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ABSTRACT

Properties of static (minimum potential) fission path
in the formalism of Hofmann are investigated. It is pointed out
that the inertial parameters greatly affect the fission path and
hence the-penetrability.

The difficulty of determining fission path is discussed.

The most traditional and conventional way of calculating
the spontaneous fission probability is to apply the WKB approxi
mation along a‘suitable fission path when the potential surface
is given as a function of collective parameters (one dimensional
calculation). However it has been emphasized that the degrees
of freedom which are perpendicular to fission path are important
even in the adiabatic fission process as well as in the case of
heavy ion reactions. Iin order to take these effects into account,

several attempts have been made to calculate the barrier penetra
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bitity 1n more than | dimension® 7. Ho¥mann suggested Lo apnly

the formalism of scattering theory to treat the transitions of
states which be]ong to degrees of freedom perpendicular to the
fission path

Let us write the collective Hamiltonian as
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where q], q2 are collective coordenates, Mij the contravariant
components of the inertia tensor (Mij)’ M the determinant of
_Mij’ and V the potential.

The essential point of Hofmann's theory is to introduce

a new set of coordinates
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which diagonalizes the inertia tensor, and then expand the poten

tial around y = 0.

In the case of static fission path (a;! = 0 for all x),
y=0
the new coordenates should sat1sfy the following two conditions
M],] 9 X __l + M],Z ( aﬁ oy 5 + 32 aﬂ) (3)
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9Q° 39 (diagonalization)
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Now let us chocse
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which defines the static fission path q2 = f(q])

Substituting the relations
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into Egs. (3) and (4) we get
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Equation (7) is the differential equation which deter

mines the static fission path.
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12 v22 and w2 -0, Eq. (7)

In fact, for the case M =

reduces to

*
We may ‘choose y more generally as y = g (qz—f(ql)) where g(s)

is an arbitrary function which satisfies g(0) = 0. Even in

this case the result (Eq. 7) is invariant.
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whose direction coincides with grad V*.

Eq.(7) manifests clearly the effect of inertia tensor
on the static fission path. It is interesting to note that the
equation does not have any degree of freedom for choosing the
initial conditions. In other words, the initial condition is
uniquely determined by the physical requirement that the minimum
potentia] trajectory should pass on the saddle point, since
otherwise the trajectory does not go over the barrier from one

side to the other.

At the saddle point (EXT L 0), the potential has
3g 3q
the form
1 2 1. 1,2 1 1 2 2 2 2,2
V(g ,q%) = V +a(q -q,)" + 2b(q -q )(a"-q,) + c(a"-q,) (8)
where ql and qg are coordinate values of the saddle point ,

and a, b, ¢ constants. (It is always possible to express the po
tential in the form of Eq. (8) for arbitrary q] and q2 if we let

1

a, b and ¢ be functions of q and qz).

Introducing the new variables
_ o1
€1 = ¢ q,

gZ:Q"q

we have
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Hofmann's deduction for the static fission path is incorrect

since his equation in Appendix A leads to the path V = const.
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In the 1limit of E] > 0, we should have HET > ET so that we get
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o0 = Mzz(b""ca) + Moz(a‘l‘ba) (-lo)
MO0 asba) + MO0%(b+ca)
dg, !
where o = (HET) "
1=0

Solving Eq. (10) with respect to o, we get
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where

T M22b + MOZa

6 = M22% 1+ MO,

3 =m0 4+ w0

K = MOOb + M02c

Again in the case of isotropic inertia tensor (MH =
=M22, M]2 = MZ] = 0), the direction of the derivatives coincides

with the principal axis of the potential surface, where the po
sitive sign corresponds to the path which climes up the poten
tial surface and the negative sign goes down along the potential
valley. Of course the latter trajectory is of our interest which
connects the saddle point and the minimum of the potential.
“Around the minimum, the potential can be expanded again

in the following form:
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where q; and q; are coordinates of the minimum. The form of

the trajectory drastically changes around the minimum depending
on the relative magnitudes of the coefficients o, B and y. If
the minimum is isotropic (B = 0, o =y) and the inertia tensor
is not diagonal, then the trajectory forms a spiral which falls
into the minimum turning it around. Such an example is shown in
Fig. 1, whose static potential path is very unrealistic.

If the minimum is not isotropic, there exist again
only two possible directions of the trajectory into the minimum,
i.e. the two principal axis of the potential surface. However
there are infinitely degenerated trajectories to these two direc
tions at the minimum so that it is not adequate to solve Eq. (9)
starting from the minimum.

In Fig. 2 we showed another example of the trajectory

240Pu given by Brack et a].(s).

for the liquid drop potential of
It is found that the differential equation is not always stable
for the numerical procedure near the saddle point.

Hofmann showed that the degree of freedom perpendicular
to the fission path decreases the penetrability compared to the
one-dimensional calculation due to the transitions among the
states which belong to this degree of freedom. In addition to
this, the static fission path defined by Egs. (3) and (4) is in
general much longer than the usual minimum potential path so that
this also decreases the penetrability.

'It should be noted that, depending on the inertial pa

rameter, the static fission path in this formalism is not adequate

as seen in Fig. 1. Hofmann formulated his theory for the case



that the fission path does not coincides with the minimum of
the potential. However, in such a case, there should be a cons
tant outflow of the flux from the path due to the transitions,
so that the concept of the fission path becomes somewhat ambi
guous. ‘

Thus it is quite difficult to decide thevfission path
when the inertia coupling is very strong, although in this case
we expect a considerable decrease of penetrability compared to

the one dimensional calculation.
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FIGURE CAPTIONS

Figure 1 - Example of the static fission path for the poten
. 1.,2 1 V3,12 1 V3 3
tial V = % (%;x - oY) - (X + Y) (zx + Z¥- 5)-

The minimum of this potential is located at x_ =

m
= - %; s Yy = %. The two trajectories correspond

to the following inertia parameters:

11 22 12 21

case 1: M =M =1 , M =M =0
case 2: M'' o w22 o, w2 2wl Co.7s
Figure 2 - Static>fission path for 240Pu. The potential sur-

face is taken from Brack et a].(s), simulated by
the form,

2 2

V = A(c,h)(h-h ) + 2B(C,h)(h-h ) (c-c )+C(c,h)(c-c ),

where A, B, and C are quadratic functions of c and h.
The inertia parameters for trajectories case 1 and

case‘2 are equal to that of Fig. 1.



BIBLIOGRAPHY

1)

2)

3)

&)

5)

Peter Ring, John O. Rasmussen, and Herbert Massmann, Lawrence

Berkeley Laboratory (LBL preprint No. 4028), 1975,

J.R. Nix, Takeshi Kodama and R.A.M.S. Nazareth, Proceedings
of the International Workshop on Gross Properties of Nuclei
and Nuclear Excitations III, January 13-18, 1975, Waldemar

Petersen Haus, Hirschegg, Austria.

M. Carolina Nemes, A.F.R.T. Piza and R.P.J. Perazzo, Instituto

de Fisica da Universidade de Sao Paulo (IFUSP preprint P-65).
Helmut Hofmann, Nuclear Physics A 224 (1974) 116-139.
M. Brack, Jens Damgaard, A.S. Jemnsen, H.C. Pauli, V.M. Stru

tinsky, C.Y. Wong, Reviews of Modern Physics, vol. 44, No. 2
(1972) 320-404.



Q, 00

-0,35

-0,73
- LIS -0.75 -035 0.00 0,35

FiG. |






