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ABSTRACT
The nuclear Giant Dipole Resonance (GDR) energies are calculated
using a macroscopic hydronamical model with two new features. The
motion is treated as a combination of the usual Goldhaber-Teller (GT)
and Steinwedel-Jensen (SJ) modes, and the restoring forces are all
calculated using the Droplet Mode]. The A dependence of the resonance
energies is well reproduced without any adjustable parameters, and
the measured magnitude of the energies serves to fix the value of the
effective mass m* used in the theory. The GDR is found to consist
mainTy of a GT-type motion with the SJ-mode becoming more important

for heavy nuclei. The width T' of the GDR is also estimated on the basis

of an expression for one-body damping.
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I. INTRODUCTION

The giant electric dipole resonance (GDR) is a beautiful example,
among the vast variety of possible nuclear excitations, of a manifestly
collective mode that can be understood, to a Targe extent, in terms of
a macroscopic approach. It corresponds to the absorption of electric
dipole radiation by the vibration of the neutrons}against the protons
and the subsequent damping of this motion into intrinsic excitation.

The GDR can be observed in every nucleus throughout fhe periodic
table and very little structure is to be seen in the energy dependence
of the absorption cross-section, except for the lightest nuc]ei.]
The absorption cross-section for most nuclei follows a Lorentz curve
whose mean energy Em (see Fig. 2) varies smboth1y with mass number in a

manner that shows little or no dependence on nuclear shell effects.2

On the basis of a few early experiments Goldhaber and Te]]er3
published a list of three possible semi-classical explanations for the
A dependence of the resonance energy. The first postulated an elqstic
binding of the neutrons to the protons that would result in a resonance
energy independent of A. The second proposa1, later elaborated by
Steinwedel and Jensen4 (the SJ-mode), was that the resonance might
consist of density vibrations of the neutron and proton fluids against
each ather with the surfaces %ixed. This kind of motion, which
corresponds to the lowest acoustic mode in a spherical cavity, would

result in a resonance energy proportional to A—1/3.

Their third
suggestion, one that they chose to discuss in some detail (the GT-mode),
was that the neutrons and protons might behave 1ike two separate rigid

but inter-penetrating density distributions. The resulting resonance,
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consisting of the harmonic displacement of these distributions with
respect to each other, would be expected to have an energy dependence

proportional to al/e.

éécause of the crude nature of the model and the severity of the
assumptions needed to justify it, the GT-mode has received relatively
little gttention over the years. On the other hand, the SJ-mode, which
also imposes a harsh and unrealistic constraint (that the vibration takes
place in a rigid fixed spherical cavity) on the motion, has served as
the basis for a vast literature dealing with the GDR. The SJ-mode has
~ been widely applied and has been extended to deformed nuclei,5 to

include compressibﬂity,6 to include the coupling to surface vibrations7’8

and other surface éffects.g’]o

Our interest in the GOR was revived when we realized that the
development of the Droplet Model‘”’]2 (which explicitly identifies the
energy associated with displacing the surface of the neutron distribution
from that of the proton distribution) would permit a more realistic
calculation of the restoring force for the GT-mode than the ad hoc
procedure that was used in the original work. We also came.to realize
that a much more satisfactory macroscopic description of the resonance
results if it is considered to be a superposition of GT- and SJ-modes.
A moments reflection should serve to convince the reader that if all
constraints were removed from a SJ-type density vibration then the
inertia associated with the flow of neutrons and protons would tend
to carry them beyond the location of the original surface when they
pile up first on one side of the nucleus and then the other. This

tendency of the neutron and proton distributions to undergo a harmonic

displacement from each other is just the GT-mode.



