ISSN 0029 - 3865

CBPF-NF-027/84
ON THE UNIVERSALITY CLASSES OF THE HENON MAP

by

Paulo:R. Hauser*, Evaldo M.F., Curado and

Constantino Tsallis

Centro Brasileiro de Pesquisas Fisicas - CBPF/CNPq
Rua Dr. Xavier Sigaud, 150
22290 - Rio de Janeiro, RJ - Brasil

*On leave for absence from Departamento de Fisica
Universidade Federal de Santa Catarina
‘88000 - Florianopolis, SC - Brasil



ON THE UNIVERSALITY CLASSES OF THE HENON MAP

Paulo R. HAUSER*, ®aldo M.F. CURADO and Constantino TSALLIS
Centro Brasileiro de Pesquisas Fisicas/CNPq
Rua Dr. Xavier Sigaud, 150 -~ 22290 Rio de Janeiro, RJ - BRAZIL

*
On leave for absence from Departamento de Fisica, Universidade
Federal de Santa Catarina - 88000 Florianopolis, SC, BRAZIL



ABSTRACT

Within an appropriate renormalization framework, we discuss
a*(b) and § associated with the bifurcation road to chaos of a
Hénon-like map generalized as follows: (xt+1,yt+1)=(l—alxt|z+yt,
-bxt); (b>0,z2>1). For fixed z, we obtain (i) onfy Ltwo univer-
sality classes, namely the conservative (b=1) and non conserva-
tive (b#l) ones and (ii) a*(l/b) =a*(b)/b®. For b=1, §(z) presents

a minimum, and diverges for z-+1 and z -+« (this contrasts with

the b#l case).



The Hénon map has attracted a lot of attention in the last

few years, because it presents interesting  two-dimensional
Feigenbaum-like bifurcation schemes, Birkhoff chains and

strange attractors[l_4];

as particular cases, it contains, in
the extreme dissipative limit (non invertible map), the one-di-
mensional map studied by Feigenbaum, as well as a typical (area-
preserving) conservative two-dimensional mapping. Finally it
seems to be deeply related to experimental situations[S].
Herein we focus on the bifurcation road to chaos of the

following (x,y) - T(x,y) map:

T(x,y) = (l—a|x|z+y,—bx) (1)

with z>1 and b>0 (b >0 corresponds to orientation preserving
maps, hence more physical in principle; b <0 will be focused
elsewhere). The Hénon and Lozi maps are respectively recovered
for z=2 and z=1. The associated Jacobian equals b(b=1, b<1
and b > 1 respectively correspond to conservative, dissipative
and "expansive" maps; b =0 recovers the standard one-dimen-
sional map[G]).

Following along the lines of Derrida and pomeau 3! we 1i

(n)

nearize the map T in the neighborhood of the elements of

the n-cycle, and obtain the matrix

- z asign é{in)> ‘Xin) 'Z—l 1
M - ‘ﬁ (2)

-b 0



-2

where xin) are the abcissa of the elements of the n-cycle.

To treat the criticality of the bifurcation road to chaos,
we construct a renormalization group (RG) as follows: we re-
normalize a n-cycle into a n'-cycle (n=2,4,8,...;n'=1,2,...,n/2)
while preserving both edgenvalues o4 M, and M ». This proce-
dure recovers, for b = 1, that of Ref. [3], and di{ffens, for

arbitrary b, from that introduced by Zisook[7]

[8]

and that intro
duced by Hu . For both the extremely dissipative (b = 0)and
conservative (Ibl = 1) cases, all these procedures provide the
same bifurcation rates 6(b = 0) and 6(|b| = 1). The present

procedure yields, for n = 2 and n' =1, the following recursive

relations (in the (a,b)-space):
_za'sign[xilia',b')]Ixil%a',b')lz-l

1

—

= zzazsiqn[;(z)(a,b)x§2)(a,b)1|x§2)(a,b)x§2)(a,b)Iz_l - 2b
(3)

b' = b? (4)

(1)
1

_bxfl)), and xfz) and x

(x,y) (we recall that y(l) =

1
(1)

are solutions (different fromaﬁ )

where x satisfies T(x,y)

(2)
2

of T(T(x,y)) = (x,y).

Egq. (3) can be made explicit for z = 2, thus yielding

a' =4a? -6(b+1)%a + 2b"* + 9b® +13b? + 9b + 2 (3)



Egs. (3') and (4) present a fully unstable fixed point (aCJJ
with a, 2(25 + V65)/8 n 4.1328 (the numerically exact value
is[4] 4.1362), as well as two semi-stable fixed points, name
ly (ay,0) with a, = (7 +/17)/8 ~ 1.3904 (the numerically exact
value is 1.4014) and (»,»). The asymptotic behaviors of the

critical line a* (b) are

a* v oag 4 %b (b + 0) (5)

a* ~ ab b - 1) (6)
and

a* ~ agb? (b » ) (7)

The RG flow diagram is indicated in Fig. 1. The Dbifurcation
rate 8 equals the greater eigenvalue of the Jacobian 3(a',b')/3(ab)
calculated at the corresponding fixed point; we obtain, for

b =1, éc ~v 9.0623 (the numerically exact value is[4] 8.7211),

and, for b = 0, éd ~v 501231 (the numerically exact value is
4.6692).
The whole picture illustrated above for z = 2, remains

completely similar for arbitrary z (see Fig. 2).In particular,

Egs. (5)-(7) are generalized into
a* ad(Z)-+aé(Z) b (b - 0) (8)

a* ~ aC(Z)L}-+%(b—1{] (b - 1) (9)



and

a* adcz)bz (b > ) - (10)

where a} (z) varies smoothly with z.

