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Abstract

The muon charge ratio generated from hadronic showers in the earth’s atmosphere is obtained
accurately in the energy range from a few GeV to several TeV and for some zenith angles between
0o and 89o. To solve the hadron diffusion equations we apply the analytical method based
on depth-like ordered exponential operator used in our last paper. A comparison among our
calculations with the measured ratio and Lipari’s analytical calculation is made. Our differential
muon fluxes are also compared with data at sea level. The agreement between them is in general
very good (> 96%).
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1 Introduction

A theory of the passage of cosmic ray through a material medium requires a knowledge on
several factors such as: the composition and the energy distribution of the incident particles, the
characteristics of interactions of these particles with the nuclei of the medium, and the structure
of the medium.

Nowadays, the main results concerning the diffusion of high energy cosmic ray particles
through matter have been obtained by Monte Carlo methods due to the complexity of the
variables involved in this kind of problem [1]. However, analytical methods are still worth to
obtain approximated solutions of some of these problems, e.g., cosmic ray diffusion in interstellar
medium, Electromagnetic Cascade Theory, etc..

As mentioned in our last paper, these methods allow us to obtain in a simple way, relations
among the different particle fluxes accurately and also to show the influence of the hypothesis
used in the calculations on the hadron and lepton fluxes in the earth’s atmosphere. They also
provide directions to be followed by more sofisticated analysis like cascade simulations.

In this paper we calculated the muon fluxes and muon charge ratio for different zenith angles
in a wide energy range (from GeV to TeV) originated from a hadronic shower in the earth’s
atmosphere. It is a continuation of our previous paper [2] and it is related to depth-like ordered
exponential operators similar to those used by Feynman in some physical problems [3]. This
method enable us to acquire compact solutions for any form of primary spectrum and to take
into account non-scaling properties of the hadronic cross-sections [4].

The reason for these calculations is that we are interested in obtain the lepton-antilepton
ratios whose play a very important role in the study of one of the most intriguing current
problem, namely the Atmospheric Neutrino Anomaly [5].

This paper is divided as follows: in Section 2, we solve the nucleon diffusion equations in
order to get the proton and neutron fluxes. In Section 3 and 4, we calculate the charged pion
and kaon fluxes, respectively. In Section 5, we calculate the charged muon fluxes separately,
taking into account energy losses and decay. In Section 6, we present comparisons of our muon
fluxes with experimental data and our muon charge ratio with several experimental data and
Lipari’s calculation. Finally, we discuss and make some remarks about our results.

2 The nucleon diffusion equations

The diffusion equations for the nucleonic components of the cosmic radiation in earth’s
atmosphere can be written as

∂

∂t
p(t, E) = −p(t, E)

λp(E)
+

∫ ∞

E

p(t, E′)
λp(E′)

fpp(E,E′)
dE′

E′ +
∫ ∞

E

n(t, E′)
λn(E′)

fnp(E,E′)
dE′

E′ (1)

and

∂

∂t
n(t, E) = −n(t, E)

λn(E)
+

∫ ∞

E

n(t, E′)
λn(E′)

fnn(E,E′)
dE′

E′ +
∫ ∞

E

p(t, E′)
λp(E′)

fpn(E,E′)
dE′

E′ (2)

where p(t, E) and n(t, E) are the proton and neutron fluxes at depth t in the energy range E
and E + dE, λp(E) and λn(E) are the interaction mean free-path of protons and neutrons in
the atmosphere and fαβ(E,E′) are the energy distribution of the secondary nucleon β(p or n)
originated from the α-th nucleon-air interaction.

Using the approximation λp(E) = λn(E) = λ (interaction mean free-path of nucleons in
air), and the isospin simmetry fpp = fnn, fnp = fpn, the above equations can be uncoupled.
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To do this we add and subtract these equations and we obtain the equations

∂

∂t
Ni(t, E) = −Ni(t, E)

λ
+

∫ ∞

E

Ni(t, E′)
λ

f i
NN (E,E′)

dE′

E′ ; i=1 or 2 (3)

where N1(t, E) stands for the nucleon flux and N2(t, E) for the difference between proton and
neutron fluxes, and f 1

NN = fpp + fpn and f 2
NN = fpp − fpn. Using the definition of the

elasticity coefficient η = E
E′ , the above equations become

∂

∂t
Ni(t, E) = −Ni(t, E)