The work that is to be described here contains these two new
features. First, all the restoring forces are calculated in terms of the
Droplet Model. Second, the motion is considered to be a superposition
of GT- and SJ-modes with fhe relative magnitudes of the two modes
being determined by the coupling between them and the associated
forces and inertias. We find that the GDR is mainly a GT-mode, with
the re15tive amount of SJ-mode increasing for heavier nuclei that are
softer with respect to the neutron and proton compressioné thét are
involved. We also find an A dependence for the resonance energy that
is intermediate between that of the GT- and SJ-modes, in exée]lent

agreement with the measured valves.
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II. DEGREES OF FREEDOM
To describe the motion we choose a spherical (polar) coordinate
system with the z-axis, which is a symmetry axis, aligned along the
direction of motion. The equation of motion will be solved subject
to the constraint that the solution can be represented by a vector,
4

«=()) (2.1)

-~ az '
times a harmonic time dependence, where the vector components o and Qs

represent the relative amounts of the GT- and SJ-modes.

A. GT-Mode
The GT--mode,3 illustrated on the left side of Fig. 1, consists of

a rigid displacement of the neutrons from the protons by an amount

d = a;R , (2.2)

where R is the mean radius of the nucleus. The protons and neutrons

are displaced from the origin by the amounts,
_ N ' Z ‘
d, = K—d and d_ = - K'd » (2.3)

which leaves the center of mass fixed.

The dipole moment is given by

éRAﬁ , (2.4)

D] = Z‘edZ =a](fAlL_)

where e is the unit of electronic charge.

The flow fields for the protons and neutrons in the GT-mode are

given by

-
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where
vy = &1R(cose ér - sing ée) . (2.6)
B. SJ-Mode

In the SJ-mode,” illustrated on the right side of Fig. 1, the
protons and neutrons vibrate against each other in a fixed spherical

cavity in such a way that their density variations are given by

sp,=Noen and sp =% p e (2.7)
where

éﬁ = aZle(kr) cosb . . (2.8)
where

kR = a = 2.08 (2.9)
and

C= 2a/j0(a) = 9.93 (2.10)

The expressions jo and j] are spherical Bessel functions. Equation (2.9)
serves to determine the value of k in terms of the nuclear radius R in
order to satisfy the boundary condition of a fixed surface, and it

also serves to define the quantity a which is useful in some of the
expressions that follow. Equation (2.10) gives an expression for the
quantity C, whose value has been chusen so that the expression for

the dipole moment in the SJ-mode is



in analogy with Eq. (2.4). This normalization is important since it
establishes a scale against which the relative contributions of GT- and
SJ-modes to the GDR can be measured.

The velocity fields for the protons and neutrons in the SJ-mode -
are given by
V,, = E-v and v, = -~ 7V (2.12)
<2z A <2 ~2n A2 °? ' :
where

- C.| . A . . A
Vo =, E-J](kr) coso er"%F J](kr) sind e6] . (2.13)



II1. EQUATION OF MOTION
The homogeneous equation of motion for harmonic vibrations of the

system is
(wB-Cla=0 , (3.1)

where B and C are the inertia and stiffness matricies defined in terms

of the kinetic energy T and the potential energy V by the expressions,

T=26-B+& and V=ga-C-a (3.2)
A. The Inertia Matrix, B
The total kinetic energy of the system can be written
=1 2 ' 2
T= 2z ™ J. pz(xlz * !22) * pn(!]n * YZn) ? (3.3)
_ : Vol
where the p's are particle number densities and m is the nucleon
mass. If one substitutes from Eqs. (2.5) and (2.12), performs the
indicated integrals and then compares the resulting expression with
Eq. (3.2), the components of B are found to be
B]] ='B ] .
Big =By =B ; (3.4)
2
_ a =2
Bpe= —2— B
where
_ 2(NZ\ ,5/3
B = mro<A2) A : (3.5)

and the quantity (a2 - 2)/2 = 1.17.



B. The Stiffness Matrix, C

-~

In analogy with the determinaticn of 5 in the previous section,
the values of the components of the stiffness matrix g can be determined
by calculating the Dropfet Model potential energy as a function of
oy and o, and matching the coefficients of the quadratic terms to the
corresponding terms in Eq. (3.2).

