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ABSTRACT

We have obtained the equilibrium solution of the Fokker-
-Planck equation for both liouvillian and non-liouvillian systems.
We have exhibited the procedure to solve the diffusion equation
for non-holonomic systems. We presented a suggestion to where

such systems may be found in nature, at the microscopic level.

RESUMO

Obtivemos a solucgao de equilibrio da equagao de Fokker-
-Planck tanto para sistemas liouvillianos quanto para ngo—liouvil
lianos. Mostramos o procedimento para resolver a equagao de difu-
sao para sistemas nao-holonomos. Foi sugerido onde tais sistemas

poderao ser encontrados na natureza ao nivel microscopico.



1 - INTRODUCTION

(1)

In a previous paper — we have derived the Fokker-Planck
equation for a system of particles subject to non-holonomic cons-
traints. We have proved that the equation obtained is invariant
under general point transformations and we derived from it the
equation for the diffusion of particles.

Discussing the diffusion equation we were able to show
that systems subject to constraints can be classified in two
general classes: (i) the liouvillian systems which contain all
holonomic as well as some non-holonomic systems whose major pro-
perty is to exhibit a static equilibrium state and (ii) the non-
—-liouvillian systems which are necessarily non-holonomic and
exhibit in their equilibrium state permanent solenoidal currents.
These currents are a direct manifestation of the structure of the
non-holonomic constraints and it is independent of how the
system was prepared except perhaps for the influence of the shape
of the container on the current pattern. This stricking result
for non-liouvillian systems was obtained by the intermediation
of the diffusion equation. '

In this péper we derived this same result by exhibiting
the structure of the equilibrium solution of the Fokker-Planck
equation thus avoiding the intermediate step of obtaining the
diffusion equation. We have shown that while for liouvillian
systems the equation obtained for the equilibrium density is
exact, for non-liouvillian systems we could only obtain it
approximately by expanding the density in powers of the sguare
of the mean free path of the particles.

The classical result that gives the energy per particle



proportional to the number of degrees of freedom could only be
proved if one includes besides the random motion of the particles
also the energy associated to the permanent currents. In parti-
cular, this result says that the permanent currents are propor-
tional to the temperature of the system.

Having therefore stabilished the diffusion equation
by two independent methods we proceeded discussing the Green's
formalism for obtaining its solutions with given boundary con-
ditions on the surface of the container of the system. We were
able to show that the equilibrium solution is unique in both
liouvillian and non—liouvillian.systems. However, the transient
behaviour of these two kind of systems may be substantially
different: while liouvillian systems behave as a normal fluid
approaching its equilibrium monotonically, non-liouvillian systems
may approach its equilibrium by intermediation of an oscillatory
regimen.

Before steping into the formalism, we would like to
ponder on the physical realization of such systems at the micros-
copic level. To fix our ideas we may imagine the particles under
consideration to be electrons with the molecules being
responsible for the non~holonomic structure of their constrained
motion.

Such systems has not been observed so far. However
the holonomic and non-holonomic molecular organization can be
identified with certain mesomorphic phases of liquid crystals
as we will show presently.

Let us first consider the smectic-A mesomorbhicphase(g).

In this case, the rod like molecules organize themselves in

layers with their mean directions perpendicular to the surface



of the layers. If we identify this mean direction with the
vector a(;), the form a.dr is integrable, the foliation corres-
ponding to the layers. These are examples of holonomic molecular
organizations.

We now consider the cholesteric mesomorphic phase.
Here, .the organization of the rod like molecules are tangential
to the plane layers and rotates when one moves from one layer
to the other. Calling again Z(;) the mean direction of the

molecules, their organization is described by

a, = cos-(qoz + )
a, = sin (qoz + )
a =20

z

-

with the z-axis perpendicular to the layers. Writing

we have

w Adw = —q, .

This is an example of non-holonomic organization. As
a is parallel to curl 3, this system is also liouvillian.

B Ligquid crystals are laye;;d molecular organizations and
we do not believe that they can exhibit, as such, a non-liouvilli-
an structure. Besides, the electrons in the molecules are free to
move, as in the cholesteric mesomorphic phase, in the direction of
3(;) and not perpendicular to 3(;). Therefore, the field 3(;) does
not represent a constraint to the motion of the electrons in the

sense that will be considered in this paper.

