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Abstract

We study the consequences of inequivalent representations of a q-oscillator algebra on a

quantum q-gas. As in the “fundamental” representation of the algebra, the q-gas presents

the Bose-Einstein condensation phenomenum and a λ-point transition. The virial expan-

sion and the critical temperature of condensation are very sensible to the representation

chosen; instead, the discontinuity in the λ-point transition is unaffected.
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Since the connection between q-oscillators and quantum algebras was established [1, 2],

the interest in q-oscillators has increased both in physical and mathematical literature.

In this letter we discuss the consequences of choosing different representations of a q-

oscillator algebra on a system which generalizes the ideal quantum boson gas. The interest

on this problem comes from the role played by the theory of ideal gases in many different

phenomena.

Let us consider the algebra generated by a, a+ and N satisfying

[N, a+] = a+ , [N, a] = −a, (1)

aa+ − qa+a = q−N

where q ∈ RI +.

Assuming that a, a+ are mutually adjoint, N = N+ and the spectrum is non-degenerate,

representations of algebra (1) in a Hilbert space H were built [3].

Denoting the normalized basis vectors by |n >, in ref.[3], for q > 1 (which is the case

we shall be interested in this letter) the following representations were obtained:

a+|n > = q−ν0/2[n+ 1]1/2|n+ 1 >,

a|n > = q−ν0/2[n]|n− 1 >, (2)

N |n > = (ν0 + n)|n > ,

where [n] = (qn − q−n)/(q− q−1) and ν0 is a real free parameter which goes to zero when

q → 1. When ν0 = 0, N is interpreted as the usual particle number operator for the state

|n >. This is not anymore the case for ν0 �= 0; its eingenvalue can now be interpreted

as the sum of the number of particles n, in the state |n >, plus a background effect

ν0.
1 We define here the the operator N̂ = N − ν0, which is now the number operator,

N̂ |n >= n|n >, for the representations in (2) characterized by ν0.

In our case (q > 1), as ν0 is the lowest bound of the spectrum of N , it classifies

inequivalent representations of the algebra (1) [3]. In fact, it can be easily verified that

[5]

C = q−N([N ]− a+a) (3)

is a Casimir operator for the algebra (1) and in the representation (2) one has

C|n >= q−ν0[ν0]|n > . (4)

1A similar effect appears in the reparametrization ghosts of string theories [4].
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As (3) is different from zero only for q �= 1, one sees from (4) that when q = 1, ν0 is

necessarily zero. On the other hand, it should be stressed that the q-Fock representation

for which the relations

aa+ − qa+a = q−N , aa+ − q−1a+a = qN , (5)

are simultaneously verified, is given in (2) when ν0 = 0.

We are now going to analyse the behaviour of the ideal quantum q-gas with respect

to the more general representations (ν0 �= 0) (2) of the q-oscillator algebra (1). For that

sake, let us consider an ideal deformed system described by the Hamiltonian

H =
∑

i

ωi a
+
i ai =

∑
i

ωi([Ni]− qNiCi) (6)

where ai and a+
i are interpreted as annihilation and creation operators of particles in levels

i with energy ωi and Ni is an operator that can be interpreted as the number operator

of particles in levels i when ν0 = 0. ai, a
+
i and Ni satisfy algebra (1) and commute for

different levels. With µ the chemical potential, N̂ =
∑

i N̂i and Ω the grand canonical

potential, the grand canonical partition function is given by

Z = Tr exp[−β(H − µN̂)] = exp(−βΩ), (7)

where β = 1/kT , with k the Boltzmann constant.

As Z factorizes for the above system, the grand canonical potential is given by a sum

over single level partition functions [6]

Ω = − 1

β

∑
i

lnZ0
i (ωi, β, µ), (8)

with

Z0
i (ωi, β, µ) =

∞∑
n=0

e−β(ωiq−ν0 [n]−µn) (9)

where we are assuming the same ν0 for all levels. This means that in all levels the spectrum

has the same lowest bound, which is a sensible assumption.

According to the usual procedure the system is enclosed in a large d-dimensional

volume V and the sum over levels is replaced by an integral over �p-space. Assuming that

the energy spectrum of the q-particles follows the dispersion law ωi → γpα, the grand

canonical potential becomes

Ω =
−V

hdβ

∫
ddp ln

∞∑
n=0

e−β(γqpα[n]−µn), (10)
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where γq = q−ν0γ and for α = 1(2) one recovers the ultrarelativistic (non-relativistic)

case, with γ = 1(1/2m).

