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ABSTRACT

We formulate a conjecture concerning the critical
frontiers of g- state Potts ferromagnets on d- dimensional lat-
tices (4> 1) which generalize a recent one stated for planar
lattices. The present conjecture is verified within satisfac-
tory accuracy (exactly in some cases) for all the lattices or
arrays whose critical points are known. Its use leads to the
prediction of: a) a considerable amount of new approximate cri-
tical points (26 on non-planar regular lattices, some others on Husimi
trees and cacti); b) approximate critical frontiers for some
3- dimensional lattices; c) the possibly asymptotically exact
critical point on regular lattices in the limit d-+« for all
g >1l; d) the possibly exact critical frontier for the pure
Potts model on fully anisotropic Bethe lattices; e) the possibly
exact critical frontier for the general quenched random-bond

Potts ferromagnet (any P(J)) on isotropic Bethe lattices.



RESUME

Nous formulons une conjecture sur les frontiéres
critiques du modéle de Potts & g états ferromagnetique sur
des réseaux d-dimensionnels (d > 1) gui généralise une propo-
sition récente pour des réseaux plans. La conjecture présente
est verifiée de facon satisfaisante (exacte dans certains
cas) pour tous les réseaux dont les points critiques sont
connus. Son utilisation nous permet de prédire: a) un nombre
considérable de points critiques approchés (26 sur des réseaux
réguliers non planaires, quelques uns sur des arbres de Husimi et
des cacti); b) les frontiéres critiques approchées pour quel
ques réseaux tridimensionnels; c) le comportement assymptoti
que probablement exact du point critique pour des réseaux ré
guliers dans la limite d -+« pour tout q >1l; d) la frontiére
critique probablement exacte pour le modéle de Potts pure sur
des réseaux de Bethe completement anisotropes; e) la frontiére
critique probablement exacte pour le modéle trempé ferro-
magnetique de Potts 3 liaisons aleatoires distribuées selon

une loi quelconque (P(J)) sur des réseaux de Bethe isotropes.



1. INTRODUCTION

Many efforts are presently being dedicated to
the discussion of the critical properties of pure (aswell
as random) g- state Potts ferromagnets (whose Hamiltonian,
for the particular case of first-neighbour interactions, is

%='Qj Z S g, 7 0.=1,2,...,9 Yi ; J>0). We have
recently ~ presented '™’

a transformation which leads to
a new type of quasi-universality for planar lattices, in
the sense that the critical point depends on the particular
lattice but, either exactly or within good accuracy, not
on the number of states q (L<g< 4). The purpose of the
present paper is to exhibit how such transformation can be
extended, on conjectural grounds, to non planar lattices.
Before going on, let us recall that the limits g->0 and

(3,4) and

g—+1 respectively correspond to tree-like
stan&miﬂs)bond percolations, that g=2 corresponds to the
spin 1/2 Ising model, and that physical interpretations for
g=3,4 are discussed in refs.(6,7). Furthermore the phase
transition is commonly believed to be a first order (con-
tinuous) one for q:>qc(d),(qéiqc(d)), where qc(d) depends
on the dimensionality d of the lattice; in particular, it

(8)

has recently been proved that, for 4 »>2, the transition
is a first order one in the limit g-»® (thus confirming

(9)). In what concerns
(10,11,12)

the conjecture by Mittag and Stephen
d=2, it is by now well established that qc(2)=4,
whereas for d =3 the situation is less clear in the sense

that although guite an amount of evidence already exists



(see refs. (13,14)) in favour of qc(3) =~ 3 (let wus however

(13)

mention that Jensen and Mouritsen's recent work quite con

vincingly suggests that qc(3) is slightly smaller than 3); in

what concerns d=4,qc(4)presumably satisfies(l4)

2¢ 9. (4) <3
(as a matter of fact it might well be that qc(d)monotoniCally
and continuously decreases for d varying in the interval D44l
and equals 2 for all finite d > 4; in any case, in refs.(6,14) it is
stated quite firmly that the (g=3; d=4) case corresponds to
a first order transition). A more delicate ambiguity appears
in the limit d »«: on one hand one .could expect that the

Landau theory prediction(g’ll)

(namely, first - order phase
transition for all g>2 and all dimensionalities) becames true
for sufficiently high dimensionality, but on the other hand

(15)

Southern and Thorpe obtain, for a z- coordinated Bethe

lattice (whose effective dimensionality on topological grounds

can be considered, for 2z > 2, as being infinite(lG)),

a con-
tinuous phase transition for all values of gq; as a possible
solution of the paradox, one could speculate that the 1latent
heat associated to g > 2 and 0<<d_l<0<l continuously vanishes
at d_l==0 (thus becoming oncemore the transition a continuous
one). The present work mainly concerns the region of the (q,d)
space where the transition is a continuous one, or slightly
first order (in the sense that the discrepancy between' the

two associated metastability points is small compared with

the transition point itself).