λ
+

∫ 1

0

Ni(t, E
η )

λ
f i

NN (η)
dη

η
; i=1 or 2. (4)

The solution of the equation (4) is subject to the boundary conditions

N1(0, E) = p0(E) + n0(E) (5)

and
N2(0, E) = p0(E) − n0(E) (6)

where p0(E) and n0(E) are the proton and neutron fluxes at the top of atmosphere.
To solve equation (4) we introduce the operator

Âi = −
(

1 −
∫ 1

0

dηf i
NN (η)σ̂

)
1
λ

(7)

where the operator σ̂ acts only on the energy function [6]

σ̂F (t, E) =
1
η
F (t,

E

η
) (8)

for η ≥ ηmin > 0.
So, the equation (4) takes the form

∂

∂t
Ni(t, E) = ÂiNi(t, E) (9)

These equations must be integrated with the boundary conditions (5) and (6) supposed to
be continuous positively bounded (Ni(0, E) < M (positive real number)), which solutions are
given by

Ni(t, E) = etÂiNi(0, E) . (10)

If the primary spectra Ni(0, E) assume the usual power form, then the expression (10) takes
the well-known form

Ni(t, E) = N0i
E−(γ+1)e−t/Li (11)

where N01 and N02 is the sum and the difference between the proton and neutron fluxes at the
top of the atmosphere, respectively, and −1/Li is the eigenvalue of the operator Âi acting on
the energy function N0i

E−(γ+1), with

Li =
λ

1 − Zi
NN

(12)

and

Zi
NN =

∫ 1

0

f i
NN(η)ηγdη . (13)

The fluxes of protons and neutrons are obtained from equations (11), and are put in terms
of N01 and δ0 (proton excess at the top of the atmosphere).

p(t, E) =
N01

2

(
e−t/L1 + δ0e−t/L2

)
E−(γ+1) (14)
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and
n(t, E) =

N01

2

(
e−t/L1 − δ0e−t/L2

)
E−(γ+1) (15)

where
δ0 =

N02

N01

=
p0 − n0

p0 + n0

(16)

3 The charged pion diffusion equations

The equation that describes the diffusion of the charged pions in the atmosphere, considering
the validity of the Feynman scaling law is

∂

∂t
Π±(t, E, θ∗) = −Π±(t, E, θ∗)

λπ(E)
− Π±(t, E, θ∗)

λπ
decay(E)

+
∫ 1

0

Π±(t, E
x , θ

∗)
λπ(E

x )
fπ±π±(x)

dx

x
+

+
∫ 1

0

Π∓(t, E
x , θ

∗)
λπ(E

x )
fπ∓π±(x)

dx

x
+

∫ 1

0

p(t, E
x )

λ(E)
fpπ±(x)

dx

x
+

∫ 1

0

n(t, E
x )

λ(E)
fnπ±(x)

dx

x
(17)

where θ∗ is the zenith angle in the pion production, x ≈ E
E′ is the Feynman variable and

fπ±π±(x) and fNπ±(x) are respectively the secondary spectra of the pions produced in the
meson-air nucleus and nucleon-air nucleus interactions. The decay lenght of the pion in the
atmosphere is given by λπ

decay(E) = cβτπ
E

mπ
ρ(t, θ∗) and we suppose the approximation

λπ = λπ+ = λπ− .
The solutions of these equations are subjected to the boundary conditions

Π±(0, E, θ∗) = 0 . (18)

Considering the isospin symmetry, the interaction lenghts constant and adding and subtract-
ing Π+(t, E, θ∗) and Π−(t, E, θ∗) we can uncouple the above equations and we obtain

∂

∂t
Πi(t, E, θ∗) = −Πi(t, E, θ∗)

λπ
−Πi(t, E, θ∗)

λπ
decay

+
∫ 1

0

Πi(t, E
x , θ

∗)
λπ

f i
ππ(x)

dx

x
+

∫ 1

0

Ni(t, E
x )

λ
f i

Nπ(x)
dx

x
(19)

where Π1(t, E, θ∗) = Π+(t, E, θ∗) + Π−(t, E, θ∗), Π1(t, E, θ∗) = Π+(t, E, θ∗) − Π−(t, E, θ∗)
and the energy spectrum f 1

