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ABSTRACT

A method to obtain a class of exact Weyl solutions to
the vacuum field is presented, in which the gravitational poten
tials are obtained through integrations of the gravitational
sources along the axis of symmetry. An exact solution is obtai-
ned, with a five-fold infinity of independent parameters. These
parameters have simple physical interpretation, and can be ad-
justed to promptly give approximate solutions to more intricate

gravitational situations.

1. INTRODUCTION

In a pioneer work, Weyl] showed that static spacetimes

with rotational symmetry about z-axis are conveniently described
by

with N and K both functions of z and p. The independent Einstein's

vacuum field equations are then

N,zz ¥ N,po te N,p =0 ’ (2)

K =2 N N N =
yZ © 7,0 Ko = PN -N°) ’ (3)



where a subscripted comma means derivative. A class of solutions
to (2) is

+ o0
N(z,p) = - J o(z) r;

-0

1/2
Var re = [?2+(z-c)2] . (4)

The arbitrary function o(z) is interpreted, in Newtonian mecha-
nics, as linear density of matter along z-axis. If one substi-
tutes (4) into (3), one obtains equations which give the z- and
p-derivative of K(z,p) in terms of o(z). However, one finds di-
fficulty in integrating these partial differential equations for
arbitrary o(z). It is the main purpose of this paper to present
an expression for K(z,p) whigh plays the same role as (4) does

for N(z,p).

2. CLASS OF SOLUTIONS

One starts from Curzon's2 three-parametric solution

-1 -1

N(z;p) = - maTp - mgrp R (5)
K(z,0) = = % p2(m ra + md rif)

2mymg (2a) " {1-[%2+(z-a)(z+ai]r;1 rel b, (6)
ry = [éz + (z-a)fJ]/z , vy = pz+(z+a)%]1/2 .7

This solution corresponds to the field of a gravitational singu-

1arity3 my at (a,0) and another m at (-a,0).

B
Generalization for an arbitrary number of singularities
m. at positions z; along z-axis is straightforward, since the
parameters m. are independent
N(zop) == T m. vyl L k= (o2

i 1 1 1 1 1

\



1 2 2 -4
K(z,p) = - 590" L My Ty
;
-2 - -1
-2 Y ¥m (c -t (o +z Z;
<5 3
One conveniently reexpresses (9) in the more compact
form
_ 2 -1 -1, 2 -1
K(z,p) = - p ; m. v, % myrs (p +Zizj+rirj) , (10)

so that a further generalization becomes trivial, for continuous

source distribution along z-axis:
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all integrations ranging from -» to +w
A number of expressions equivalent to (11) and (12) may

be obtained, one of the most convenient being

N(z,p) = J E%%%l deC R cos eC = zC/rC R (13)
O(c)o(c‘)
K(z,p) = - jf TFeos (8,70, 1) de, do,. 3 (14)

the integrations now range from 0 to = .

3. EXACT SOLUTIONS

A few exact solutions to these equations is found in
the 1iterature.vFor o =0y = const along all z-axis, one finds

the cylindrically symmetric field of Levi-Civita4. The Curzon

5,7

monopole solution is obtained when o(z) = mé(z) , where & is

the Dirac delta distribution. For o(z) = 6(m-z)6(z-m) one finds,

|\)|_J



after a coordinate transformation, the spherically symmetric

1,5,6,7,

Schwarzschild field 6 is a step distribution, with

values 0 and 1 for negative and positive values of the argument,

3,6

respectively. The two-parametric "rod" field arises from

o(z) = oge(a-z)e(g+a) , o5 = const. Finally, for o(g) = } mid(C'Ci)
i

one obtains the solution (8), (9), which generalizes Curzon's

field.

A11 these solutions can be generated by

o(z) =} m.s(z-z;) + oie(c:-a)e(c-c*1;1 » 05 = const (15)
i _

which corresponds to an arbitrary number of singularities m. each
at position Ti o and to an arbitrary number of uniform distribu-
tions 0ss each between posftions c: and Taq < ;: . For this
o(z) one obtains

*
tan OLT' —I
N(Z,O) = = 12 E41 cScC Z(X,_i + 0'1- 109 (m)__l N (16)
K(z,p) = - ) { 1 m.m secz(a -a;)t2M. o tan(oa -a*)-tan(a - )
ds TR AR i%j i%; i"%j i %%
(a3-04;)c0s (ay;ma)
cosS(a;=0,:)cos(a, -0,
+2010j log l *J LN o, (17)
cos(ui-uj) cos(a*i—a*j)

..'l '
M, =m1.pE32+(z-C1-)2:l : ai(ci)=‘7cot']&>"(z-ci)] . (18)

. . * *
with analogous expressions for ai(ci) and a*i(c*i)

4. APPROXIMATE SOLUTIONS
The solution (16-(18) is also valid when the 01'5 Su-

perpose. A method is then suggested, to obtain approximate solu



tions in cases where o(z) makes difficult the exact integrations
of (13) and (14). One decomposes the exact distribution o(z) into
any apropriate combination of uniform distributions s and singu-
larities m. s in the form (15); an approximate solution is then
readily obtained by mere substitution of the values of the

i,j-indexed parameters into eqs. (16)-(18).
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