2, TFORMULATION OF THE CONJECTURE

We have used(z), for planar lattices, the vari-

(1)

able
1y )
J@ -1+ (-1 t¥] (1)
ngq
where
-q3/kgT
(q) - l-e
g9 = (2)
—qg3/kgT
1+ (g-1) e

and verified, for a large set of lattices, that the ferro-
magnetic critical point s_ [2 s(t,) = s(t(TC)))' , or critical
frontier in more general cases, depends on the lattice but
practically not on the value of q (1<g< 4). We intend here

to generalize this to all dimensionalities (at least for d4d>1),
by heuristically extending the variable s. Furthermore, because
of the isomorphism(s) existing between the g+ 1 Potts model
and bond percolation (see also ref.(l)) and by taking into

account that t(l) corresponds to a probability, we impose that

g (1) _ t(1) va Vt}l) (3)
We also impose, for all values of g, that

s(d~w) = (@ Vg v&@ (4)

(We shall see later on that this restriction enables exact results
concerning Bethe lattices and the asymptotically exact behaviour
on regular lattices). These hypothesis and the demand to contain
expression (1) as a particular case can be simultaneously satisfied

through the definition
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| zn[1.+ (-1 h(d) @) ]
. (@] = (5)
s[q,h(d), t ]
gn[1+ (g-1)h(d)]

where h(d) is a number which depends on the particular d-
dimensional (d > 1) lattice we are dealing with; restriction (4)

implies that

lim h(d) =0 (6)
d->e
Remark that the previous results obtained for planar lat-

tices(z) can be recovered by making h(2) =1 for any planar

lattice. By the way let us notice that
s|g,h(d); =1- S[q,h(d); t (7)
1+ (@-1)h(d) t @

which, for d=2 and h(2) = 1, expresses a duality trans-
(1,2,17)

formation .
At this level we may state our conjecture: for
any d-dimensional lattice (d > 1) exists a number (namely h(d))

cuch that the (ferromagnetic) critical point sciEs(q,h(d);tJ

depends on the lattice but practically not on q (lSCIqu(d) ;

d is not necessarily integer). By imposing, for example, s (1, h; tél) )=

= s(2, h; téz)) we obtain, for a given lattice, the corresponding
value of h. The use of Tables la and 1lb and refs (2,18) provides
the values indicated in Table 2 (see also Fig. 1), where we remark
that, for a given dimensionality d, h does not vary <very much
(h(2) = 1, h(3) = 0.38 within about 10% error). Therefore, for
lattices where variations of independent coupling constants Jl’
J2,...,Jn do not change d, we can extend this conjecture

to the entire critical frontier (CF) similarly to our pre



(2)

vious work , hamely:

(g,) (q,)
if ¢{S[q 0 tl ° )l"'l S[q i t © = 0 is the CF for a
[0} 0 n

fixed value d, (1< qo\< qc(d)) then

) {s [q,h; t{q)J,..., s[q,h; tr(lq)}} =0 (8)

represents, within good accuracy, the CF for other wvalues of

g as well {lsqsqc(d)); ti(q) is related to Ji through eq. (2) .

3. APPLICATION TO CRITICAL POINTS OF PURE FERROMAGNETS

3.1 General Remarks and Finite Dimensional Regular

Lattices

(2)

This conjecture has been verified on a large set of

planar lattices using the value h(2) = 1 which leads to the exact
frontier only for the square lattice. However, if we use the val
ues of h indicated in Table 2, the accuracy of the conjecture is
expected to increase. For example, for the anisotropic triangular
lattice the maximal error in the s-variable (which occurs in the
isotropic limit(z)) introduced by this conjecture reduces from
2 ?) (with h = 1) to 0.17% (with h = 1.08448) for q = 3 and from
2.45%) (with h = 1) to 0.32% (with h = 1.08448) for q = 4. Simi-
larly, for the isotropic diced lattice(lS), the error in the s-
variable introduced by this conjecture reduces from 1% (with h=l)
to 0.22% (with h = 0.953) for g = 3 and from 1.3% (with h = 1) to
0.43% (with h = 0.953) for g = 4. For their dual lattices (honeycarb
and kagomé respectively) their percentual errors are even smaller.
For the SC and FCC lattices our estimates for the q = 3 critical

points agree quite well (the discrepancy in s being about 0.4%

and 1% respectively) with previous ones (see Table la).



