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Abstract

We first discuss, for a variety of similar systems, the physical need for departure
from Boltzmann-Gibbs statistical mechanics and thermodynamics. Then, we numerically
discuss the infinite-range spin-1/2 Ising ferromagnet within the recently generalized sta-
tistical mechanics (canonical ensemble). Through the specific heat, we exhibit (for the
first time, as far as we know, for an interacting system}) that the thermodynamic limit is

well defined.

Keywords: Generalized Entropy; Nonextensive Thermodynamics; Ising Ferromagnet;
Long-Range Interactions.
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1. Introduction

During recent years, noneziensive formalisms are quickly growing in Physics. We
mainly refer here to Quantum-Group-like approaches [1-13], and to the Generalized Sta-
tistical Mechanics and Thermodynamics [14-30] to which the present paper is dedicated.

The physical motivations for such attempts concern a great variety of systems: black
holes and superstrings [31)], d = 3 self-gravitating astrophysical objects [32], Lévy random
walks [33], vortex problem [34], nonlocalizability of the photon [35], dark matter [11],
stability of granular matter such as a sandpile, and many others. In all the cases, spatial-
temporal long-range microscopic interactions (i.e., either long-range space interactions
or Jong-range memory, or both) seem to be involved, in one way or another [24,25];
one such situation occurs whenever the relevant space-time of the problem is fractal
(or multifractal), since the scale invariance acts as a kind of long-range transport of
information. Some of the situations above mentioned are discussed in more detail in
Section 2. Let us now briefly recall what the Generalized Statistical Mechanics and
Thermodynamics is about.

One of us [14] proposed a generalized expression for the entropy, namely

_xW
==kl gew) W

where ¢ characterizes the statistics, k is a conventional positive constant, and {p,} are
the probabilities associated with the W microscopic configurations that might occur in
the system. Eq. (1) recovers, for ¢ — 1, the well-known Boltzmann-Gibbs-Shannon
expression, S; = —kg T, p, In p,. S, is nonnegative, extremal for equiprobability, i.e., for
ps = 1/W , Vs (microcanonical ensemble; the entropy is given by S, = k(W'~¥—1)/(1-g),
which generalizes 5y = kglnW), expansible for ¢ > 0, concave (convex) for all {p,} if
¢ > 0 (g < 0), a fact which garantees thermodynamic stability for the system. S, satisfies
the H-theorem [16], i.e., dS,/dt > 0 (< 0) if ¢ > 0 (¢ < 0), and is pseudoadditive for
two independent systems T and ¥’ (i.e., if fruzr = pz ® px, where 5 denotes the density

operator, whose eigenvalues are the {p,}; Azuzs acts on the tensor product of the Hilbert
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spaces respectively associated with T and I'); in other words, it satisfies

S::‘.ur' ﬂ‘:‘
ko k

ST’ ST 5%

40— 2)

Consequently, unless ¢ = 1, S, is generically noneztensive (nonadditive).

If the system is in thermal equilibrium with a thermostat at temperature T = 1/8k we
must optimize S, under the constraints Trp = 1 and Tr(p*H) = (H), = U, [14,15), where
H is the hamiltonian and U, is a finite quantity (generalized internal energy). We obtain,

for ¢ < 1 and B8 2 0, the generalized equilibrium distribution

| n-su-gRMe-njz,, i 1-BL-gH >0, )
p =
0, otherwise ,
with the generalized partition function given by
Z,="Trft - B - gy 00, (4)

where the trace concerns only the states for which 4 # 0. In the ¢ — 1 limit, this
expression recovers the Boltzmann-Gibbs distribution § = exp(—BH)/Z;. X ¢ > 1, we

obtain
.| n-Ba -9z, i 1-B(1-9q)E.>0, )
p —_
6-,:/ 9e s otherwise '
where 6, , is a Kroenecker’s delta and
(Eog) = (Bng), i B20, ©
’ (Eﬁ,gk) s if ﬁ < 0 s

E; and g, being respectively the lowest eigenvalue of H and its associated degeneracy, and

E,, and g; being respectively the highest eigenvalue of ¥ and its associated degeneracy. In
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the ¢ — 1 limit, Eq. (5) recovers, as before, the Boltzmann-Gibbs distribution. Excepting
for extremely pathological cases (which are out of the scope of the present work) the
negative (positive) temperature region is physically inaccessible unless E), (E:) is finite,
i.e., if the energy spectrum {E,} has an upper (lower) bound.