ππ(x) = fπ+π+(x) + fπ+π−(x), f 2
ππ(x) = fπ+π+(x) − fπ+π−(x),

f 1
Nπ(x) = fpπ+(x) + fpπ−(x) and f 2

Nπ(x) = fpπ+(x) − fpπ−(x).
As in the case of nucleons we introduce the following operators

B̂Ni
=

(∫ 1

0

dxf i
Nπ(x)σ̂Ni

)
1
λ

, (20)

B̂Πi = −
(

1 −
∫ 1

0

dxf i
ππ(x)σ̂Πi

)
1
λπ

, (21)

ĜΠΠi(t, E, θ∗) = − 1
λπ

decay

Πi(t, E, θ∗) , (22)

where σ̂Ni
and σ̂πi act on one energy function as defined in equation (8), and the operator Ĝπ

is defined by the eigenvalue equation above
By introducing these operators in equation (19) we obtain the symbolic operator equation

∂

∂t
Πi(t, E, θ∗) = ĜΠΠi(t, E, θ∗) + B̂ΠiΠi(t, E, θ∗) + B̂Ni

Ni(t, E) (23)

which solutions satisfy the boundary conditions (5) and (18).
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The general solution is

Πi(t, E, θ∗) =
∫ t

0

Exp

[∫ t

z

(ĜΠ + B̂Πi)dz
′
]
B̂Ni

Ni(z, E)dz , (24)

where Exp
[∫ t

z (ĜΠ + B̂Πi)dz′
]

is the expansional defined by a sum of multiple depth-ordered
integrals (see the appendix in ref.[2]).

The above equation can be simplified using the decomposition properties of the expansional,
to deal with the non-commutative operators ĜΠ and B̂Πi , and assuming for the nucleon energy
spectrum at the top of the atmosphere; Ni(0, E) = N0i E

−(γ+1) (a similar calculation is shown
in ref.[2]). The solution of the above equation assumes the compact form:

Πi(t, E, θ∗) =
∫ t

0

dz
Zi

Nπ

λ
e−(t−z)/Lπi (γ)e−z/Li(γ)

{
T̂Π(t, z) +

+
∫ t

z

dz′
[
T̂Π(t, z′)ĜΠ(z′)(t− z′)(B̂Πi(γ) − B̂Πi(γ + 1)

]
T̂Π(z, z′) + ...

}
N0iE

−(γ+1) (25)

where

T̂Π(t, z) = Exp
(∫ t

z

dz′ĜΠ(z′)
)

(26)

and

Zi
Nπ =

∫ 1

0

xγf i
Nπ(x)dx (27)

with −1/Lπi(γ) and −1/Li(γ) being the eigenvalues of the operators B̂Πi(γ) and B̂Ni
(γ) acting

on the function N0i E
−(γ+1) and they are defined as

Lπ1(γ) =
λπ

1 − Zπ+π+ − Zπ+π−
(28)

and
Lπ2(γ) =

λπ

1 − Zπ+π+ + Zπ+π−
(29)

with

Zπ+π−(γ) =
∫ 1

0

xγfπ+π−(x)dx (30)

In our numerical calculation we consider only the first term on the right-hand side of equation
(25), because the contribution of the further terms were computed to be negligible. So, the
expression (25) can be written in the following forms

Πi(t, E, θ∗) =
∫ t

0

dz
Zi

Nπ

λ
e−(t−z)/Lπi(γ)e−z/Li(γ)T̂Π(t, z)N0iE

−(γ+1) . (31)

The charged pion fluxes are obtained by,

Π±(t, E, θ∗) =
Π1(t, E, θ∗) ± Π2(t, E, θ∗)

2
. (32)

4 The charged kaon diffusion equations

The equations that describe the diffusion of the charged kaons in the atmosphere, under the
Feynman scaling law, similar to that of pions are

∂

∂t
K±(t, E, θ∗) = −K

±(t, E, θ∗)
λk(E)

− K±(t, E, θ∗)
λk

decay(E)
+

∫ 1

0

K±(t, E
x , θ

∗)
λk(E

x )
fk±k±(x)

dx

x
+
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+
∫ 1

0

K∓(t, E
x , θ

∗)
λk(E

x )
fk∓k±(x)

dx

x
+

∫ 1

0

Π±(t, E
x , θ

∗)
λπ(E

x )
fπ±k±(x)

dx

x
+

∫ 1

0

Π∓(t, E
x , θ

∗)
λπ(E

x )
fπ∓k±(x)

dx

x
+

+
∫ 1

0

p(t, E
x )

λ(E)
fpk±(x)

dx

x
+

∫ 1

0

n(t, E
x )

λ(E)
fnk±(x)

dx

x
(33)

where the parameters and spectra appearing in the above equation are similar to those appearing
in the preceeding section with the obvious change of π by k. We have used the approximation
λk+ = λk− = λk.