Tables la and 1b have been calculated by using:

i) the values of h indicated in Table 2 whenever the critical
points are known for two or more values of qg;

ii) the value of h(d) corresponding to the d- dimensional hy-
percubic lattice for all the first-neighbour lattices where only
one critical point is known ;

iii) the first-neighbour lattice h value for asscociated first-
and higher-neighbour lattices (this choice has proved to be a
good one for the first and second-neighbour square lattice: the
discrepancy in h is about 1%; see Table 2).

Through this procedure, the present conjecture has
provided 26 new independent critical points which are presented
in Tables la and 1lb (region delimited by heavy lines). The cen-
tral values of the s- variable indicated in these tables have been
obtained by using the central values of t(z)andkm'tG)prrepmeCed
in the same line (top value). The error bars were estimated by
taking into account the error and/or dispersion existent in the
literature, the error coming from the uncertainty in the determi
nation of h and finally the intrinsic error of the conjecture it
self (the latter has proved to be neglectable whenever check was
possible). We may remark in these tables that the overall uncer-
tainty in the values of téq)/q and kBTc/qJ is about 1% for allthe

cases but the hcp lattice (for which no recent estimation of P.
is available as far as we know).

For the three dimensional lattices (Table la) we
have restricted ourselves to 1<g< 3 in order to be sure that
the transition is either a continuous or a slightly first

order one. For higher finite dimensionalities (Table 1b) the



transition is a second order one if g« 2; it is however inter-
esting to remark that for the d=4 HSC lattice and g=3 the pre-
(6)

sent conjecture still holds (3J/kBTc==0.3875:t0.OOlO hence
sc==0.158:t0.004 to be compared with 0.161 + 0.002 from Table

1b).

3.2 Regular Lattices in the d -+ Limit

(19)

Gaunt and Ruskin have derived the following
(probably asymptotic) expansion for the critical bond proba-

bility p, on d- dimensional simple hypercubic lattice:

pCEs[l,h; t(l)]=—+k—-———-+——+ + een (9)

c
where o =2 -1=2d-1, 2 being the coordination number.

Furthermore Fisher and Gaunt(20) have obtained a
(probably asymptotic) expansion for the Ising critical point.

From their results it immediately follows

3 + 15 + 256 A (10)

'+. US 30,6

+

(@ 1,1
o}l o

=+
C

Q

It is more convenient to work herein with expansions in o
rather than in z because of the better numerical results which
are obtained for d varying from 2 to 7 (possibly for 4> 7 as

well) ; consequently we have chosen 0_1 for abcissa in Fig. 1.

Through the imposition s[l,h; tél)J= S[Z,h; téZ)),

we get the following (probably asymptotic) expansion for h

h(o)=iz+ﬁ+... (11)

o o}



Observe that the term 0_1 appearing in expansions
(9) and (10) corresponds to the Bethe approximation (see refs.
(19, 20)) which is expected to be asymptotically exact in the
limit d+« for all regular lattices. We immediately verify
condition (6), which ensures the validity of the conjecture
within the dominant asymptotic term for «ll regular lattices.
The cases g > 2 have not been included in Table 1b, however ,
for all values of g and d>>1 for which the transition is

only slightly first order, we expect

S{q,h(d+m); téq)) v t((:q) m% (g>1) (12)

3.3 Bethe Lattice [d;l==0)

The critical point of a z- coordinated Bethe lat-

tice (whose effective dimensionality can be considered as in-

(16)) is given - (through notation changements) for all

by(lS,lG,ZD

finite

values of g

s{q,0; £ @] = ¢@ - L (¥ q) (13)
z-=1

Therefore the conjecture is strictly verified for all values

of z.