The Droplet Model expression for the dependence of the potential

energy on o is contained in the expression,"2

V=const + 5t [ 6%+ Lf (HTZ + 2Pts, - esi) .
vol 0

3 _2
™, dnr - “surf

(3.6)

The quantity T is the distance between the equivalent sharp surface of
the proton distribution and that of the neutron distribution (the
“neutron skin thickness"), in units of o The nuclear asymmetry § is

defined by the expression
8= (o, - 0,)/0 , : (3.7)

and 63 is simply the value of § at the surface. The Droplet Model
coefficients J, H, P and G serve to define the response of the system
to variations in T and §.

Of course, T is a function of<x],and position on the surface through

the expression

T=7T -a]A]/?’

o coso . - (3.8)
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and § is a function ay and position through the expression

NZ\ ~. ;o
5=, - 2&2(—7) Ci (kr) cose . (3.9)

A

which is obtained from Eq. (3.7) by substituting in Egs. (2.7) énd (2.8).
The quantity §_ is obtained from Eq. (3.9) by letting r = R so that
kr > a. '

The intergrals in Eq. (3.6) can be performed after substituting
in Eqs. (3.8) and (3.9). The resulting expression in a; and a, can be

compared with Eq. (3.2) in order to establish that the components of

C are,
_ 2 .,4/3
C-I-I"3HA °
o 4 LN\ 2
Cip = Coy = 3 PA(A2> a , , (3.10)
NZNE | 2, 2 8 ..2/3(NINe 4
Cyp = JA —5) 42°(a” - 2) - $ oA (K?> a

Note that C]], which is the coefficient describing the festoring
force in the GT-mode, is proportional to the Droplet Model coefficient
H rather than being proportional to J (the volume symmetry energy
coefficient) as was assumed in the original work.3 The coefficient
H describes the resistance agains£ the formation of a neutron skin.
Another point to note is that the coefficient C22, corresponding
to the SJ-mode, consists not only of the usual volume term proportional

to J, but also of a "surface term" proportional to the Droplet Model

coefficient G. In fact, a good fit to the measured GDR energies has
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been obtained using only the sJ-mode and a Droplet Model-motivated,
surface-dependent symmetry energy like that in Eq. (3.10).2 The
symmetry energy coefficients determined in this way were somewhat larger
than those determined by a fit to nuclear masses.

The off-diagonal terms C]2 and C21 provide the potential energy
coupling between the modes because of the joint dependence of the
surface.energy on T and GS. In addition the two modes are inertially

coupled through the terms B]2 and 821 in the inertia matrix.
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IV. COMPARISON WITH EXPERIMENT
Equation (3.1) has solutions only when the determinant of the

coefficients vanishes,
det(wW’B -C) =0 - (4.1)

which leads to the expression,

‘/n + y0% - 4det(p) - det(C)
w, =

742t (B) (4.2)
where
D = ByyCap - 2858y, * Bl (4.3)
The resulting eigen-energy of the system is -
E =E =huw (4.4)

where Em represents the predicted mean energy of the GDR. The energy
E, = hw_ corresponds to a higher lying mode (40-50 MeV) that does not
couple strongly to the electromagnetic field because the GT- and
SJ-modes are out of phase and the dipole moment of the mode nearly
vanishes.

In order to compare the predictions of Eq. (4.4) with the measured
values of Em, we must first choose an appropriate set of values for
the nuclear constants appearing in E and g. From a recent Droplet

Model fit to nuclear masses, fission barriers, e'cc,]3 we know that,

J=36.8 MeV ,
Q =17 MeV . (4.5)
ro = 1.18 fm
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The quantities H, P and G do not appear separately in the mass formula

but only in the combination Q defined by]1’12

o= -%5 (4.6)
Another relationship exists among these coefficients, which is

_3 ,
| G=55P ) (4.7)

J
Q
Consequently, the value of one of these coefficients can still be

chosen arbitrarily.