The solution of these equations must satisfy the boundary conditions

K±(0, E, θ∗) = 0 . (34)

In order to uncouple the equations (33), we need to add and subtract them as follows

∂

∂t
Ki(t, E, θ∗) = −Ki(t, E, θ∗)

λk

− Ki(t, E, θ∗)
λk

decay

+
∫ 1

0

Ki(t, E
x , θ

∗)
λk

f i
kk(x)

dx

x
+

+
∫ 1

0

Π+(t, E
x , θ

∗)
λπ

f i
π+k

(x)
dx

x
+

∫ 1

0

Π−(t, E
x , θ

∗)
λπ

f i
π−k

(x)
dx

x
+

+
∫ 1

0

p(t, E
x )
λ

f i
pk(x)

dx

x
+

∫ 1

0

n(t, E
x )
λ

f i
nk(x)

dx

x
(35)

where f 1
pk(x) = fpk+(x) + fpk−(x), f 2

pk(x) = fpk+(x) − fpk−(x). Analogously for f i
nk(x),

f i
π±k

(x), changing p by n and π± in these energy distributions. Also, f 1
kk = fk+k+ + fk+k−

and f 2
kk = fk+k+ − fk+k− . If we neglect the strangeness changing contributions, fk±k∓ = 0,

supposing that fk+k+ = fk−k− and assuming fπ+k+ = fπ−k− , fπ+k− = fπ−k+ , the above
equations can be written

∂

∂t
Ki(t, E, θ∗) = −Ki(t, E, θ∗)

λk

− Ki(t, E, θ∗)
λk

decay

+
∫ 1

0

Ki(t, E
x , θ

∗)
λk

f i
kk(x)

dx

x
+

+
∫ 1

0

Πi(t, E
x , θ

∗)
λπ

f i
πk(x)

dx

x
+

∫ 1

0

p(t, E
x )
λ

f i
pk(x)

dx

x
+

∫ 1

0

n(t, E
x )
λ

f i
nk(x)

dx

x
. (36)

Now introducing the operators

ÂKi
= −

(
1 −

∫ 1

0

dxf i
kk(x)σ̂K

)
1
λk

, (37)

B̂Πi
=

(∫ 1

0

dxf i
πk(x)σ̂Π

)
1
λπ

, (38)

B̂pi =
(∫ 1

0

dxf i
pk(x)σ̂pi

)
1
λ

, (39)

B̂ni =
(∫ 1

0

dxf i
nk(x)σ̂ni

)
1
λ

, (40)

and as in the case of pions the operator ĜK satisfies the eigenvalue equation

ĜKKi(t, E, θ∗) = − 1
λk

decay

Ki(t, E, θ∗) . (41)

So, the equation (36) turns into the operator equation

∂

∂t
Ki(t, E, θ∗) = ĜKKi(t, E, θ∗)+ ÂKi

Ki(t, E, θ∗)+ B̂Πi
Πi(t, E, θ∗)+ B̂pip(t, E)+ B̂nin(t, E) .

(42)
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The general solutions of the above equations wrote in terms of expansionals (see the appendix
in ref.[2]) and submmited to the boundary conditions (5), (18) and (34) are

Ki(t, E, θ∗) =
∫ t

0

Exp

[∫ t

z

(ĜK + ÂKi
)dz′

]
·
[
B̂Πi

Πi(z, E, θ∗) + B̂pip(z, E) + B̂nin(z, E)
]
dz .