3.4 Husimi Trees

We consider here the  2z- coordinated . triangular
cactus (z/2 triangles coming together at each site) and square
Husimi tree (2/2 squares coming together at each site) whose

exact critical points are known for g=1,2. Through notation



changements, the g=1 critical value P, of the triangular cactus
is given by(l6’22)

2 _ .3 - _1
Pe ¥ Po T Pe T (14)

where o=z -1; see Table 1lb for the values corresponding to

z=4,6,8,12; o+~ leads to pc'bl/o, i.e., the Bethe 1lattice

limit (13). The g=2 critical value leads to(zz)

(2) _ 1 _ _
tC = > [0 o? 4:[ (15)

see Table 1b for the values corresponding to z=4,6,8,12; 0=+

(2) (20)

leads to tc vl1/0, i.e. the Bethe lattice approximation .

Analogously we have, for the z =4 square Husimi tree, that g=1

leads to(ls)

l—2pc—2pc2:—2pc3:+3pé =0 (16)

(see Table 1b for the value pc)

and g= 2 leads to(23)
; 3
1- 2t((:2) - 2{té2))'2_ 2[1:;2)) + [téz))u =0 (17)

(see Table 1lb for the value téz)).

In the present situation, no check can be performed in what

concerns our conjecture, but we can use it {pc==S(2,h(def)7tézh)

to calculate the associated values of h (see Table 2) and,through
Fig.l, to estimate the effective dimensionalities def (Table 2).
Since these values are finite and bigger than 4, it seems plau-
sible that in the Husimi trees (including the cactus) the tran-

sitions, for g > 3, are of the first order. We have seen before
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(d=4 HSC and g = 3) that the conjecture provides reasonable es-
timates even for first order phase transitions. If this is still
true for the Husimi trees then we should expect, for g=3,
té3) = 0.339 for the z =4 square Husimi tree and té3) = 0,364,
0.204, 0.144, 0.0911 for the triangular cacti with coordination

numbers 4,6,8 and 12 respectively.

4. APPLICATION TO CRITICAL FRONTIERS OF PURE FERROMAGNETS

Let us now apply our conjecture to calculate entire criti

cal frontiers as formulated in eq.(8).

4.1 First '‘and Second-Neighbour Cubic Lattice

Let us note Jl and J2 the independent ferromagnetic
coupling constants respectively associated to the first and
second neighbour interactions in the cubic lattice. Since in
both extreme cases J2/Jl==0 (first-neighbour SC) and Jl/J2==O

(two independent first-neighbour FCC lattices) there is no

change of dimensionality, we can apply our conjecture.

As far as we know, no results concerning the entire criti
cal frontier have been proposed for g# 2. The approximate q=2
critical temperatures have been calculated, through series ex-

d(24). Their results

pansions, for O.sJé/Jls:l, by Dalton and Woo
lead (by using h==hSC==0.377), in the s{l)-séz) space, to the
curve in heavy line shown in Fig. 2. The uncertainty in the hSC
value leads to the two broken lines; the superior one coincides,
within the scale of Fig. 2, with the Ising frontier obtained by

CcC

using h.==hF =0.412, We conjecture that the critical frontier,

for every q (at least for 1<qgg3), is well approximated, for



- 11 -

Os‘Jz/Jlstl, by the curve in heavy line whose extrapolation (dot-

ted line) for higher values of J2/Jl must intersect the s(q) axis

2
FCC

c =0.119 +0.001 (see Table 1la).

at the value séq)==p

Let us consider a BCC lattice where Jl and J2 are

respectively associated to the first and second neighbour ferro-
magnetic interactions. Analogously to' the previous case, we can
apply our conjecture since in both limit cases J2/Jl==0 ( first-
neighbour BCC lattice) and Jl/J2==0 (two independent first-neigh-

bour SC lattices) we have three-dimensionality as well.

As far as we know, the entire critical frontier has

been calculated only for g = 2. By using Dalton and Wood's(24)vq£

ues for the Ising critical temperatures for 0 < Jz/Jls 1 and
BCC

h =nh = 0.372+0.037 we obtain the g = 2 critical frontier (heavy
line of Fig. 3), within some error (broken lines). Remark that

hPC ana hSC qiffer so little (see Table 2) that if we had used
SC

h we would have obtained a curve indistinguishable, within the
scale of Fig. 3, from the previous one. According to our conjec-
ture, the referred frontier holds as well for other values of q

(at least for 1 < g £ 3). The extrapolation for J2/Jl >1 (dotted

line in Fig. 3) must intersect the s§q> axis at the value pic =

= 0.247%20.003 (see Table la).