Since the correlation which exists in the mass formula among the
coefficients H, P and G which causes them to collapse into the single
quantity Q did not seem to be present in our description of the GDR we
hoped to use this model to determine their separate values. Unfortunately,
the GDR energies Em also depend almdst completely on Q, and only very
broad 1imits can be set on the values of the other coefficients.

To see the effect of varying the values of the Drop]ét Model
coefficients consider the cases given in Table I and the corresponding
curves in Fig. 2. First, for guidance let us 1ist the values of the

coefficients obtained in a self-consistant Thomas-Fermi calculation

of the properties of the nuclear surface. These are,]]
H=09.42 MV /,
P = 17.55 MeV . (4.8)
G = 45.4 MeV R

which were calculated under the assumption that J = 28.1 and Q = 16.

No other estimate of these quantities exists as far as we know.
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In the three cases (a), (b) and (c) in Fig. 2, we have chosen
arbitrarily to fix P while varying Q. These and other similar studies
have served to convince ué that the predicted values of E, are mainly
dependent on Q and almost indépendent of the values of the other
coefficients. The exception to this general observation has to do
with the break in the energy curve where it drops abruptly to zero.

This behavior is caused by the vanishing of C22 because of the negative
contribution to the symmetry energy. The vanishing of th%s term apparently
is an artifact caused by the neglect of higher order terms in C,,. Still,
we can assume that the model is sufficiently accurate to allow us to

reject a set of coefficients 1ike (d) that causes the energy to vanish

in the moddle of the known mass region.

Figure 2 shows us that the general trend in the resonance energies
Em is well reproduced using the value of Q from Eq. (4.5) and values
of the other coefficients close to Eq. (4.8) as in case (b). The
substantial difference in the magnitude of the measured and predicted values
of E_ is probably due to the fact that the curve (b) has been calculated
using the nucleon mass m = 939 MeV/cz‘rather than an effective mass
m* <m.

Due to the presence of exchange forces in the nucleon-nucleon
interaction it is necessary to use an effective mass m* when discussing

the movement of neutrons against pr‘otons.ls']9

The effect is most
clearly seen in the integrated absorption cross-sections, which are

as much as 1.4 times as large as the sum-rule 1imits. This apparent
discrepancy has been resolved by recognizing the need for an effective

mass in the cross-section calculations, but the need for an effective
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mass has usually been ignored when the resonance energy is discussed.20

Probably, the harsh constraints inherent in the GT- or SJ-modes when
used alone served to artifically force the predicted energy upward
ining a spurious agréement with experiment so that the use of an
effective mass did not seem to be required.

If we replace m by m* = 0.7 m in E and use the set of Droplet Model
coefficients corresponding to case (b) in Table I the pre@icted values
of Em correspond to the solid curve in Fig. 3. The dashed curves are
given to indicate the best fits that can be obtained with the GT-
or SJ-modes alone. The excellent agreement between our calculations and
the measured values is obtained (in essence) without any adjustable
parameters except for the value of m*, and even this is comparable
to ﬁhe value that is required by the integrated cross-sections.

The ratio of the relative contributions of the JS- and GT-modes
to the GDR is plotted in Fig. 4. One can see from this figure, that
even though the two modes are coupled in this model, the GT-mode
dominates over the whole nuclear mass region. For the light nuclei
the GDR is predicted to be an almost pure GT-mode. Only for heavier
nuclei (that are softer with respect to neutron and proton density
variations) does the SJ-mode begin to become important. The only other
calculation we know about that considers the GDR to be a mixture of
GT- and SJ-modes is that of Bertsch and.StrickerZ] who do a microscopic
RPA calculation with a variation on the transition charge density.
Their results support our conclusion about the dominance of the
GT-mode. This work casts serious doubt on much of the work done on

lighter nuclei which assumes a hydrodynamical model of the Sd-type.