It can be shown [15] that, in general,

1 _ 85,
T U, @
9 Z}-t -1 -
- ——
and
1-g _
121701 )

F,EU,—TS.,=-§ l—q

In addition to the above properties, the present generalized sta.ti;tics: (1) leaves form-
invariant, for all values of g, the Legendre-transform structure of Thermodynamics {15]
as well as the Ehrenfest theorem and the von Neumann equation {17]; (ii) satisfies Jaynes
Information Theory duality relations [17] (necessary for the corresponding entropy to be
considered as a measure of the (lack of) information}; (iii) generalizes the Bogolyubov
inequality [19), the Langevin and Fokker-Planck equations [20], the quantum statistics
[18), the fluctuation-dissipation theorem [21}, the single-site Callen identity [22], the Ising
transmissivity [23), among others. The present generalized formalism has been successfully
applied (or could be applied) in a variety of problems such as gravitational systems [36-38),
anomalous diffusion (39,40}, Biology ([41}; see also [29]), Economics [25,42], optimization
algorithms [30), statistical inference and Probability Theory [43,44] and learning neural
networks [45). In Section 2 we discuss with some detail some of the above problems; in
Section 3 we present the results concerning the infinite-range Ising ferromagnet; we finally

conciuc!e in Section 4.
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2. Needs for Departure from Boltzmann-Gibbs Statistical

Mechanics

The need for departure from Boltzmann-Gibbs statistics becomes nowadays stronger
and stronger, and it appears, as a]readjr mentioned, in a great variety of physical systems
[31-35]. In this Section we discuss three of them, namely, anomalous diffusion (superdiffu-
sion), gravitational-like systems and Jong-range Ising ferromagnetism (to which this paper

is basically dedicated).

2.1. Anomalous Diffusion

In d-dimensional normal diffusion the distance r = |7} scales with t/2. However,
there are in Nature a variety of systems (alongated micelles [46], heartbeat histograms
[47], among many others [48]) which present Lévy-like superdiffusion. In these cases, the
distance r scales with ¢/ (0 <7 < 2). To be more precise, if a single jump occurs with
probability oc 1/rd+# (r —» 00), then ¢ jumps eventually yield a p\robability law which,
in the ¢ — oo limit, provides distances r which scale with t/7 with y = 2if p > 2 and
~ = pif 0 < g < 2. Infact, the generalized central limit theorem [49] implies that the
attractor (in probability-law space) is a Lévy distribution; furthermore it is known that
~ is the fractal dimension of the Lévy-like diffusion. For the d = 1 case, Alemany and
Zanette [39] recently showed that, by optimizing S,[p} = {1 — [ dz [p(2)]*}/{g - 1) with
[ dz p(z) =1 and the simple constraint of fixing (z?), = f dz z?[p(z)}?, the correct value
of the index ¢ is given by

(-]

s+ '
9=13 : (10)

~2

The full discussion of the d = 1 case provides [40]