(43)
As in the pion case the expression (43) can be simplified using the decomposition proper-

ties of the expansional, assuming for the nucleon energy spectrum at the top of atmosphere
Ni(0, E) = N0i E

−(γ+1) and using for the pion fluxes the expression (31);

Ki(t, E, θ∗) =
∫ t

0

dz e−(t−z)/LKi
(γ)T̂K(t, z)

{
N01E

−(γ+1)

2λ

[
(Zpk ± Znk)e−z/L1+

+δ0(Zpk ∓ Znk)e−z/L2

]
+

∫ z

0

dz1 Z
i
Nπe

−(z−z1)/Lπi
(γ)e−z1/Li(γ)

[
N0iE

−(γ+1)

λπ
(Zπ+k+(γ)±

±Zπ−k+(γ)) +
N0iE

−(γ+1)

λπ
(Zπ+k+(γ + 1) ± Zπ−k+(γ + 1))

∫ z2

z1

dz2
bπ

Eρ(z2, θ∗)

]
+ ...

}
(44)

where Zpk = Zpk+ + Zpk− , Znk = Znk+ + Znk− , Zπ+k−(γ + 1) =
∫ 1

0 x(γ+1) fπ+k−(x) dx.
In the case of kaons originated from pions we used the definition of the expansional as a sum

of multiple depth-ordered integrals [2].
The charged kaon fluxes are obtained by,

K±(t, E, θ∗) =
K1(t, E, θ∗) ±K2(t, E, θ∗)

2
. (45)

5 The muon diffusion equations

The one-dimensional diffusion equations of the muons in the atmosphere are given by

∂

∂t
µ±(t, E, θ) = −Ĝµµ

±(t, E, θ) +
∂

∂E

[
β(E)µ±(t, E, θ)

]
+

+
∫ Emax

Emin

(BR)MĜMM
±(t, E′, θ∗)fMµ(E,E′)

dE′

E′ (46)

with the boundary condition
µ±(0, E, θ∗) = 0 (47)

where µ±(t, E, θ) are the charged muon fluxes at atmospheric depth t and the first term on the
right side of the equation represents the muon decay, the second the muon energy loss in the
atmosphere and the last the meson source of muon. (BR)M is the branching ratio of the meson
M in the channel M → µ + ν.
Ĝµ and ĜM represents the decay operators of the muon and meson, respectively. For mesons

they are defined in equations (22) and (41) and for the muons, the eigenvalue of Ĝµ is

λµ
decay ≈ cτµ

mµ
ε(t− z, E)cosθ∗(z)ρ(z) . (48)

The energy losses can be considered continuous for the energy range we are considering in this
work, so in this case we can approximate the muon energy loss with the following parametrized
form:

β(E) = −dE
dt

= a+ bE (49)

where a represents the ionization and excitation losses and b the bremsstrahlung, pair-production
and nuclear interaction losses. So, the solution of the inhomogeneous equation (46) is, like in
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the case of the mesons, given by a sum of a homogeneous and a particular part, with the final
form

µ±(t, E, θ) =
∫ t

0

exp

[
b(t− z1) −

∫ t

z1

1
λµ

decay(z, ε, θ∗(z))
dz

]
H(z1, ε(t− z1, E), θ∗(z1))dz1 (50)

where
ε(t− z1, E) = Eb(t−z1) +

a

b

(
eb(t−z1) − 1

)
(51)

represents the muon energy at depth z1 in order to arrive at depth t with energy E, and the
function H(z1, ε(t− z1, E), θ∗(z1)) is

H(z, ε(t− z1, E), θ∗(z1)) =
∫ Emax

Emin

(BR)M ĜMM
±(z1, E′, θ∗(z1))fMµ(E,E′)

dE′

E′ (52)

fMµ(E,E′), Emin and Emax are obtained from the relativistic kinematics of two bodies in
the final state, θ∗(z1) is the zenith angle at the muon production point and the functions
M±(z1, E′, θ∗(z1)) are the meson fluxes obtained in equations (32) and (45).

6 Comparison with data

In order to make a comparison with the zenithal muon fluxes and the muon charge ratio at
sea level, we need to take into account several factors, such as, the primary cosmic ray spectrum,
the neutron/proton ratio at the top of the atmosphere, the hadronic Z-factors, the energy losses
and decays, and the interaction lenghts. We will adopt the same parameters and distributions
as suggested by T.K. Gaisser [7] and P. Lipari [8].

The vertical column density as a function of height, xV(h), used in our calculation is taken
from the fit of K. Maeda [9] for the average US Standard Atmosphere. This fit corresponds to
choosing a constant temperature in the stratosphere (h ≥ 11 km) and a linear dependence in
the troposphere (h < 11 km).

A comparison of our calculations and the measured differential muon fluxes at sea level for
θ = 0o [10, 11, 12, 13, 14] and θ = 30o, 60o, 80o [11] and 89o [15] are shown in the figures (1)
and (2). The agreement is in general very good (greather than 96%).