To observe the systems we have in mind one would have



to consider building blocks in the form of discs and not of

rods as it is common with liquid crystals. Actually, only re-
cently liquid crystals with disc like molecules has been obser-
ved(é). These disc like building blocks would have to articulate
themselves in a twisted three-dimensional non-holonomic structure
to produce a true non-liouvillian system.

We therefore believe that the realization of non-
-liouvillian system would come about in large molecular struc-
tures possibly of biological origin. We may even speculate that
the permanent currents we have predicted will exhibit a kind of
superconducting behaviour at room temperature and the magnetic
field created could be used by the molecules as a specificity

device for its functioning in the biological environment.

2 - THE FOKKER-PLANCK EQUATION

We will summarize in this section some of the results

(1)

we have previously obtained-=". We assume that the particles move

in a n-dimensional riemannian space with kinetic energy T given by

eies

=)
]
N

We call this the free system. We add to it, first by a set of m

independent scleronomic constraints

a(ix(q)dql =0 a=1,...,m . (2.2)

We observe that the vectors a® can always be chosen such that




alaq = ¢ P
o i o
where
i ij a
aa g aj .
Secondly we add a viscous force - Evl with constant coefficient

¢ of viscosity and a Langevin force Fi(t) with constant

strength i.e.,

<Fi(t)> =0

<Fi(t)Fj(t')> = 2K 955 S(t=-t")

where K is a constant.

Under these assumptions we may speak of the distribut-
ion of probability W(g,v;t) of particles in the phase space of
the system. To mantain W(g,v;t) invariant under general point
transformations of the configuration space we have introduced

the measure weight u(g,v) of probability given by

: m .
vig,v) = g(q) I é(agvl)
a=1
with g = det (gij).
In particular, the normalization of W(g,v;t) 1is given
by
fn n m a i
1= Jd gdwv g(q I G(aiv YW(g,v:t) .
a=1

The equation that W(g,v;t) satisfies is a straight-

(4)

forward generalization of the Fokker-Planck equation and we

(1)

have obtained =



Mavt -y __awj V) = 2 g viw o+ al vIVe o+ kot 2
9g Vv v J 3VJ
(2.3)
*
where( )
po_ 130 %%, 99y agik]
ik = 2 k i [3 '
—9g aq 3g
i ? i a
AT, = a a. (2.4)
jk a=1 © 3k
and
iy _ i3 _ i3
0"’ =g c - azl a ay . (2.5)

We proved in reference (1) that eqg. (2.3) is invariant

under the following transformation:

—1 - al(q)
—i

i = 29 d .
aqj

Our purpose in this paper is to exhibit a static solu-

tion W(qg,v) of eg. (2.3).

3 - THE STRUCTURE OF THE STATIC SOLUTION

We assume that the static solution of eg. (2.3) has

the form

(%)

We use the semi-colon to denote the covariant derivative associated to

the affine conexion Tik.



W = exp(y) (3.1)

where  is a real function of g and v. This hypothesis is suffi-
cient to guarantee that W is a positive function.

We take for ¢ the general form

oo v/2 21 lv

Y = A(Q) + y =——A (@) v ~...v (3.2)
TR S PR Y

where R, the inverse of the temperature of the system, is in-

troduced in eq. (3.2) to make Az 0 dimensionless.
17°°°"%

We will assume, without loss of generality for ¢, that
AQ is symmetric in all its indices and satisfies the

Y 2RI ,Q/
1 Y
following equation:

Under these restrictions one observes that ¥ is inde-
pendent of v if and only if . A . = 0.
21,...,£v
Making use of egs. (3.1) and (3.2) we arrive at the

following results:

awi ng AW _ Vk}vl _ w( i BAi +
¥ Tet v aq
+ § Biv:1;{2 By T T (3.3)
v=2 v : 1777 y=-1""y Tt )