.,={ 2, if -o0<¢g<5/3, (11.a)
(S_Q)/(q_l)‘a if 5/3Sq<3 . (llb)
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Eq. (11.b) is of course consistent with (10). Values of ¢ > 3 are forbidden since they
provide a non-normalizable probability law (f dz p(z) = 0o). The need for g # 1 statis-
tics comes from the fact that, when ¢ increases from —oo to 5/3, (2%); = [dz 2%p(z)
monotonically increases and finally diverges when g approaches 5/3 from below, i.e., for
g > 5/3, fixed (2?); becomes unacceptable as a constraint. In clear constrast, (%), (which
is the natural quantity to be fixed within the generalized statistics) remains finite for all
q up to ¢ = 3. For example, v = 1 (hence g = 2) corresponds to a Lorentzian distribution
o 1/(1+2?): while (2%); o [ dz z*/(1 +1?) diverges, (2?); [ dz 2?/(1+2?)? converges!
Very recently, Eq. (11) has been extended to d dimensions (0 < d < oo), thus

becoming [50]

7={ 2, i qSes@+die+d,  (2a)
2/(g-1)-d, i @<g<gm:= (2+4d)/d. (12.b)

The integral [dr r?-2p(r) diverges if ¢ > gmaz. Eq. (12.b) relates ¢ with the fractal
dimension 4 (i.e., with the long distance behaviour of the probability law p(r) o 1 [rte
(r — oo}, withy =2if gy > 2 and v = p if 0 < g < 2) and the Euclidian dimension din
the cases where Boltzmann-Gibbs (¢ = 1) fails. Summarizing, we have now a formalism
within which all the relevant statistical quantities (S,, {r?),, etc) are simultaneously finite
(hence, satisfactorily defined!) all the way up to the extreme value ¢ = gmqs (hence, for

# = v down to zero!).

2.2. Gravitational-like Systems

Let us address now a d-dimensional N-body gravitational-like problem. More specifi-
cally, assume N classical particles interacting attractively through two-body interactions
characterized by a potencial V(r) which diverges (V(r} = 4o0) if r(= distance between
the two particles) is smaller than a cut-off A, and which, for r > A, is given by

Afrr, if a$0, (13.a)
Vir)=
Alnr, if a=0. (13.b)
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Since the interaction is an attractive one, A < 0if o > 0 and A > 0if & < 0. The cut-off
A, which avoids possible r = 0 divergences, is physically very natural due to unavoidable
quantum effects. A central integral of the Boltzmann-Gibbs discussion of such a system
clearly is (V(r)h « [ dr #¢3V(r)exp[~BV(r)]. This integral diverges if 0 < & < d,
whereas it converges for & < 0 and @ > d (& = 0 and & = d are marginal situations to be
discussed on their own). Newtonian d-dimensional gravitation corresponds to a = d — 2
(solution of the d-dimensional Poisson equation), hence it belongs to the forbidden region
if d > 2, in particular for d = 3! (a difficulty which is well known by astrophysicists).
The marginal case (d,a) = (2,0) provides, for the above integral, convergent values for
T below a critical value T, and divergent values for T’ above it. Another interesting case
is (d,a) = (3,3), which corresponds essentially to permanent dipole-dipole interactions.
Its marginality is reflected into the well-known (nevertheless bizarre within an eztensive
thermodynamic formalism) fact that calculations of total polarization (and related quan-
tities) depend on the external shape of the sample ! The whole situation is depicted in
Fig. 1, and can be summarized by saying that Boltzmann-Gibbs statistics (¢ = 1) is the
correct frame if & < 0 or if @ > d (with some precautions we can even extend its validity
toa < 0ora > d), but if o € (0,d) we no doubt need noneztensive statistics (¢ # 1 within
the present proposal). By analogy with what was presented in Section 2.1, one naturally
expects g to depend on (d,a) if 0 < & < d, but unfortunately the precise relation is not
yet available.