b

£
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V. ESTIMATE OF THE WIDTH
The width of the GDR can be estimated on the biasis of the one-body

22,23

damping expression of Swiatecki, et al. which can be written,

E=ovd . . | (5.1)
surf

This expression is based on a semi-classical approach to the damping
of co]léctive motion into intrinsic states and is obtained from
ordinary kinetic theory by considering volume conserving, but non-
adiabatic, motion of the walls of a system of non-interacting particles
in a container. Even though the expression i; obtained on the basis
of classical considerations alone, its motivation comes from the
observation that the microscopic origin of damping is concentrated
in the surface region.

Equation (5.1) states that the rate of energy absorption £ is
equal to the product of the nuclear density p and the average particle
velocity v with an integral over the surface of the square of the normal
surface velocity ﬁz. Notice that there are no adjustable parameters
such as one encountered in ordinary hydrodynamic viscosity or in
formulations that postulate "frictional" forces between interpenetrating
density distributions in relative motion with respect to each other.24’25

The SJ-mode is unaffected by this damping mechanism since there
is (by definition) no motion normal to the surface. However, the
GT—mdde is damped since it consists of neutrons and protons vibrating
back and forth against the walls of their common potential. The normal

velocities of the protons and neutrons are,
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e
I

- N .
z - A Cose ’a1 9
(5.2)

n

Z .
n -A' c0s8 a

1
Substitution of Eq. (5.2) into Eq. (5.1) and subsequent integration yields
. .2
E = D]-‘a] ) (5-3)

where

D

L | (5.4)

A

The quantity D]] is an element in the damping matrix 2, where

D]Z = DZ] = 022 = 0, and the equation of motion can be written,
BXx + Dx + Cx = 0 - . | (5.5)

For a pure GT-mode the damping width is given by,

D -
=5 11 _ (v)
11 __h_____h — s (5.6)
T By R |
where v = %'VFermi and R is the nuclear radius. We might have guessed

this result ahead of time since is is the simplest expression one
can formu]ate that has the correct dimensions.

Of course, the actual GDR motion is not a pure GT-mode. The width
can be estimated by calculating the importance of the damping term
in Eq. (5.5) when the motion is constrained to be that of the
unperturbed eigen-mode. In that case

D> |
I =h 5y , (5.7)
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where

~
o
~
1]
1R
.
[{iw)
.
1R
w

. (5.8)

(B)

1]
1R
2] o)

*
1R

and o_ is the eigen-vector corresponding to w_ which is the motion we
have identiffed as the GDR.

The values of I' predicted by Eq. (5.7) are compared with the
measured values in Fig. 4. We see that only about half of the observed

width is accounted for by this mechanism.

e
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VI. - DISCUSSION

One of the factors that limited the amount of serious interest
applied to the GT-mode in the past was the unsatisfactory procedure by
,wh}ch the restoring force (whiéh is cTear]y a surface phenomena) was
related to the volume symmetry energy coefficienti This objection does
not apply to our work since we use the Droplet Model, where the symmetry
dependence of the surface energy is explicitly displayed, to calculate
the réstoring forceé. (See also Ref. 9, where a Thomas-Fermi model
is used to estimate the actual surface displacement restoring forces.)

Even the SJ-mode descriptions of the GDR have been somewhat deficient
in the past because of their neglect of the influence of neutron excess
at the surface on the surface energy. (This effect is included implicitly

in the work of Brennan and Werntz10

and explicitly in an estimate made
by Berman.z) As above, we find that this important effect is automaticly
included when the Droplet Mbdel is used.

