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ABSTRACT

Rigorous diffraction theory is applied teo the diffraction
of & plane wave by e 3lit of arbitrary width and the uncertainties

are sztudied as & function of the distance from the slit.

§1. The diffrection of a plane wave by a slit has often
been discussed a8 an illustration of Heisenberg's uncertainty re-
lations and their rcle in the procass of measurement. Such a dis-
cussion involves two diztinet steps: A) the solution of a well
defined boundary value problem, representing schematically the ex

ample in question; B) the analysis of the connection between this
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solution and experimental results. Step B 1a connected with many
apparently still unsettled questions. In the case of the above
mentioned example, however, even the treatment of step A has not
been satisfactory. It has been restricted to a wide slitl, and
only elementary diffraction theory has been employed; application
of the rgsults to a narrow slit has led to misunderstandings

(see §5). The purpose of this paper is to give an improved treat-
ment of step A, in the case of a slit of arbitrary width. We shall
not attempt to enter into the discussion of step B,

§2. Let us consider a ronochromatic plane wave of angular
frequency W ; perpendicularly incident on an infinite slit of
width 2a in a perfectly reflecting screen of vanishing thickness
(the effect of non-zero thickness will be discussed later). We
shall employ the coordinate system shown in Fig. 1. The time factar
exp(-1iwt) will be omitted throughout. The incident wave, u, =
= A exp(ikz), may represent either the Schrbdinger wave function
of a particle of mass m , in which case = K k2/2m , or else
it may represent the electric field amplitude of an electromagnetic
wave (linearly pclarized parallel to the edges), in which case

W=2e k . The rigorous formulation of the problem is the same in

both cases. The total wave function wu(y,z) is given by

A fexp(ixz) - exp{-ikz)] + ¢(y,-2z) (z2g0)
u(y,z) = ' | - (1)
q) iyﬂz} y ’ . (Z}O)

where §(y,z) , defined for z >0 , satisfies the following con-
ditions® (£ ( A+ k2 )¢ = 0.; (11) ¢(y,0) =0 (|y|=a) ;
(iii)\_é%t (y,0) = ikA {[y]<a); (iv) ¢ satisfies Sommerfeld's

z

radiation condition at infinity; {(v) ¢ is sverywhere finite;
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(vi) W¢ is quadratically integrable over any domain of three-

~dimensional space, including the edges of the slit.

If we express §(y,0) as a Fourier integral,

00 B
3(y,0) w (22)°Y2 77 5(x_,0) exp(ik_y) dk. (2)
P y P y

we have, taking into account condition (ii),

.. a
X(kygo) - (237.)“1/2 f ¢(y,0) ﬁm(eikyy) ay (3)
w8

and, employing conditions (i) and (iv), we get;3

1/2 +00

$(y,2z) = (2% )~ A (k_,z) exp(ik_y) dk (h4)
‘ , oo v Y y

where
X(kgyz) = Klky,0) exp(ik,z) - (5)
k, = (k2 - k§)1/2 H Im(kz)>/0 (6)

The second member .of () represents a superposition of plane wa-
ves, travelling in all directions (for kyg{k), and evanescent wa.
ves, axpo?entially attenuated in the 2z direction (for ky}k)o

In the case of non-relativistic particles, [@(y,'ﬂ)la and
|?C(ky,i;)[2 (with suitable normalization factors) may be inter-
proeted as probability distributions in y and in ky , respecti-
vely, on a given plane 2z = Z . The physical interpretation is
more invoived in the electromagnetic case,

According to (5) and (6), we have

2
[k 9\”2 - i)&(kygo)l (ky"{k)
v { [ lky,0) 12 exp [:2(k§ak2)1/2 A (k >k) (7)



[
Therefore, the distribution function in ky for travelllng waves

does not depend on ‘L » Whereas 1t decreases exponentially with

‘%,for evanescent waves,

§3. According to (3), (L) and (5), it suffices to know

9(y,0) on the slit in order to determine the solution. It may be

shown thath
0 A Ne
03,0 = 2 0,01 - 5/af) 2 (8)
=

In the case of a very narrow siit (ka<<1l), the coefficients

Cn decrease rapidly with n , and, for an incident wave of unit
amplitude, A =1 , we may takeSg Cl = »ika; 62 * C3 = ..., =0 ,

g0 that
1/2

0(y,0) = -ika (1 - y°/a%) (9)
It follows from (9) that V¢ has a singularity at the
edges, where it becomes Infinitely large as D“"'l/2 ( D denotes
fhe distance from the edge). The same type of singularity appears
in Sommerfeld's well known theory of diffraction by a half-plane.
Replacing (9) in (3), we find