Let us now address the question of whether the correct value of the index g for the
present system is above of below 1. Plastino and Plastino [36] as well as Aly [37] discussed
d = 3 gravitation (i.e., « = 1) and established (Plastino and Plastino for the polytropic
mode! and Aly through quite general arguments) that ¢ must be above 9/7 in order to
have values for the mass, the energy and the entropy which are simultaneously finite.
However, a correction is needed. Indeed, both papers [36] and [37] used an early form
(presented in [14]) of the generalized statistics where, to each observable 0, one associates
the mean value {0); = Trp O with j o [1 - B(g— 1)#]"/e-1), However, the relevant form
is now known to be the g-ezpectation value {0), = Trp*0 with j o [1 - (1 - q)H]/0-9)
(as tackled in [14] and presented in [15]). Consequently, the correct discussion is to be
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done on

(), = 277 Te{[1 - B(1 — QyH}/0=9 O} = Z;% Te{[1 - Bg(1/q — 1)FJM/®/2 =D O} with
Z, = Tr{1-B(1-q)HJ/0-9) , and pot on {O); = Z, Tr{[1-B(g-1)H]/-10} with Z, =
Trfl — A(q ~ 1)#(]/&=Y). There is no simple and general connection between the correct
(B, q) dependence of {0}, and that of the above (0);. 1t is however clear that if unsatis-
factory divergent integrals are found, within the early approach, by Plastino and Plastino
and by Aly for ¢ < 9/7, the same type of difficulties are expected to appear, within the
corrected approach, for ¢ > 7/9. Summarizing, the physically correct discussion of the
d = 3 gravitation is to be done for ¢ < 7/9 (hence ¢ < 1). This result has been recently
re-inforced by a discussion [38] of the d = 3 gravitation Vlasov equation. Indeed, the
exact time-dependent solutions of the homogeneous density slabs and of the Freeman-like
rigid disk models of stellar matter are available since 1973 [51] and 1990 [52] respectively.
These rather complex time-dependent solutions have been ezactly recovered by Plastino
and Plastino [38], for both models, within the framework of the generalized Statistical Me-
chanics by using ¢ = —1 (hence ¢ < 1). Finally, the demand for entropy superadditivity
which appears to be necessary in the discussion of black holes (see ’Landsberg 1984 [31])
occurs here (see Eq. (2)) only if ¢ < 1. ‘

2.3. Long-Range Ising Ferromagnetism

The Hamiltonian we now focus is

H=-2) J;5S; (Si=41, V) (14)

(5.4)
with

Jij=J/r  (I>0;d+620) (15)

where r;; is the distance (in crystal units) between sites i and j, and where the sum 32, ;)

runs over all N(N — 1)/2 distinct pairs of sites on a d-dimensional simple hypercubic
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lattice (d = 1 yields ry; = 1,2,3,--- ; d = 2 yields rj; = 1,v2,2,v/5,-- ; d = 3
yields r;; = 1, v2,/3,2,+). The limit § — oo corresponds to the d-dimensional first-
neighbor model. The d + & = 0 particular case corresponds to the infinite-range (hence,
dimensionless) ferromagnet, i.e.; basically the Mean-Field Approach (MFA); the MFA can
also be attained in the the d — oo limit, V6. The critical temperature T,(d, 8} of this model
satisfies: (i) T,(d, oc) monotonically varies from zero to infinity when d increases from 1 to
infinity (no phase transition exists for 0 < d < 1; kpT.(1,00)/2J = 0; kpT.(2,00)/2J =
2.269...[53); kaT.(d,00)/2J ~ 2d if d — o0); (ii) ksT.(d, ~d)/2J = oo, Vd (if we follow
say the specific heat peak while the number N of spins diverges, then kgT.(d, ~d)/2J ~ N
[54)); (ii3) kaT.(c0,8)/2J = 0o, V& (once more kgT.(20,8)/2J ~ N in the N — o0
limit). The fact that, in all these results, 2J appears instead of the standard coupling
constant J comes from the notation adopted in Eq. (14); this notation follows that of
Ref. [54], where the infinite-range model is discussed. |
Let us discuss the Boltzmann-Gibbs internal energy Uy = (M) = ~2J T (1 Jrire
x{S;5;)1. At T = 0 the fundamental state (either §; = 1, Vi, or §; = —1, Vi) is the only

one to be occupied, hence .

