in Diff (M) such that for each g ¢ N, g|(g) is topo-

logically conjugate to fIQ(f).

Definition - We say that f  satisfies Axiom A if

(a) Q = Q(f) has a hyperbolic structure,

(p) the set of periodic points is dense in Q.

In [ 5], Newhouse proved that if P is hyperbolic, then P

has a decomposition, P = Al U A2 UeoodU A into dis joint

L
hyperbolic sets having local product structure. From the

observation above, {Al""’A&} is a disjoint family of

isolated sets.,

Next we present a lemma whiclh we will use in the proof
of Theorem B, This lemma, first communicated by Anosov, can

be proved using a stronger result showed by Bowen [1] . Newhouse
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gives, in [5], a probf for the case A = L .

(2.1)'Anosov‘s Closing Lemma - If A is a hyperbolic set

for f, then P D Q(f|A).
We can now prove Theorem B,

Theorem B - If c(f) is hyperbolic and has no cycles, then
f satisfies Axiom A and has no cycles. 1In particular, h

is {l-stable.

Proof: Since P C c(f), P is hyperbolic. Thus P has a
decomposition into disjoint isolates sets. So, by Theorem A,
it suffices, to prove that c¢(f) = P. But this fact is a
direct consequence of Anosov's Closing Lemma and the'fact
that c(f) = Q(f|lc(f)). In particular, from [9], ¢ is‘
Q—stable./

We recall that f is called a Kupka-Smale diffeomor-

phism if f satisfies:

(a) the periodic pointsof f are hyperbolic,

(b) the transversality condition.

If in addition Q(f) dis finite, f is said to be a
Morse~Smale diffeomorphism,
As an immediate consequence of Theorem B, we have the

following result.

(2.2) Corollary - If f is a Kupka-Smale diffeomorphism,
and c(f) 4is finite, then f is in fact a Morse-Smale

diffeomorplhism,

We observe that Theorem B is not true if we replace
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b(f) by the center of minimal sets; i.e., the closure of
the minimal sets of f. An example is the time one map of
Cherry's flow [2]. In this case the center of minimal sets
is composed by the two fixed points of the diffeomorphism,
which are hyperbolic without cycles, but does not coincides
with the non-wandering set., In particular, this diffeomor-

phism is not (-stable.

3. A PARTTIAL CONVERSE

In this section we prove Theorem C, which is a partial
converse to our main result. We also give a characterization

of (l-stability when c¢(f) is finite.

We first introduce the concept of ﬁ-stability. Follow-

ing the notation stablished in the preceding sections,

P = EE?TE? will deénote the closure of the set of periodic
points of £, ‘

We say that f € Diff' (M), r = 1, is P-stable if there
exists a neighborhood N of f in piff¥ (M) such that for

each g € N, glPer(g) is topologically conjugate to fIPer(f).

Definition - Let £ € Diff (M) with P = Per(f) hyperbolic.

An n-cycle (n = 0) on P is a sequence of basic sets

~u ~S
such that W (A;) N W (A, )=¢, Ay =R,

A ,ooo,An’A

o n+1’

and otherwise Aj # Ak for Jj#k. Here a basic set A is an
hyperbolic set with local product structure such that flA  is

topologically transitive and the periodic points are dense in

A,



(3.1) Theorem - If £ is P-stable and D = Per(f) is hyper-
bolic, then the decomposition of P into basic sets has the

no cycle property.

Proof: We first prove the following assertion: if  is
P-stable and there is an n-cycle on 5, then there exists g
near f in Diff (M) such that Per(g) is hyperbolic for
g and has an (n-l);cycle.

From the stability of hyperbolic sets, and the
ﬁ—stability of f, we have that there exists a neighborhood

V of P such that for g near f in Diff (M), Per(g) is

contained in V and is hyperbolic for g [3}.