The pressure P = −Ω/V and the density n = ∂P/∂µ|T,V are then:

P (T, z) = β−1 ∧−d
q Yq(z), (11)

n(T, z) = ∧−d
q yq(z),

where z = exp(βµ) is the fugacity and ∧−d
q =

πd/2Γ( d
α

+1)
Γ(d

2
+1)hd(βγq)d/α is the modified thermal

wavelength. The functions Yq(z) and yq(z) are respectively

Yq(z) =
1

Γ
(

d
α
+ 1
) ∫ ∞

0

dη ηd/α

∞∑
n=0

[n]zne−[n]η

∞∑
n=0

zn e−[n]η

yq(z) =
1

Γ
(

d
α
+ 1
) ∫ ∞

0

dη ηd/α




∞∑
n=0

[n]n zn e−[n]η

∞∑
n=0

zn e−[n]η

−

∞∑
n,m=0

[n]m zn+m e−([n]+[m])η

( ∞∑
n=0

zn e−[n]η

)2


 (12)

where η = βγqp
α. Notice that the modified thermal wavelength depends now on q and ν0

through γq, ∧q = q−ν0/α∧ with ∧ the usual thermal wavelength.

We now consider the high-temperature (or low-density) [6] approximation for large q

[7]. Assuming that the fugacity is small compared to one we obtain the virial expansion

for the equation of state

P = n
β

[
1− q−ν0d/α

(
− 1

2d/α+1 + 1
[2]d/α

)
(n∧d)

+q−2ν0d/α2
(

1
22d/α+1

− 1
3d/α+1

+ 2
[2]2d/α − 2

2d/α[2]d/α + 1
(1+[2])d/α

)
(n∧d)2 + · · · ] . (13)

The virial expansion (13) deserves some comments. For q → ∞ q, the q-gas behaves

exactly like an ideal Fermi-gas only if ν0 = 0. When ν0 < 0 (ν0 > 0) the pressure is higher

(lower) than the ideal Fermi gas. When ν0 = 0 we reobtain the virial expansion of ref. [8]

and for [n]A ≡ (q2n − 1)/(q2 − 1), the one of ref. [7].

Let us now study the Bose-Einstein condensation [9] for the highly deformed case

where, as shown by Matheus-Valle [8], similarly as in the case of ref. [10] (with [n]A), in
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order to reach a given accuracy in the integrals (12) the number of terms to be kept depend

on the value of q. As usual, when z → 1 (or T → Tc, Tc being the critical temperature)

one has to take into account the zero-point energy and single out its contribution in

(12). In addition, inspection of eq. (9) clearly shows that when ωi = 0 the effect of the

deformation is cancelled; therefore series (9) cannot be approximated by a polynomial

for the zero energy level. Keeping n constant we now consider lower temperatures: n∧ν
q

increases and so does z. When z reaches 1, the temperature attains its critical value T q
c ,

defined by n1/d∧q
c = y

1/d
q (1) or

T q
c =

γqΓ
α/d
(

d
2
+ 1
)
hαnα/d

kπα/2Γα/d
(

d
α
+ 1
)
y

α/d
q (1)

. (14)

Comparing T q
c with the critical temperature for the non-deformed ideal gas of the same

density n, we find

T q
c

Tc
=

(
2.61

yq(1)

)α/d

q−ν0. (15)

For ν0 = 0 we recover the results of refs. [10, 8], the critical temperature increasing

with respect to the non-deformed case, but associated to the different representations of

q-oscillator (1) (different background “charges” ν0) a different phenomenum appears. For

ν0 > 0 (ν0 < 0) the ratio T q
c /Tc decreases (increases).

Similarly to the non-deformed case [11] the basic equations are

P (T, z) = β−1 ∧−d
q Yq(z) (16.a)

n(T, z) =
1

V

z

1− z
+ ∧−d

q yq(z), (16.b)

where the first term on the right-hand side of (16b), which is due to the contribution of

zero energy, is relevant only for T ≤ T q
c . In this region z remains equal to one, as in the

standard case.

The specific heat per particle, CV , defined as

CV

k
=

1

kn

∂ẽ

∂T

∣∣∣
n
, (17)

where ẽ is the energy density (internal energy per volume) is

CV /k =
d

α

(
d

α
+ 1

)
(∧d

qn)
−1Yq(z)−

(
d

α

)2
yq(z)

zy′q(z)
, T > T q

c , (18.a)

CV /k =
d

α

(
d

α
+ 1

)
(∧d

qn)
−1Yq(1) , T < T q

c . (18.b)
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It is interesting to observe that the presence of the parameter ν0, which characterizes the

different representations of the q-oscillators algebra (1), changes the shape of the specific

heat CV in (18) but leaves the λ-point discontinuity invariant [10].

In summary we have analysed the role played by different representations of the q-

oscillator algebra (1). We find that the high-temperature (or low density) regime is

strongly representation dependent. As in the “fundamental” representation (ν0 = 0), the

q-gas presents Bose-Einstein condensation but now the critical temperature depends on

the representation under consideration. Finally, we also find a λ-point transition with a

discontinuity independent of the value of ν0.
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