LY

Uy 1 1
—F=2 Y =NT oy . (16)
(iJ)'w R

At long distances this sum can essentially be replaced by
[Carrraney a7

which diverges for § < 0. In other words, one expects kgT.(d,6)/J to diverge when
§ — +0 and remain infinite for § < 0. Let us quote the words of Hiley and Joyce
[55] who focused this problem in 1965: “With § < 0 this sum (essentially Eq. (16)) is
divergent and, in consequence, the properties of a model using this type of potential will
be non-thermodynamic. We will, therefore, not discuss these models further”. They also
point that, for § = 0, conditionally convergent series appear and the results depend on

“the shape of the specimen”, as for the permanent dipole-dipole interaction we discussed
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in Section 2.2 . Consequently, Hiley and Joyce concentrate on the § > 0 case, very
especially in the § — +0 limit, where the discussion becomes tractable. Once more, it
becomes obvious the need, for § < 0, of nonextensive thermodynamics (¢ # 1 within the
present proposal). The natural .proposal is a (d, §)-dependent index ¢ (possibly ¢(d,6) < 1
if § < 0 in analogy with the gravitational case). The whole situation is depicted in
Fig. 2, where we have incorporated: (i) the well-known fact that, for d > 4, the phase
transition exponents are the so-called classical or Landau ones; (ii) the fact that § > 2
implies short-range interactions (since the Fourier transform of 1/rdt is proportional
to exp{—constant(wavevector)?}), hence the universality classes are those of the first-
neighbor models; (iii) the crossover from the short-range to the long-range universality
which occurs [56) at § = df2.

In order to start exploring, within ¢ # 1 thermostatistics, the unusual region § < 0,

we concentrate in what follows on the infinite-range model (i.e., d + 6§ = 0).

3. Infinite-Range Ising Ferromagnet

From now on we address the Hamiltonian .

H=-2 Z Ji;8:8; +JB (J>0) R (18)
(id)

where we have added a constant JB to Hamiltonian (14). Eq. (18) can be rewritten as

follows:

N N
=-J3Y.3.58;+JN +JB

=1 y=1

=-J (fj:s.-)2 +IN+JB . (19)

fx1

For simplicity, from now on we assume N even. If we introduce now TN, S =N - N,
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and N = Nj 4+ N| we have the following dimensionless spectrum for M (in units of J )

EN'=—(2N1—N)2+N+B (Nl=0,1$21"'sN) 1 (20)

associated with a “degeneracy” N!/[N{}(N — N;)!] (strictly speaking, since we have no
external magnetic field, we could restrict Ny to vary from 0 to N/2, all levels having a
degeneracy 2N!/[N{}(N — Ni)!] excepting that corresponding to N; = N/2 which has a
degeneracy NU/[(N/2)!]?). The dimensionless energy of the fundamental level (all spins
parallel) equals —N? 4+ N + B = E.n , that of the most excited level (half spins up and
balf down) equals N + B = E,,,. , hence the width of the spectrum equals N2, This fact
hopefully determines the correct scaling for the temperature, which is, as we shall verify
later on, kT/N?J if ¢ # 1 and kpT/NJ if ¢ = 1. Three typical choices exist for B, namely:
nonnegative spectrum (Epin = 0 , hence B = N{(N—1)), nonpositive spectrum (Em.; =0,
hence B = —N), and mized spectrum {Emin = —Emaz , hence B = N(N —2)/2). In the
present paper, we discuss, for positive temperatures, the specific heat associated with all
three cases for ¢ 3 1, and exhibit that the thermodynamic limit (N'— o0} is well deﬁnéd;
in other words, it yields (in properly scaled specific heat and temperature) functions which

-

are finite almost everywhere.

g=1 :