4.3 First, Second and Third-Neighbour FCC Lattice

Let us respectively note Jl'JZ andJLBthe first;, second
and third neighbour ferromagnetic interactions in the FCC lattice.
Once more the limit cases J2/Jl==J3/Jl==0 (first-neighbour FCC

lattice), J l/J 2=J3/J 9 = 0 (four independent first-neighbour SC lattices)

anddl/J3:=J2/J3== 0 (third-r.cighbour FCC lattice; z = 24) have
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all the same dimensionality d= 3, thus allowing the application
of our conjecture. As far as we know the critical surface for
this lattice has been discussed only for g = 2. Philhours(25)has
calculated the Ising transition temperatures for Oész/Jl L 2
and Oé.J3/J1<'2, while Dalton and Wood(24) have considered only
the particular case of first- and second-neighbour FCC lattice
where OS.JZ/Jls 1 (J3/Jl==0). These results lead (for h==hFCC =
0.412 + 0.026) to the critical surface shown in Fig. 4. The error
introduced by the uncertainty on h can not be seen within this

scale. The same happens with the discrepancy (inferior to 0.3%

in the siz) variables) between the results of refs. [24](cnxmes
in Fig. 4) and [25]. Once again we conjecture that this criti-
cal surface is valid for, at least, 1l<g< 3; its extrapolation

must intersect the s(q) axis in picz=0.247:t0.003 (Table la) and

2
the s{¥ axis in pECC(3) = 0.05440.004 (we have estimated this
value by comparing extrapolations, in the sl(z)— 552)— s3(2)

space, of different iso - J2/Jl critical lines),

4.4 Anisotropic Bethe Lattice

(26)

Turban has obtained the exact bond percolation

critical frontier for a z- coordinated Bethe lattice with n, and

1
n,=2z-n; bonds with respective occupancy probabilities Py and
P, (see eq.(5.4) of ref. [26]). Following his procedure(26), we

N
generalize it for the case of Ny/Nyyees and Ny bonds | ) n, =z )
i=1

with probabilities PyrPoree- and Py respectively, and obtain

the following critical equation
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l-pl(nl—l) - Ppn, - Py Dy
- Pyhy 1- p2(n2-l) - P,y
. . . =0 (18)
= Pyl - PRy oo l-pN(nN-l)

As we have seen that for the Bethe lattice s{q,O;

¢ ()

(q)
N t

)=i

critical frontier for every q is given by

- we conjecture (according to eq. (8)) that the exzact

_ . (a) - _ . (a) _ o (a)
1 tl (nl 1) tl n2 coe tl nN
(q) (a) _ _ 4 (a)
—t2 n, l--t2 (n2 1) ... t2 nyg
. . . =0 (19)
(q) _ o (a) _ () _
tN ny tN n, 1 tN (nN 1)

5. GENERAL ISOTROPIC'" BOND-MIXED POTTS FERROMAGNET ON BETHE

LATTICE

Up to this point we have considered only pure Potts
ferromagnets, but we can also apply our conjecture for the quenched ran=
dom-bond Potts model on a z- coordinated Bethe lattice. The g=2
critical frontier for the general bond mixed problem (where each

bond strength J is an independent random variable with an

arbitrary probability distribution P(J), J 3»0) is given, through

notation changements, by(27)

<@
C

P (J)
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We conjecture that the exact critical frontier for any g is

(q) I
<t > by - oI (V¥ q) (21)
hence
—qJ/kBTc
1-e =1 (¥ q) (21")
-qJ/k_T z-1
1+ (g-1) e B ¢ ()

where <e++> stands for the average associated to P(J).

We observe that in the dilute case (P(J)==(l—p)6(J)+p6(J—JO) ;

(15)

JO >0) we recover Southern and Thorpe's result ptéq)=(z—])_l.