1/2 2
X (ky,0) = -1(1/2)2 ka® 1) (ke 8)/ (k a) (10)

where Jl ls Bessel's function of the first order. For kya:»l,

ve get
)C(ky,o)ﬂi -ikaa(kya)°3/2 sin(kya - w/l) (11)
The asymptotic behaviour of ‘Xiky,o), given by (11), is entirely

determined by the singularity at the edges. This follows from a

general theorem on the asymptotic behaviour of Fourier integrals
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whose integrands have singularitles at both ends of the interval
of %ntegrationéo
The curves of [¢(y,0)]2 and ['XKky,O)[E , according to (9)
and (10), are shown in Figs. 2a and 2b,
The wave function at large distances p from the origin is

given by7

¢~ i-;(ka)a cos 6(2%/k P)1/2 exp[i(k p -~ 3X/L)] (12)

where € 1is the polar angle with respect to the z-axis. According
to (12),

!@@azfin(x/&ﬂmnh %2(f+;%°9?fbrkb»1 (13)

The corresponding value of [?C(kﬂ& n)lz follows from (7) and (10).
The results are shown in Figs., BaUand 3b. Fig. lj shows the limit.
ing form of I’X,‘(ky,“é)lz for Y — o, ‘

Now let us consider the case of a wide slit (ka>1). No
simple rigorous expression for the wave function is known in this
cagse, HowWwever, we can make the following assertions: A) rOC(k;90)|2
has a very large peak, located at ko =0 ; the width of this
peak is of the order of 1/a°'This results from the proximity to
8

"geometrical optics® conditions“”. B) [‘X(kypo)lz decreases
ésymptotically as ﬁ;Bo This is shown by the considerations which

follow (11)}.

§li. The preceding results will now be applied to the evalua-
tion of the "uncertainties" in y and in kyo In the quantitative
derivation of the uncert&iﬁty felation99 the uncertainties are
‘defiped as root mean square deviations from the mean values. While

thii.definition may be convenlent in some cases, there exist other
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cases in which it does not lead to physically meaningful resulis;
&8 Will be seen below, this happens in the present problem. It may
be more suitable, then, %o apply a different d@finitionloo The
uncertainty in a given variable may bs defined, for instance, as
the "half-width” of the probability distribution in that wariasble
(assuming that the shape of the distribution allows a half-width
to be defined). This definition has been applied in the theory of
the natural line breadthllo We shall see that it should also bs
preferred in the present problem.

Let us denote by Ay(Y) , ZXkyi'Q} ;, the root mean square

deviations from the mean values of y and ky s respectiveiyg

evaluated on the plane z =y 1z,

'[A;Y’(‘Q)]Z af:a 10y, 411 ay / Iy, %217 k)
[Ak (Y ) 1P m l:ok;quyﬂu 12 dky(//:fj b({kyg‘t,)liz ak (15)

In the cese of & narrow slit, it fellows from (9), {10} and

(11) that
Ay(a) = s/ 45 (16}
A“ky(o)«_—» o logarithmicalily {17}
ZSy(O}ZSky(O) —r 0 logarithwically {18}

The logarithmic divergence ofllkk&jﬁ) is obviocusly due to the

asymptotic behaviour (11) of ‘Xlkygﬁ)s whiech is determined by the
8ingularity at the edges. For & screen of finite thickness having
#rounded” sdges, the aingulerity would disappear and [Sky would

no longef divergelzo



~7-
On a plane 2z = Y such that k¢ » 1, we find, according

to (13}, (7) and (10),

Ay ) = 0 logarithmically (19)
Aky(“l,) & /A3 (20)
Ay(%, )Aky(‘t, ) — o logarithmically (21)

The logarithmic divergence of Ay(%) also arises from the
asymptotic behaviour of the probability distribution.