Figure (3) shows a comparison of our calculation (solid line) with experimental data
[10, 14, 16] and with Lipari’s analytical calculation (dotted line) [8]. At low energy
(Eµ < 1 GeV) our calculated muon charge ratio is around 1.21. It rises slightly in the
energy region (5 GeV ≤ Eµ ≤ 100 GeV) and becomes larger at high energy (Eµ > 1 TeV).
This is because the number of kaons is enhanced with respect to pions (the kaon decay con-
tibutes with 5% of the muon flux at 10 GeV and rises to 35% at 10 TeV [2]). The agreement
among them is quite remarkable (around 97%). It seems that our calculations overestimate
somewhat the low and the high part of the experimental points. At low energy (Eµ < 1 GeV)
the discrepancy seems to be due to the non inclusion in our calculations of the geomagnetic
effect. This effect decreases the number of primary protons below 10 GeV and consequently
the muon charge ratio for energies below a few GeV. For energies between 1 and 20 GeV, our
ratio is larger than the experimental data (≈ 4%) as can be seen in the figure. This is due to
the fact that Π± fluxes have a slightly different development in the atmosphere. The Π− flux
that receive a larger contribution from the neutron component propagates somewhat deeper in
the atmosphere. Therefore, at a fixed energy the positive muon will have a major probability
to decay than the negative muon. So, the µ+ are more deplected than the µ− and the calcu-
lated µ+/µ− decreases in this region. For Eµ > 1 TeV the discrepancy is possibly due to the
uncertanties in the kaon Z-factors determination.
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Figure (4) shows a comparison of our calculations with experimental data [15, 17]. In this
figure the upper and lower limits of the dashed region represent our analytical results for θ = 78o

and θ = 89o, respectively. The agreement between them is in general very good (≥ 96%). We
notice a tendency similar to that already observed in the figure (3). At low energy Eµ ≈ 10 GeV
the muon charge ratio is around 1.30 and it rises to 1.46 at 10 TeV. This is explained, as in the
previous figure, by the enhancement of the kaon fluxes for energies higher than 1 TeV.

In these figures we note an µ± asymmetry. This is consequence of the asymmetries in the
meson fluxes, Π± and K±. For pions this is due to the excess of protons over neutrons in the
primary cosmic rays and to the fact that Zpπ+ > Zpπ− reflecting the valence quark content
of proton and pions. For kaons this asymmetry is stronger, showing that the k−(su) does not
receive any contribution from the valence quark content of the incident nucleon.

7 Conclusions

The integro-differential equations which describes the diffusion of nucleons and mesons in
the earth atmosphere are integrated using a Feynman-like procedure of ordered exponential
operators. Then, we obtain the muon numbers from these hadronic fluxes. In order to derive
the µ+/µ− ratio at sea level we calculated separately the neutron and proton in the first stage.
Then, we kept separately the positive and negative mesons (π±, K±), although this is not
strictly necessary for the calculation of the muon spectrum. Our solutions are valid in large
energy range, few GeV to PeV for zenith angle covering 0o - 89o and allows the possibility to
investigate the effects of deviations of the primary spectrum from the power law form (e.g. at
Eµ < 1 GeV a time dependence is introduced by solar modulation).

Our calculated muon fluxes (θ = 0o, 60o, 80o and 89o) agrees very well with the experimental
data (almost 97%).

A comparison between our calculations and the measured vertical muon charge ratio shows
an agreement, in general good, although some small differences can be seen. The largest dis-
agreement is at the lowest (Eµ < 1 GeV) and highest (Eµ > 1 TeV) energies. In the first
energy region the difference is about 5%. Our calculation is higher than the experimental data
because we do not include the geomagnetic effects. This effect decreases the proton fluxes at
the top of the atmosphere but do not change the neutron fluxes, so the µ+/µ− at sea level de-
creases. At higher energies the difference can be traced to the uncertainties about the properties
of strange meson production (the Z-factors for kaon production in the nucleon-air interactions
have probably an uncertainty of approximately 25%).