The specific heat independs from B and is given by
G J V)& N! 2
ks (kBT) { N);o N{I(N = Np)! P By
2
[Z N,v(N M) P"tEN:] } 1 (21)

where
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1 J
m=gop(-Zpbn) (22)
with
N N! J
Zy= 3 ( 2 E ) . 23
= X NI - N P T )

The numerically exact results for increasingly large systems are presented in Fig. 3. A
phase transition emerges, in the limit N — oo, with a critical temperature given by

ksT.JNJ =2.

g<l1:

The specific heat depends on B and is given by [21,25,26]

C, _ E},
N ‘q( ) {E N,'(N N,)' 2 1—(J/kT)(l—q)EN,

-

Nt ENt
[EEONH(N Nt P E”*] [E NN = ) P 1-(J/kT)(1—q)E~,]} ’
(29)

where

o~ = { 1 - U/ - BwPO0/2,, 1> D0 -0Bws e

0, otherwise ,

with
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(26)

1/(1-¢)
1- Q)EN‘]

—_— ] -
NS:‘;, g - ¢
By % ' we mean that the sum is interrupted whenever the restriction 1 > (J/kT)(1—g)En,
is violated.

The numerically exact results for increasingly large systems are presented in Figs.
4-6. Once again a phase transition emerges, in the N — oo limit, if Ep.r 2 0 (ie., if

N + B > 0), and its critical temperature is given by

ch Emnz -
V=95 —FL. =09

(27)
If Epqe < 0 (ie., if N + B < 0), no phase transition exists (at least, no divergence exists
in the N — oo limit of the rescaled specific heat). Also, if -N?+ N+ B >0, we have a
forbidden region (physically inaccessible) for kT/J € [0,{1—¢)(~N*+N+B)], a frozen
region (zero specific heat) for kT/J € ((1—¢)(—~N?+N+B),(1-¢)[-(N~2)*+N+Bj}],
and an active region (nonzero specific heat) for kT'/J > (1~ q)[—\(N -2)2+ N + B].
If -N?+N+B <0< —(N—-2?+N+ B, we have a frozen region for kT/J <
(1-g)[-(N-2)*+N+B], and an active region otherwise. Finally, if ~(N-2)*+N+B <
0, the system is active for all positive temperatures.

A simple choice for B in the N — oo limit is B+ N = yN? , 5 being a pure number
{7 = 0,1/2 and 1 respectively correspond to nonpositive, mixed and nonnegative spectra).
In this case: (i) there is evidence for a phase transition only for 7 > 0, and the critical
point satisfies kT./N>J = (1 — ¢)n ; (ii} there is a finite forbidden region only if > 1,
and corresponds to kT/N?J < (1 — g)(n — 1) (above this point, the system is thermally

active).

g>1:

The specific heat depends on B and is given by Eq. (24) where
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» { {[t + (J/AT)(g = DEND 2}, if 1+ (J/THg— )Emin >0,
Ny =

(6N1.° + 6N1 .N)/z y Otherwise y
(28)
(6 refers to Kroenecker’s delta) with
/(g-1)
Z mj'. {[1 + ol - I)EN,] } . (29)

As before, the sum is restricted to N; such that 1 + (J/kT)(g—1)En, > 0. If E,,;.-,. >0,
then, for all positive temperatures, the system is thermally active; if Emin < 0, the system
is active only for kT'/J above (g — 1)|Eninl, being frozen below.

The numerically exact results for increasingly large systems are presented in Figs. 7-9.
There is no evidence for a phase transition in none of these cases.

If we have (B 4+ N)/N? = n € R in the N — oo limit, the temperature above which
the system is frozen is given by kTp/N*J = (¢—1)(1-g)ifn <1 , and the tempera.tﬁre
Tinaz at which the rescaled specific heat attains a soft maximum is given by kTpoz /N J=
(g—1)/2 . Consequently, N*C,/2U-9Nk achieves its physically rnea.n'ingful maximum at
Tr (with dC,/dT|r, < 0)if n <2/8, at Tr = Tpneo (with dC,/dT|z,,,, =0)ifn =2/3,
and at T, (with dC,/dTr,,.. =0)if5>2/3.