Let AO,...,An,An+l be an n-cycle on P = Per(f).
From Ws(Ai) = U wo(x) and wu(Ai) = U w%x), we have
x€A X€h ;

u S( .
W (xi) nw ‘yi+l) # ¢ for some X, ,Y. € Ai and O < i € n.
We claim that at least for one of the indices j, dim Wu(xj) +

+ dim W (y dim M. For otherwise, if

j+l) =
n u S
r = ié@ (dim W (xi) + dim W (yi+l)) then r < n dim M,

But since A

. u . s .
nsy1 = Mo and dim W (xi) + dim W (yi) = dim M

we have 1 = n dim M, thus reading a contradiction. Let

y € Wu(xj) n Wiy,

J+l)’ the index j chosen as above. Clearly

y € P. Thus after a small perturbation of f near y we get
fl near f din Diffr(M) so that, from the above observations,

R Ay - - - 11
Per(r;) = P, £, |P = r|F, W (x;,7;) and ws(yj+l,fl) have a

point of transversal intersection, and wu(xi,fl) N ws(yi+l,fl)#/

for O0< i< n. We ma 5 > {1 . . &
% ¢ e may assume hat xJ, y3+l are

periodic points of  (and thus of fJ). Now, fl]A =
| ‘ g+l

= flA is topologically transitive and so we may further

. i+ .

1



24

assume y = Let =z € wu(xj+1’fl) n w(y

j+1 = TFje1c j+2’fl)-

Since we have assumed that f is P-stable, we have that

z ¢ Per(fl) = P. Then, since closure Wu(xl,fl) o Wu(xj+l’fl)

(8], by a small local perturbation of f near =z we get

=

g near f in Diff' (M) with Per(g) = P, g|P = f|§ and
Wu(xj,g) n Ws(yj+2,g) # ¢, thus produCiné an (n-1)-cycle on
P = EE?TES and hence proving our assertion,

The proof of the theorem goes now by induction on
the length n of the cycle and the fact that if P has a
zero-cycle then f dis not P-stable. For as above after>a
small,locai perturbation of f, say to fl’. Wu(xo,fl) and
Ws(xo,fl) has a point of transversal intersection outside ﬁ,
that is a transversal homoclinic pdint. From [10], this
point 1is acummulated by periodic points, and so f and fl

are not P-conjugate and thus f is not P-stable. This finish

the proof of the theorem.

From Lemma (2.1), the above theorem and Theorem B

we get

Theorem C - ITf c(f) is hyperbolic and f is Q-stable, then

c(f) has the no cycle property. In particular, c(f) = Q(f).
As a consequence of this theorem and "“Theorem B we get
(3.2) Corollary - Let f € Diff'(M) and c(f) be finite.

Then f is Q-stable iff Q(f) = c(f) is hyperbolic and has

the no cycle property.

Laboratério de Cdlculo
Centro Brasileiro de Pesquisas Fisicas

Rio de Janeiro - Brasil



References

[1] R. Bowen, "Periodic Points and measures for Axiom A

diffeomorphisms", Trans. Amer. Math, Soc. 154 (1971).

[ 2] T. Cherry, "Analytic Quasi-Periodic Curves of Discon-
tinuous Type on a Torus", Proc. London Math. Soc., vol.

4y, 1938.

[3] M, Hirsch and C. Pugh, "Stable Manifolds and Hyperbolic
Sets", Proc, Symp. Pure Math., vol. 14, Amer. Math. Soc.

Providence, R.I., 1970,

{4 M. Hirsch, J. Palis, C. Pugh and M. Shub, "Neighborhoods

of Hyperbolic Sets", Invent. Math. 9 (1969/70), 121-13h4,

[ 5] S. Newhouse, "Hyperbolic Limit Sets'", Trans. of the AMS,

vol. 167, 1972,

[ 6] S. Newhouse, "Lectures on Dynamical Systems" C.I.M.E.
Summer Session in Dynamical Systems, Bressanone, Italy,

June 1978,

[7] J. Palis, "A note on N-stability", Proc. Symp. Pure Math.,

vol. 14, Amer. Math. Soc. Providence, R.I., 1970.

[8] J. Palis, "On Morse-Smale dynamical systems", Topology 8,

ne 4 (1969).

[ 9] S. Smale, "The -Stability Theorem", Proc. Sympos.'Pure

Math., vol. 14, Amer. Math. Soc., 1970.

{10] S. Smale, "Diffeomorphisms with many periodic points",
Ditferential and Combinatorial Topology, Princeton University

Press, Princeton, N.J. 1975,