Note also an interesting property: Egs. (3) and (4) remain {nvasiant
under the transformation (a,b) + (a/b?%, 1/b), hence the b > 1 re;
~gion can be mapped into the‘b <1 region. Consequently the
critical line a*(b) satisfies the following (possibly exacl) pro
perty:

a*(1/b) = a*(b)/b? ‘ (11)

This property is consistent with Egs. (8Y~(10). rurthermore
the expansive (b > 1) and dissipative (b < 1) negdions be-
Long to one and the same undiversatfity class (this can
be intuitively understood from the following standpoint: both
cases asymptotically become one-dimensional, the dissipative °
systems ultimateiy retaining the ZLess dissipating direction
in phase space} and the expansive systems primarily retaining
the more expansing direction .in phase space). Let us
comment on this last point which is an impbrtant one: the
present picture implies that a cnossoven occurs at b =1 . This
is to say, while the critical point a* varies smoothly with
b, the bifurcation rate takes onfy ftwo values (for {Lxed z),
namely 6C fér b‘: 1 (conservative case), and 6d forb#£1 (non
conservative case). Although we have nét constructed a RG
suited for b < 0, the picture which emerges, for the first
time, is the following: § equals 6C for b = #+ 1 and equals

6d for b # * 1, while a* smoothly varies for b varying from
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- ® to + ®». This picture satisfactorily covers the numerical
results by Derrida et al[2] who obtained a*(b=-0.3) v 1.0580
and §(b=-0.3) v 4.6694, by Bountis[4] who obtained a*(b=1) ~ 4.1362,
a*(b=-1)~ 1.1536 and §(b=+*1) 8.721; it is in agreement with
numerical results obtained by Zisook[7] and with comments by
CVitanovic[gl, as well as with analytical asymptotic results
obtained by Collet et allt®) in the z+1 1limit; on the other

(8] which sug-

hand, it disagrees with results obtained by Hu
gest that § varies smoothfy with b. Furthermore the present
picture provides a natural framework for understanding the
fact that many experimental systems[g] belong to the Feigenbaum
universality class, 4in spite of their obviously different de-

grees o4 dissipation. Eq. (1ll) possibly holds, for all values

of b, as follows:

a*(l/b) = a*(b)/|b]|? (12)
Let us go back to the map (1). Its-inversion yields

X, = = yt+1/b (13.a)

ye = - 1 +x +aly . [7|b|® (13.Db)

t+1 t+1

where the subscript t denotes the recurrence order. If we

perform now the transformation x T -y we obtain

12 +y (14.a)

X = ] -
t+1

oy et

Y = - xt+l/b (14.Db)



which coincides with the map (1) if we run "backwards" (time re-
versal) and perform the transformation (a,b)-+(a/|b|z,1/b). No
doubt this fact is directly related to property (12), although
we have not succeded in putting this in transparent terms.

Let us conclude by stressing the interesting difference which
was detected in the z-dependence of the non-conservative and con
servative bifurcation rates associated with the 2k road to chaos.
More precisely, in the non-conservative case, ¢(z) monotonously
increases when z increases from 1 to infinity, whereas for the
conservative case, §(z) presents a minimum-(near z=2) and diverges
in the z+1 limit as well as (possibly) in the z + « one (thus pre-

senting a shape similar to that found[2’6]

in the non-conserva-
tive pk road to chaos with p>12).

We acknowledge useful comments from P.M.C. de Oliveira, U.
M.S. Costa, L.R. da Silva, A.M. Mariz and A.0Q. Caride, as well as
critical reading by H.J. Herrmann. One of us (C.T.) has benefit-

ted from interesting discussions with G. Contopoulos, and also

with P. Coullet, M.J. Feigenbaum and B.A. Huberman.
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CAPTION FOR FIGURES

FIG.

FIG.

1 - RG flow, in the (a,b) parameter space, corresponding

2 -

to the bifurcation road to chaos of the z = 2 (Hénon)
map; @ (0) is a semi-stable (fully unstable) fixed point.
The critical lines a* (b) corresponding to the dissi-
pative (b <1l) and creative (b > 1l) regions belong to
the Feigenbaum universality class (one-dimensional,
ideally dissipative), and are transformed, one into
the other, through (a,b) <+ (a/b2?,1/b); the conserva-
tive case (b=1) constitutes a different universali

ty class.

RG z-dependence of the critical points acandadand the
corresponding bifurcation rates Sc and Gd associated
with the bifurcation road to chaos of the present Hé
non-like orientation preserving (b > 0) map: the sub-
scripts ¢ and d respectively refer to the conservative

(b =1) and ideally dissipative (b =0) cases (ad and

Gd are reproduced from Ref. [6]).



FIG.1
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