6. CONCLUSION

We formulate a conjecture concerning the critical fron
tier of g~ state Potts ferromagnets. This conjecture essentially
states that, through a convenient variable, quasi- universality

(2)

with respect to q can be exhibited. We have recently provided
a large number of verifications for planar lattices, to  which
we can presently add two more, namely, the anisotropic Kagomé and
diced lattices whose exact critical frontiers for any g have been
conjectured by Wu(ls). We add herein a certain amount of verifi-
cations for non planar lattices: SC, FCC, d - » regular lattices,

isotropic Bethe lattice for the quenched bond-dilute ferromagnetic

problem.
The present conjecture enables us to state acertain

amount of predictions, namely
i) 26 new approximate critical points (see regions of Tables
la and 1b within heavy lines) for pure Potts ferromagnets on

regular lattices;
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ii) the possibly exact critical point of the g- state Potts
ferromagnet on any z—- coordinated d- dimensional regular lat-

tice is, in the limit d +«, asymptotically given, for all g >1,

by Eq.12, i.e. ~BiC . g /tn(Zrd=2,

J z -2
iii) the approximate critical points for pure Potts ferro-
magnet$s on a certain amount of Husimi trees (we expect the
transition to be of the first order for gq > 2);
iv) the approximate critical lines (or surface) for pure Potts ferro
magnets on the first and second-neighbour cubic. and BCC as
well as on the first, second and third-neighbour FCC lattices;
v) the possibly exact critical frontier for the pure Potts
ferromagnet on fully anisotropic Bethe lattices (Eqg. (19));
vi) the possibly exact critical frontier for the general iso

tropic quenched random- bond Potts ferromagnet on Bethe lat=-

tices (Eg.(21')).

Cross—-checking, by other procedures, of the present

predictions would be very wellcome.
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CAPTIONS FOR FIGURES AND TABLES

PIG.

FIG.

FIG.

FIG.

1

2

3

4

Parameter h as a function of o ~(o=2d~-1) for the
hypercubic lattices. The broken line is a . guide-
to-eye curve which has the correct asymptotic be-
haviour in the o+« limit. Values of h corresponding
to other d=2,3 lattices are also indicated. (a)
Square (b) 4-8 (c) Non-crossing diagonal square
lattice (d) Kagomé (e) Diced (f) 3-12 (g) Asanoha
(h) First and second-neighbour square lattice (i)

Triangular (j) Honeycomb. See Table 2 for the refer
ences that have been used.

The approximate para (P) -ferro (F) magnetic criti
cal frontier of the first and second-neighbour SC
lattice Ising model for 0<|J2/Jls 1 obtained

(24} \a h=0.377

by using Dalton and Wood's results
* 0.044. The dotted line is a guide-to-eye extra-
polation which contains  the correct limit for

C

o (FCC _

The approximate para (P) —-ferro (F) -magnetic criti
cal frontier of the first and second-neighbour BCC
lattice Ising model for Os.JZ/Jls 1 obtained by

(24) Jha h=0.372 +

using Dalton and Wood's results
0.037. The dotted line is a guide-to-eye extrapola
tion which contains the correct limit for J2/J1-+°°

(p(S:C =0.247 +0.003).

The approximate para (P) -ferro (F) -magnetic criti.
cal surface (heavy line) of the first, second and

third-neighbour FCC lattice ' Ising model for
\



TABLE 1

TABLE 2

0< J2/J1\< 2 and 0 < J3/Jl\< 2 which was obtained using

(25) gnd h=0.412+0.026 (we have

Philhours' results
also indicated Dalton and Wood's values(24)(x)). The
dotted line is a guide-to-eye extrapolation which
contains the correct limits for J2/J1-+W, J2/J3 > o

SC

(pc =0,247 +0.003) and for J3/Jl—+w, J3/J2-+m ( we

estimate ﬁfr

(3) = 0.054+0.004),
Critical points for isotropic and homogeneous qg-

state Potts ferromagnets in a set of d- dimensional

lattices. In the indicated references appear either
the humbers we have quoted or others which immedi-
ately imply them. The region delimited by a heavy line
contains resu]ts that, as far as we know, have not yet
been calculated by any other procedure; (..,) denotes

an exact value. (a) d = 3 lattices (b) d > 4 lattices.