But the importance of the work described here is not in the
improvements that have been made 5n estimating the restoring forces,
rather it is in the recognition that a macroscopic description of the
GDR should contain aspects of both the GT- and SJ-modes. We find

21,26-28 that the

(as many microscopic calculations have suggested)
motion in light nhc]ei corresponds closely to a pure GT-mode. Since
our model includes both possible modes, we find that the SJ-mode

becomes more important for heavier nuclei that are less resistant to
variations in the neutron and proton density distributions. Recognition

of the composite nature of the motion has a number of important

consequences. One of these is the lowering of the predicted energies

3
- -

#
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as a cdnsequence of the reduction of the number of constraints on the
motion. The energy is lowered to an extent that cannot be corrected

by any reasonable readjustment of the restorfng forces. Consequently,
one is able to clearly see the need for the use of an effective mass

4n calculating the energies. (As was already recognized in the
calculation of the total absorption cross-section.) Another important
consequence is that many of the results obtained by coupling the

motion to surface degrees of freedom (such as in the “dynémic collective
model")7’8 need to be reconsidered in light of the fact the motion is
probably not a pure SJ-mode as has often been assumed.

The success of this model in describing the GDR raises the exiting
prospect of a more refined treatment of other giant-resonance phenomena
as well. The methods used here (1. Recognition of the neutron skin
thickness as a degree-of-freedom, and the use of Droplet Model restoring
forces, and 2. The treatment of the collective motion as a combination
of neutron and proton surface displacements with bulk hydrodynamic
modes), can be applied to monopole, quadrupole and higher modes as well.
Of course, our experience with the GDR leads us to expect the surface
displacements to dominate for light nuclei with the hydrodynamic bulk
density variations becoming more important with increasing nuclear
mass number.
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FIGURE CAPTIONS
Schematic drawings that serve to illustrate the general
features of the Go]dhaber-Te]]er3 (GT) and Steinwede]-Jensen4
(JS) dipole modes. Fbr each case, one-half cycle of the
vibration is shown as a function of time. In the GT-mode a
uniform proton distribution (dashed) vibrates against
the neutron distribution (solid). In the SJ-mode the
neutrons tend to pile up first on one side of the nucleus and
then the other. The protons {not shown) move in the opposite
direction so the total density remains constant.

The measured values of the mean energy Em of the GDR are plotted

against the mass number A. The dots are from the Lorentz curve

fits of Ref. 2 and the crosses are from Refs. 1 and 14. The

four curves labeled (a), (b), (c) and (d) correspond to the
different sets of Droplet Model coefficients given in Table I,
and discussed in the text. The curves all 1lie below the measured
values because they werelcalcu]ated (for purpose of illustration)
with an effective mass m* = h.

The measured values of Em are the same as those in Fig. 2.

The solid curve corresponds to the set of coefficients labeled
(b) in Table I, and an effactive mass m* = 0.7 m. The two

dashed Tines {which are normalized to pass through the same

1/6 and A-1/3

point at A = 100) serve to illustrate the A~
behavior that is characteristic of the GT- and SJ-modes when they

are considered separately.



Fig. 4.

Fig. 5.
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The predicted ratio of the SJ-component of the GDR to the
GT-component is plotted against the nuclear mass number A.

The resonance is seen to be an almost pure GT-mode for light
nuclei while the SJ-hode begins to play a more important role
with increasing mass. A

The measured width T' of the GDR (obtained from the Lorentz
curve fits of Ref. 2) 1is plotted against the mass numbef A.

The dots correspond to single Lorentz curve fits to (presumedly)
5pherica1 nuclei, while the crosses correspond to mean values
for deformed nuclei calculated from the expression

T = 3 Plrg. The solid curve corresponds to the predictions

of Eq. (5.7) which is based on the concept of one-body damping.22
The dahsed curve shows how the width would be increased if the
motion consisted entirely of the GT-mode, which is the only

one effected by this type of damping.'
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Table I. Different sets of Droplet Model
coefficients (in MeV) corresponding to
the curves shown in Fig. 2.

Curve Q . H P G
(a) . _20 14.12 16.26 44.81
(b) 17 12 16.26 52.72
(c) 14 9.88 16.26 64.01

(d) 17 10 22.73 73.80
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