and



. . . - . S /2
3 i i .k i BV
—= (E VW+ AL V'VW =W(n-m)E§ + b.v: + & ) ———v
av’t Jk _ 1 v=1 (v-1)1
ll L
A v L.V v-T , (3.4)
Ryresarsl
1 Vv -
where
_ .k
bi = Aik .
We further have
i BZW ij ,3y 9y azw
Qj—-—i———.=QJ(. =+ ——)W (3.5)
v ij dav~. ov v ij
.. 2 o (v+2)/2 . 2 L .
Qlj__ai.L.z -@-—v— A;Q . v i...v VY + gat, (3.6)
aviavd v=1 ) 17"y
. . . © (v+2)/2 | L 2
QlJi‘%&:sAlAi+2 E————‘,—AlAiR Qvl...v\’+
v av? v=1 Ve 17N
® v=1 B(\)+2)/2 2 21 Qv
+ vi(v-v')! A£ L A2£ g VooV *
v=2 v'=1l : * 177 vi+1TT "y
(3.7)
Let us now observe that for any tensor BQ 3 which satisfies
12
L L
B2 3 v l...v Vo= 0 ,
1°°"%v
we must have
PB = 0
zl...iv

where P is the projector



Ly .2 L gl Q!
1 v 1 1 2 Vv
P = —= ) 0,7 Q"...0Q

L2.c0.8 Vi ' '
1 v perm(Ql...lv) 1 2 v

with the sum in the above expression running over all v! per-
mutations of the set of indices (Qi...ﬂb).
Geometrically P extracts for B its symmetric part
which is orthogonal to the subspace spanned by the ga vectors.
Substituing egs. (3.3) to (3.7) into eqg. (2.3) and
identifying equal powers of v we obtain and infinite set of

coupled equations for the tensors A, 0

1 v
The term independent of v gives

(n-m) £ + KB(Aii + AiAi) -0 . (3.8)

Let us set

and

£ = KB . (3.9)
From eq. (3.8), we obtain -

gt +ala. =0 . (3.10)

The term linear in v gives:

A, =A(b, - o). 22y 4 o5, .ad + aJ, (3.11)
i i i.3 ij ji
q
where
L o= 2 (3.12)
EVE

is the mean free path of the particles.
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We -also have

= 3 J 1 .3
B = - AP A, |, + A-A. + B7 B. + = AX (3.13)
1122 21,22 32122 21 322 2 32122
and in general we obtain (for v > 3):
1.3 2 L]
APA ., = -A + = A + = (B} A,
11"'2'\)-]_’2\) ,Ql...,Q\) v 321...2\) v 1 J,Qz...ﬁl\)
V=2 -
. (v=-1) ! J
+ cyclic terms)+ 2 oot £ |A A. ]
V=2 vrt(v=-vr)! _21...2v, jﬁv,+l...2v
(3.14)

We may look for solutions of egs. (3.11), (3.13) and
(3.14) as power expansions in A. By an iterative procedure we
can show that if such solutions exist they have the following

structure

A, o, =Y 1 AR, v#2 (3.15)
17"y a=0 1777
By, = 22y a%e o .
- J =0 J
In particular we have

0 _ _ 9A 3

A, = bi —3 Q7 (3.16)

8q

0 _ 1 oA £ k_m k m

Bij - 5 (bk ng Q k);m(Qin + QjQi) . (3'17)

Let us now observe that if
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AO. =0 , (3.18)
i
then every
A =0 2
fqe--8 v #
v
and
B.. =0
1]

Thus W(qg,v) takes the simple form

B .vivj)

W(g,v) = exp(A - 5 Qij . (3.19)

Eg. (3.18) defines the Liouvillian systems and W(q,Vv)

given by eq. (3.19) is the equilibrium solution for such systems.
This is an exact solution.
In the case where it is impossible to find A such that

eq. (3.18) is fulfilled, the structure of W(gq,v) is more compli-

cated and we have to resort to the A2 power expansion.

4 - THE A2 APPROXIMATION

We will now discuss the approximation far W in which

one includes only terms up to A2. Therefore we have

_ 0 _ A 3 3
Ai = A Ai = A (bi ——3 0 i) + 0 (A7) (4.1)
g
_ .20 _ 1.2  km Kk m, . _ 9A % 4
i = A Bij =3 A (QiQj + QjQi)(Dk ;;f o) k);m + 0(AT)
(4.2)

and all other tensors are of order egual to or larger than A

The solution W(qg,v) of the Fokker-Planck equation takes
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then the form of a gaussian in its depeﬁdence on v:

. . 3 .
wW(g,v) = exp(A + l A.Al - § (Q..-B..) (VJ - P‘—) (Vl - p‘_) .
X 21 2 1] 13 /B VB
.1 ij

Let us calculate p, j~ and P - . We have

' n o o 1 const 1 i
p(q) = [ d'v vg ; §(a;v)W(g,v) = PS5 exp( + 5 A/A)

o=1 (1-B i)

which, due to eq. (3.10) gives, preserving only terms up to A™:

p(g) = const exp(a)

from where we conclude that

A = logp(g) + const . (4.3)

Similarly we have

=

m .
I 6(a§vl)w av = o . (4.4)
=1

>

it [ vt

= |

o
Making use of egs. (4.1) and (4.3) we arrive at

st = p (bip - o Qﬁg) (4.5)
5q

where D = A/VB is the diffusion coefficient of the system.
One observes therefore that in the equilibrium state,

N R (*)

J7 is in general not zero .

We also have

(%)

This 1s the same current obtained elsewhere (1).
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G(agvl) w av

a=1
thus
. . - . i . 3 m .
pid o _ %AlAjp + f vi -2y wI -2y g o1 s%h) walv =
J VB VB a=1 .
= % AiAjp + % (Qij + Bij)p . (4.6)

It is interesting to observe that the first term of
the second member of the above equation comes from the local

collective motion of the particles given by jl while the second
term is the contribution for the random motion of the particles
with respect to the local current.

The local density of energy is given by % Pl:.L and,

making use of eq. (3.10), we obtain

1 Pi _ (n-m)p
2 i 2B !

therefore stablishing the general result of kinetic theory of
gases which states that the éverage energy by particle is 5%

times the number of degrees of freedom (n-m).

One should emrhasize that this result is correct in the
case of non-Liouvillian systems because we have taken into account
also the energy associated with the collective motion described by the
local aarrents, caming fram the first term of the left hand side of eqg. (4.6).

We still have to examen eq. (3.10) within the A2

approximation. This is an equation for A. Substituting eqg.(4.3)

into egs. (4.1) and (4.2) and these latter into eg. (3.10) we

obtain:
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1 _ o) 20 i _ ik 3p , _
5 (pb; - 07 =53 (pb” - 07" Zop)
p 9q 9q

ol

_nJ 2p ik _

After some tedious calculations we finally arrive at

(pbk - ij 2B _

) . =0 (4.7)
aqd 7K

which is the same equation for the equilibrium density for the
diffusion of particles, in the A2 approximation, obtained pre-
viously (eg. (5.5) of reference (1)) . One should cbserve that this

equation is nothing else that the expression of the conservation of the current.

5 - THE LIOUVILLIAN CASE

We have now come to the point where we should discuss

the solutions of eg. (4.7). To simplify the discussion we will
(*)

consider only the case of a single non-holonomic constraint .
We further assume in this section that the constraint is liou-

villian, i.e., there exists a function ¢ such that
bt oz adat | = ot A (5.1)

We set

and eq. (4.7) takes the form

A (Qij vYg exp ¥ 32? =0 . (5.2)

Let us consider the operator H defined by

(*) The holonmomic case has been discussed in (1) and (5).
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R a—f—j) (5.3)
39 5q

with-
u =Yg exp y.

We will be looking for solutions of the diffusion
equation in a volume { bound by a surface § . With this in mind,

we define the inner product of two functions fl and f2 as

*

£y

(£,,f £, 1 ag (5.4)

5)

0
and we take for the space on which H operates the space of all
normalizable function with norm given by the inner product de-
fined above.

We further restrict the functions f to those that the

’ *
derivative at the boundary satisfies the equation( ):

old 2f do, =0 (5.5)
qu

where doi is an element of surface at the boundary.