Estimates for the values of h in a set of d- dimensiond
Tattices (d > 2). For d > 3 we have used the g=1 and
q=2 results appearing in Tables la and 1b. For the cacti
and Bethe Tattices an effective dimensionality is indi
cated; (...) denotes an exact value. Although not
strict]y two - dimensional the first— and second-

neighbour square lattice c]ear]y belongs to the d = 2
c1ass(2).
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TABLE l.a
e , .- - 3 e
i B g=1 qg=2 T q=3
LATTICE kT o o k.T A A o E\_—
_ s =t =p B c s t B ¢ s t k}3 c
d=3 ¢ ¢ ‘¢ 5] o} c 7 c c 5
0.2470.00314939)) 3 5210 05 10.247t0.003 | 0.2181231) 4,5112 0.247%0.003 0.197:0.007 [5.4410.18
. 0.24650.0002¢2® |3.5330.003 0.247:0.003 | 0.21814#0.0000132)  |4.51060.0002 0.246:0.005 |0.1964 5. 45 (6)
- 0.2495:0.0005 29 13.484*0.008 |0.247:0.003 |0.21815@0) 4.5103 0.246:0.005 |0.19656 5. 4506 ‘13
0.2526£0.001330 | 3.435¢0,021 |0.247:0.003 |0.22813633) 4.5108
0.11920.001‘3“(’ 7.89£0.07 |0.119%0.0015 |0.1017273") 9,7962 0.119+0.0015 |0.090%0.002 |11.55%0.25
t
15% neighbour |0.119020.0005 3% |5 893+ 0,035 10.179:0.001  |0.101722¢0.000001 9.7967+0.0001'38) |0.1178:0.0015 |0.0890 11.6712)
Fee 0.119:0.001 |0.101716 37 9.7973 0.1175£0.0015 |0.0888 11,7038
0.119:0.001 |0.1201740 33 9,7950
A R A _
112% neighbour |0.1785:0.00203%) | 5.086%0.063 |0.1785+0.0020 |0.156099 1) 6.3538 0.1785£0,0020 [0.14020.005 |7.5440.,26
(33)
: BOC 0.1785:0.0020 |0.156116 6.3531
dtamond (d) 10.388:0.00534) | 2.03760.034 |0.388:0.005 [0.3537431) 2.7048 0.38820.005 |0.328£0.009 |3.3310.09
0.388:0.003  |0.353806+0.000013 %) 2.70425:0.00010
hep 0.12420.00549) | 7.55t0.33  |o.12420.005 [0.107%0.006 9.310.53 0.124%0.005 |0.0960,006 110.8:0.7
tetrahedran |5 563+0,003 3.28¢0.04  |o0.263t0.003 |o0.23300t0.00001 ‘4" |4.2130%0.0002 0.263t0.003 |0.21120.007 [5,09%0.16
(cristobalite)
hidrogen (42)
poroxide 0.558£0.007 1.225¢0.024 [0.558:0.007 [0.518140 1.74279 0.558:0.007 |0.488:0.013 [2.2240.06
bypertriangular J0.25120.003 3.4620.05  |0.251:0.003  |0.222087{42) 4,42771 0.251£0.003 [0.201£0.007 [5.3410.18
hyperKagomé  |0.433¢0.006 1.76:0.03  ]0.433:0.006  |0.394384 (42 2.39819 0.433£0.006 |0.365%0.012 [2.99:0.10
15t ang 224 (24) .
0.075¢0.001 12.830.18  ]0.075:0.001  |0.06443 15,499 0.075:0.001 [0.0570.002 [18.0:0.6
neighbour SC 0.075: 0,001 |0.06441%43) 15,504
st nd (24) !
12% ang 22 0.076+0.001 12,65£0,17 §0.076:0,001  |0.06444 15.497 0.076£0.001  [0.057:0.002 [18.0%0.6
neighbour FOC 0.076:0.001 |0.06436 (43 15.516
0.076:0.001  |0.0643 15.53(29
12 ang 224 Jo.099+0.001 9.50t0.10  |0.099:0.001 |0.08578%¢%) 11.629 0.099t0,001 [0,07620.002 [13.6%0.4
neighbour BOC 0.099:0.001 0.08571¢4) 11.639
e _ . o U O —
1;d, 2= and 0.0505:0.0008 19.300,31 0.050510.0008 10.0432 23.1 0.0505+0.0008 [0.03820,0016 P6.6+1.1
3=" neighbour SQ .
Bl s T m S D R e Al
: 0.030540.0004 32.28t0.43  [0.0305%0.0004 |0.0257 38.9 0.0305+0.0004 [0.02250,0008 #4.9¢1.6
neighbour FOC 0.0302:0.0003 0.02539 39,37(2%)
stpd o - @y V .. '
o 0.050120.0007 19.46:0.28 [0.05010,0007 {0.0429 23,3 0.0501£0,0007 0.038020.0014 26.81,0
neighbour BCC