4. Conclusion

We have discussed the validity limits of ezfensive thermostatistics (i.e., Boltzmann-
Gibbs Statistical Mechanics and standard Thermodynamics) in three important systems,
namely Lévy-like anomalous diffusion, gravitational-like models and long-range Ising fer-
romagnets. The unified picture which emerges is that, whenever Boltzmann-Gibbs for-
malism (g = 1) fails, the problem hopefully becomes tractable within noneztensive ther-
mostatistics (g # 1). The index q is shown, for the Lévy problem, to depend only on the
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space dimensionality d and the power characterizing the long-range interactions. This is
expected to be also true for the gravitational and magnetic cases herein focused.

We have then addressed the thermal dependence (for positive temperatures) of the
specific beat associated with the infinite-range spin 1/2 Ising ferromagnet, i.e., N spins
interacting (two by two) all with all. Our numerically exact results (summarized in the
Table) strongly suggest a variety of phenomena in the limit N — oo . Let us mention

here the most remarkable two:

(i) in complete analogy with the well known C,/Nkp vs. kpT/N curves within
Boltzmann-Gibbs statistics {q = 1), the curves N2C,/20-9~k vs. kT/N3J within
g # 1 statistics tend to a numerically well defined thermodynamic limit; this is the
first time that the existence of such a limit is exhibited for an interacting model

(this fact has already been verified for a noninteracting model [29]);

(i) analogously with the Landau-like phase transition which is known to exist for¢ =1,
a nontrivial divergence, at a finite rescaled temperature, in the rescaled specific heat
is observed for 0 < g <1 (not for ¢ > 1} whenever the energy spectrum includes a
positive portion. Although no evidence for phase transitions ﬁas been obtained for
g > 1, these should not be excluded without further studies. Jndeed, the specific
heat critical exponent « is herein shown to be positive for ¢ < 1, and it is known
to be zero for ¢ = 1 (MFA). Consequently, it could well be that it is negative for
¢ > 1, thus producing a soft thermal dependence of the specific heat (as herein
observed !).
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Captions for Figures and Table

1: d-dimensional gravitational-like systems (with attractive potential o< r~* at long
distances; see Eq. (13)). Boltzmann-Gibbs statistics (g = 1) is fully satisfactory for
a > d and a < 0 , marginally satisfactory for « = d and a = 0, and unsatisfactory
for 0 < a < d (where it should hopefully be replaced by nonextensive statistics
with g possibly below unity). Standard d-dimensional gravitation corresponds to
o =d—2 . We have used the expression “quasi-ideal gas” rather than “ideal gas”
for the d = 0 axis because of the presence of a non-vanishing short-distance cut-off
A (“ideal gas™ would strictly correspond to A = 0). d = a = 3 corresponds to the

permanent dipole-dipole interaction, ezcepting for the angular effects.

2: d-dimensional spin 1/2 long-range Ising ferromagnet (J;; = J r,?'_,-(""‘s} ; d+620;
see Eqs. (14) and {15)). Boltzmann-Gibbs statistics (g = 1) is fully satisfactory for
6 > 0, marginally satisfactory for § = 0 and unsatisfactory for § < 0 (where it
should hopefully be replaced by nonextensive statistics with g possibly below unity).
The T, = 0 dashed line (joining the point (d,d+ &) = (1,3) with the origin) is only
indicative since the exact answer is, to the best of our knowledge, still unknown.
The Mean Field Approach (MFA) corresponds to both d+é — 0 (¥ d) and d — oo
(V d + & > 0); the first-neighbor models correspond to d + § — co (¥ d); the ideal
paramagnet (independent localized spins) corresponds tod = 0 (Vd+6 > 0
see [29]). In the entire region § < 0, the Boltzmann-Gibbs critical temperature
diverges. The short- to long-range crossover line corresponds to d + 6 =d+2, and

the long-range to classical one corresponds to d + 8 = 3d/2 .