As the current is given by:

ji _ Qij 3p  _ bip = i3 9p _ LV ,

2q” 3g-

the boundary condition given by eg. (5.5) is equivalent to assume

(*)

The presence of Qij in eq. (5.5) playing the role of a singular metric
could make irrelevant this boundary condition of f. This is impossible for
non-~holonomic constraints in the neighborhood of I unless I is an isolated
integral of the constraint. In this case I is a natural boundary to the
motion of the particles. Such an example is considered in section 8. In

such singular case we may take Eif dc? = 0 to make the solution unique.
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that no particle flows in or out of the volume Q bound by I.This
*

guarantees the conservation of the number of particles inside Z( ).
Under these assumptions one can easily prove that H is

hermitian. Besides, if fa is an eigenfunction of H:

we have:

£,07 3, £ wd'g>0

i J T

Q
Hh
~
Hh
I
S
@

what shows that the spectra of H is non-negative (we can always
assume that fa are real functions).
The equilibrium distribution is given by the eigen-

function fo and we have:

1] -
[ ai fO 0 d fo u d g 0
what gives .
ij -
Q aj fO 0o . (5.6)
As
B.fo # aj

for non-holonomic constraint the unique solution of eq. (3.6) is

fO = constant .

This shows that the equilibrium state of the liouvillian
systems is unique and we have
p = const. exp(y(q)) .
We will consider now the time dependent diffusion equation
obtained in (1), which can be put into the following form:

90 _ _ S
a—t— DHC

(*)This boundary condition is sufficient but not necessary to guarantee the con-
servation of the number of particles in the volume Q. See the example in
section 6 of this paper.
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The equation
aG _ _ n,
(3¢ + DHG) = §(t-t,) 6 (g-gp)

has the solution

—Da(t—to)
e £ (@£ (qp) for t > tg

O Q-

for t < to

where fa are the orthonormalized eigenfunctions of H and obey

—_— n —
g £ (@E (q) = § (a-qy) .

The general solution for p(g;t) is

_ 1 ~Dalt-t;)
plg,t) = 5 + dgo e £ (Q) (£ (qp),olty))
with p(to) the density distribution of the system at the ins-

tant t, and

0

vV = ( u dnq .
10

One therefore observes that the modes included in the
initial distribution p(to) démps out each one with its characte-

ristic relaxation time given by

6 - AN EXAMPLE

We now consider the case of particles of unit masses
moving in the three dimensional euclidean space subject to the

constraint given by the following form:
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xdy + xodz =0 (6.1)

where X, is a constant length that fixes the scale of the sys-

tem. This is a non-holonomic constraint for which

and therefore liouvillian.

The diffusion equation takes the form.

2 2 2 2
l 39p _ 9 p 1 2 3 p 9 p 2 3°p
= 2B = + X —E - 2x x + x . (6.2)
Dot = 2 X02+X2 { 0 32 0 3yoz 22

One observes that the equation is invariant undér trans-
lations in the y and z directions. We therefore set periodical
boundary conditions in these directions in a retangular box of
faces perpendicular to the coordinate axis.

We write

ikz(y—yl) ;k3(z—zl)

wa = ¢Q(X) e e (6~.3)

and we set

(6.4)
k3(zz—zl) = 2mngm
where
X = X5 ; X = X,
Yy =¥, i Yy =Y,
z = 24 ; z =z,
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are the equations for the faces of the box. We impose ¢a to be

an eigenfunction of

- 2
2 1 d 3 2
H= - + (% =— - X ==) I (6.5)
_ ax? x02+x2 0 8y 9z _
and we -have
32¢a
- 5 + \Y% (k2,k3,x)¢a = a¢u (6.6)
X
where
(x gk y=xk ) °
V(kz,k3,x) = 5 5 . (6.7)
X + x
0
For ¢a(x) we impose the boundary conditions
2¢ 3¢
=2 = =2 = 0 . (6.8)
ax _ X -
X=X X=X,

1

With the above boundary conditions for each k2 and k3,
o takes discrete values which we enumerate from zero starting

from the lowest eigenvalue. Thus we write U (x,y,2z) to
Ny /Ny, Ny
the eigenfunctions of H given by eqg. (6.8).

The Green's function for H can be written as

5 o -a(n,,n,,n,) (t-t'")
G(T,t;1',t') = 2 wn n 17772 n3
3

(X,Y,Z) \P* (x! ,y' ,2%)Ye
n.n.n 1702 n,n

23

for t >t (6.9)
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From the fact that

*

(x,y,2) = ¢ (x,y,2)
3 NysNp.0g

and that the sum in eq. (6.9) runs over all integers n., and ns,

2
we conclude that G given by eg. (6.9) is real.

The time dependent solution is
p(T;t) = f G(T,t;2',t)p(Fr ;) a " .