TABLE 1b

g=1 I q=2
LATTICE :
P ‘ I kT
I s.=t =P, ; B ¢ : S | t. ; B c
! ! J ; | ! J
: i { | s
f | ae) i ! | (a4) ! '
i 10.16120.00157%) | 5 6972 0.058 1 0.161 £ 0.002 | 0.14856 £ 0.00003*#' }6.681520.0014
;B 0.1600 = 0.0002%3 5,735+ 0.008 | 0.167 £ 0.002 } 0.1487 4 l6.675°
! | [ 10,1612 0.002 | 0.14877 £ 0.00003'20) 16 671920 0014
t i ! i !
. ; ‘,
a4 | wree 0.0498 +0.0006 | 19.58£0.24 | 0.0498:0.0006| 0.04548 + 0.00002 %’ 21.97 +0.01
i 0.0498:0.0006, 0.04549 45! 21.97
i t
t
i ‘ )
; . 0.075 +0.001 | 12.83+0.18 | 0.075 +0.001 * 0.06889 +0.00005*®) 14,45 1 0.1
3 0.075 £0.001 : 0.06892 %) 14.487
;
s 10.118+0.000"% | 7.9620.07 ,0.1180.0015 0.11354 £ 0.00002 47) .5 7695+0.0016
o e 0.1181+0.0002 28 7.95720.014 | 0.118+ 0.00 10.21354  0.00001 2% {5.7695:0.0008
! 1 : )
: | , |
' (19 : i (20! |
S s {0.0941 + 0.0005 19 10,124 0.06 |0.0941:0.001 | 0.09210 = 0.00001 ‘2 110,827 + 0.001
,0.0943+0.0002'%® 10,102 0.02 | ‘, {
| ! ‘ ,
‘ ‘ :
0.0786 +0.0002'¥] 12.22+0.03 | 0.0786:0.001 | 0.077 20} '12.86
i=7 ! . ! |
o= Bsc 0.0788 = 0.0002 28" 12 18+0.03 | ;‘
! ' 1 .
'4ow (o*D-coordinates 1 09 v L ; 1 o L g
. i ; o ' ! ’a’ ; —O_. 0
L lattice ! | : H i
t ]
_ inated | y as,1e | ' i (s2n |
alg z~coordina I 1 oy z-1 ' 1 i 1 , ' 2
|®f ] Bethe Lattice | z-1 1 /an| = = : =1 | 7| 5
! T | ’*‘ 7 ‘
~coordi 16 i ]
| zoordinated 41 0.353922... % 1 2.0010... | 0.3s3933... | 0.3460... | 2.771...
| tree ; a [ ;
! 6,22, |
z=4 | 0.4030. 187298 5 o3 . lo.g3o... | 0.3820... 248532288
: ! x
{ i !
3 i - } 5
- coordinateq 177 0.2140.. . 2% 4.152... 0.2140. .. 0.2087... a.7209... B
i
¢ triangular
i
! cactus 2=8 | 0.1480.,.¢22 6.243... 0.1480... | 0.1459... 6.8052... 22
1 z=12; 0.0923... %7 0.2... 0.0923... | 0.09167... ! 10.8777.. 22
H ‘ i




TABLE 2

LATTICE h
Square (2) 1
Triangular (2) 1.084...
Honeycomb 2 0.913...
Kagom (18] 1.049...
Diced &) 0.953...
(2)
4-8 0.996+0.121
Non-crossing diagonall
d =2 square lattice ¢) | 1.003:0.109
3-12 (2 0.990+0.264
~asanoha ‘2! 1.00940.211
h--s-t and 2r_1_d neighbour
square lattice?) 1.010+0.140
sC 0.377+ 0,044
. FCC 0.412*0.026
BCC 0.372£0.037
Diamond (d) 0.339+0.034
d=4 HSC 0.207*0.029
d=5 HSC 0.0905 +0.022
d=6 HSC 0.0484%0.0127
d=7 HSC 0.0281+0.0114
o = 2d-1 + = HSC ’\:---:i—+l'g
o2 g
def > Bethe lattice 0
def=5.510.3 z=4 square Husimi tree 0.0721...
def=4.0 +0.2| z=4 triangular cactus 0.193 ...
def=5.6i0.4 z=6 triangular cactus 0.0653 ...
def=6.7t0.7 z=8 triangular cactus 0.0340 ...
def= 8.5+1.1 z=12 triangular cactus 0.0151 ...