References

[1] Honda M et al. 1995 Phys. Rev. D52 4985
Barr G, Gaisser T K and Stanev T 1989 Phys. Rev. D39 3532
Knapp J, Heck D and Schatz G 1997 Nucl. Phys. B52 136
Tamada M 1999 ICRR-Report 454-99-12 Institute for Cosmic Ray Research, University
of Tokyo p 61

[2] Portella H M, Oliveira L C S, Lima C E C and Gomes A S 2002 J. Phys. G 28 415

[3] Feynman R P 1948 Rev. Mod. Phys. 20 367
Feynman R P 1951 Phys. Rev. 84 108

[4] Portella H M, Shigueoka H, Gomes A S and Lima C E C 2001 J. Phys. G 27 191
Portella H M, Gomes A S, Amato N and Maldonado R H C 1998 J.Phys. A 31 6861



CBPF-NF-029/03 9

Portella H M et al. 1999ICRR-Report 454-99-12 Institute for Cosmic Ray Research, Uni-
versity of Tokyo p 31

[5] Hirata K S et al. (Kamiokande-II Collaboration) 1992 Phys. Lett. B280 146
Becker-Szendy R et al. (IMB Collaboration) 1992 Phys. Rev. D46 3720
Agrawal V et al. 1996 Phys. Rev. D53 1314
Fogli G L, Lisi E and Marrone A 1998 Phys. Rev. D57 5893
Fogli G L et al. 1998 Phys. Rev. D59 033001
Fiorentini G, Naumov V A and Villante F L 2001 Phys. Lett. B510 173
Kajita T and Totsuka Y 2001 Rev. Mod. Phys. 73 85

[6] Castro F M O 1977 An. Ac. Bras. Ciências 49 113

[7] Gaisser T K 1990 Cosmic ray and Particle Physics (Cambridge: Cambridge University
Press)

[8] Lipari P 1993 Astrop. Phys. 1 195

[9] Maeda K 1973 Fortschr. Phys. 21 113

[10] Motoki M et al. (BESS Collaboration) 2003 Astrop. Phys. 19 113

[11] Tsuji S et al. 1998 J. Phys. G 24 1805

[12] Allkofer O C, Carstensen K, Dau W D 1971 Phys. Lett. B36 425

[13] Aglieta M et al. (LVD Collaboration) 1998 Phys. Rev. D58 092005-1

[14] Boezio M et al. (CAPRICE Collaboration) 1999 Phys. Rev. Lett. 82 4757
Boezio M et al. (CAPRICE Collaboration) 2000 Phys. Rev. D62 032007

[15] Matsuno M et al. (MUTRON Collaboration) 1984 Phys. Rev. D29 1

[16] Kremer J et al. (CAPRICE Collaboration) 1999 Phys. Rev. Lett. 83 4241
de Pascale M P et al. (MASS Collaboration) 1993 J. Geophys. Res. 98 3501
MARS Collaboration 1980 P N Lebedev Phys. Inst. - preprint 95
Allkofer O C et al. 1971 Proc. 12th Int. Cosmic Ray Conf. (Hobart) vol 4 1319
Baxendale J M et al 1975 Proc. 14th Int. Cosmic Ray Conf. (Munich) vol 6 2011
Ashley II G K et al. 1975 Phys. Rev. D12 20

[17] Allkofer O C et al 1979 Proc. 16th Int. Cosmic Ray Conf. (Kyoto) vol 10 50
Allkofer O C et al 1981 Proc. 17th Int. Cosmic Ray Conf. (Paris) vol 10 321
Allkofer O C et al 1978 Report IFKKI University of Kiel 78/3



CBPF-NF-029/03 10

Figure 1 - Differential muon flux at sea level for θ = 0o as a function of the energy. The solid
line represents our calculation and the experimental data are indicated in the figure.
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Figure 2 - Differential muon fluxes at sea level for zenith angles θ = 30o, 60o, 80o and 89o as a
function of the energy. Our calculations are represented by dotted-dashed, dashed, dotted and
solid lines in a increasing order of zenith angles. The experimental data are indicated in the
figure.
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Figure 3 - Energy distribution of the muon charge ratio at sea level for θ = 0o. The solid line
represents our calculation and the dotted line represents the Lipari’s ones. The experimental
data are indicated in the figure.
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Figure 4 - Energy distribution of the muon charge ratio at sea level for 78o ≤ θ ≤ 89o (dashed
region). The dotted and the dashed lines represent the Lipari’s calculation for θ = 78o and
89o, respectively. The experimental data are indicated in the figure.