Both divergences, {17) and (1%¢), reveal the inadequacy of
the adopted definition of uncertainty. In fact, in both cases,
the divergence arises, not from a lack of concentration of the
probability distribution, but from the exaggerated weight which
is attributed to large walues of the variable, in spite of their
extremely small probability.

On the other hand, inspection of FPigs. 2-l; shows that the
half-width will be a good measure of dispersion in the present
case, Let us denote by & y() . S ky(i)}g the half-widths of
the probability distributions in y and ky , respectively, on
the plane z = ¢, . Then, according tc (9) and (10),

§ y(0) = 4/2'a (22)
) k (0) & . 3.2l/a . (23)
§ y(0) Sky(o) % L.58 | (2l4)

which satisfies the uncertainty relation. The small value of the
uncertainty product {2}, in contrast with (18), agrees with our
axpectation.

It follows from (13), (7) and (10) that, for kY > 1 ,
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& y(4) & 1.53 (25)
5ky(‘6,)3§ 2 k (26)
$ y(%) cSky(‘c,) S 3.06 kY > 1 (27)

The increase of o y(4 ) with % (25) reflects the linear spread
of the beam in the region kYy > 1 .

Let us consider now the case of a wide slit. Two properties
of ['}(,(kyso)[2 in this case were given in p. lj. According to
property B, {17) still holds for a wide slit (in a screen of va-

nishing thickness). On the other hand, according to property A,
$ k (0) ~ 1/a (28)

whereas we obvicusly have

S y(0) ~ a (29)
8o that
§ y(0) § k (0) V1 (30)

Since the large peak of [7C(ky,0)[2 belongs to the spectrum of
travelling waves, it follows from (7) that, in contrast with the

case of a narrow slit, 8 ky does not depend on % :
§ ky(% ) = 8 ky(O)ﬂJl/a (for any % ) (31)

§5. In the usual analysis of the connection between diffrac.
tion by a slit and the uncertainty Pelationlh"g the uncertainty in
ky is evaluated as the width of the main peak in the Fraunhofer
diffraction pattern (according to elementary diffraction theory).

For a wide slit, the result corresponds, in our notation; to

S k (@)~ 1/a (32)
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It follows from (31) thet, in (30), & ky(O) may be replaced by
$ k {oo) in the case of a wide slit.

From the physical point of view, (31} means that the wave
functicn beyond a wide s8lit behaves approximately as a superposi.
tion of isochromatic plane waves in fres space'{for which the dis-
tribution function in ky weould be rigorously independent of y ).
This is no longer true for a narrow slit, because in this case
border effects are predominant over the entire region of the slit,
and the analogy with waves in free space breaks down.

On the other hand, for a slit of arbitrary width, we have

éky(cx))s 2 k (23)
80 that
) k(@) § y(0) §2 ka (34)

It follows that, for a very narrow slit,

S ylo) § k (o) «1 (35)

If o ky(aa) could be replaced by ) ky(0)9 as in (32), (35) would
contradict the uncertainty relationi?, Howgver, for a very narrow
31lit, this replacemsnt is clearly not permissible {compare (23) and
(26), and Pigs. 2b and L) . Therefore, (35), which relates the un-
certaintiss in twe different planes, does not contradict the un-

certainty relation.

0D =g Vg To 2o S0



1,

2.

3.

4o

b

6o

Te

9.

1o.

ii.

1z2.

13.

14.

15,

=10 =
N. Bohr, Phys. Rev. 48, 696 (1935).
Cad. Boumicemp, Rep. Progr. Pﬁysicé'EZQ 35 (1954), p. 38.
Bq. (4) is equivelent to Bg. (2.23) of reference 2.
A, Sommerfeld, "Optics" {(Academic Press, k. York, 1954), p. 278.
See reference 2; Po 74; '

&, Brdélyi, "Asymptotic Bxpensions" {Dover Publ., N. York, 1956), p. 49.
See also H.M. Nussenzveig, Thesis,.S.Paulo, 1957 (to be published).

See reference 2, p. 74.

See H.M. Nussenzveip, reference 6. In‘the immediabte neighbourhood of
kylﬂ 0 , the main term of L‘}L(ky,o)[d is given by Kirchhoff's approxi-
nations | %(ky,0)1% & (2/%) o sin®(kya)/(ya)®,
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