Fig. 3: Infinite-range model (MFA of Fig. 2) within Boltzmann-Gibbs statistics (¢ = 1).

Both the specific heat C; and the temperature T must be rescaled as shown in order
to have, in the N — oo limit, finite values almost everywhere. The exact N — oo
rescaled specific heat (dashed line) strictly vanishes if kgT/NJ > 2, and tends to
3/2if kgT/NJ — (2 - 0) (see [54]).
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Fig. 4: Infinite-range model within ¢ < 1 statistics for nonnegative spectrum (B =
N(N - 1)) for typical values of g. Both the specific heat C; and the temperature
T must be rescaled as shown in order to have, in the N — oo limit, finite values

almost everywhere. The insets show the N = 800 full curves.

Fig. 5: Infinite-range model within ¢ < 1 statistics for mixed spectrum (B = N (N -
2)/2) for typical values of ¢. The insets show the N = 800 full curves.

Fig. 6: Infinite-range model within ¢ < 1 statistics for nonpositive spectrum (B = —N)
for typical values of g. N takes the values 20,40, 100,200, 400, 600 and 800. The
insets show the N = 800 full curves.

Fig. 7: Infinite-range model within ¢ > 1 statistics for nonnegative spectrum (B =
N(N —1)) for typical values of g. N takes the values 40,100,200, 400,600 and 800.

Fig. 8: Infinite-range model within g > 1 statistics for mixed spe‘ctrum (B=N(N-
2)/2) for g = 2. N takes the values 10,20, 40,100, 200,400, 600.and §00.

Fig. 9: Infinite-range model within ¢ > 1 statistics for nonpositive spectrum (B = —N }
for g = 2. N takes the values 10,20, 40, 100, 200,400, 600 ard 800.

Table: Summarized results of the present paper. C,/Nkg vs. k3T /NJ independs from
B. We use “No evidence for phase transition” in the sense that no divergence ap-
pears, in the N — 0o limit, in the rescaled specific heat as a function of the rescaled
temperature. If (B + N)/N? = 1 € R, then ¢ < 1 yields imy_oo{kT./N*J) =
n(l—q)if 720, and ¢ > 1 yields imyoo(kTr/N?J) = (1 —n)(g—-1)ifn £ 1
and Bmp—oo(kTmes/N?J) = n(g — 1)/2 if n > 2/3 ; these expressions have been

numerically checked for arbitrary values of .
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Table
0<g<l g=1 g>1 n
Nonnegative N2C,[k20-0N Cy/ksN N2C,[k20-0N "
Spectrum vs. kT/N%J vs. kgT/NJ vs. kT[N?J
(B=N(®N-1), |
ie, p=1) No evidence for
Phase transition Phase transition phase transition
BN —oo(kTe/N?T) | Bnooo (k5T /NT) = 2 | Himyeoo(KTimos /N?J)
=1-¢ =(¢g—1)/2
No frozen region No frozen region No frozen region
Mixed N2C,[k2u=aN C./ksN N3C, k209N
Spectrum vs. kT/N*J vs. kgT/NJ vs. kT/N*J
(B=N(N-2)/2,
ie, 1=1/2) Phase transition Phase transition No evidence for
imy_oo(kT/N?J) |lmyoe(ksT./NJ) =2 phase transition
=(1-q)/2 :
No frozen region No frozen region Frozen if
(kT/N*J) < (g —-1)/2
Nonpositive NC,[k20-0N C1/ksN N3C,[k20-9N
Spectrum vs. kT/N*J vs. kgT/NJ vs. kT/N?J
(B=-N,
ie, =0} Phase transition Phase transition No evidence for

BmN oo (kT3 /N?J) = 0

No frozen region

limy—oo(kpT./NJ) = 2

No frozen region

phase transition

Frozen if
(kT/N*J) <q—1
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