Therefore, with the above equation we can calculate p
from the knowledge of p at an earlier time.

We will now compare the behaviour of the system when
the box which contains the particles is situated in different
regions of the space. Translations in the y and z-directions do
not affect the system as the diffusion equation is invariant with
respect to these dislocations. We will therefore compare only
two systems, one positioned at the origin and another shifted in
the x-direction.

We assume, for simplification that
'Xl—x2[ = Iyl_y21 = lzl-zzl = 2X0

Let us estimate the smallest relaxation time for the

system. From eqg. (6.6) we obtain:
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assuming that

X
To estimate the lowest o we take ¢a2 = 5%— then we
0
have:
L xl+2x0
o = §§g V(k2,k3,x)dx .
%1
From where we obtain:
(k.2-x.2) K.k 1+ (h.+2) 2
2 2 3 -1 -1 273 1
a =k + - tan ~(A.+2)-tan A - —— log|——————
3 2 1 1 2 2
. 1+
1
where
X
M= §l .
0
For the box at the origin we have kl = -1 and
_m 2 _ T 2
The lowest value is for k. = 0 and k., = L and we
2 3 x0
finally set
2
. 4 XO
0 (4-m)

for the lowest relaxation time for the box at the origin. In this

box the system has a slightly faster tendency to be homogeneous in

the y-direction than the z-direction as the constraint in this re-

gion of space predominantly inhibits motion in the z-direction.
For the box away from the plane x = 0, we have

kl >> 1
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We immediatly observes that the lowest mode is asso-

ciated with k, = 0 and we get, for k., = T
3 2 X
g = ﬂz 1
- 2 2
X, 1+(xl+2)
or
2— 2
. X l--l+(>‘l+2) 1
0 D 1T2

Here, the inhomogeneity in the y-direction has a tendency to
persist for a long time as compared with the previous case. The
reason is again the constraint,.as, in this region of space, it
predominantly inhibits the motion in the y-direction.

This strong dependence of the relaxation time of the
system with respect to where we set the box signs to us that one
should be careful with taking the thermodynamic limit in the
case of non-holonomy. In general we have no uniformity of beha-
viour of the system in different regions of space and the rela-
xation of the system may come to be forbiddingly high to guaran-

tee uniformity of the thermodynamic limit.

7 - THE NON-LIOUVILLIAN CASE

We will now discuss eq. (4.7) when the constraint is

non-liouvillian. We set

pt = old 3X_ 1 (7.1)
qu

and we assume that
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cCT . =0 . (7.2)

Thus, the equation for X takes the form

1 _ﬁf {/g ol QXEJ = s(q) (7.3)
vg 3q dg
where
s(@) = = 2= (/gpY) . (7.4)
Yg 3g

Let us define the Green's function by

— (/5 o' c(q,q" | = §%(g-q") (7.5)
ag -

a -

with the following boundary condition over the surface I enclo-

. .2 (%)
sing the fluid

. . .
otd 236Gla,q") do, = 0

an

For the function X we assume’

QlJ 91? doi
aqJ

]
o
Q,
Q

(7.6)

as its boundary condition. In this way we are taking Cl(q) tan-

gent to the surface . Under these assumptions we obtain

X(q) = ( G(g,q')sS(qg) Vg dnq' + ( G(q,q') Y9 bi(q')doi . (7.7)
Q T

Let us write

o = expyl(q)

(%)

See footnote on page 15.
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and

Thus, eqg. (4.7) takes the form

L2 (gt R =t esTXT] (7.8)
Y9 39 Ele|
where
5% T = ¥ (Cl + ot B AR 13 B (7.
aqt L 5q 5q 5q”

We take for X the same boundary condition as that

taken for G(gq,q'), i.e.,

ot g5 =0 .

aq) L
Therefore we have for X(qg):
x(q) = Yo(q) + f G(g,q') S| x(g") ] Vg alq’ (7.10)
where ‘
Xg(a) = f G(g,q") %é{%ll clgn vgag . (7.11)

Eg. (7.10) can be solved by the usual iterative method.

The equilibrium solution is thus given by

Py = const.exp(X + X) . (7.12)

Let us observe that, from the discussion of section 5,
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the Green function G(g,q') is uniquely defined apart from a
constant. So it is also X(g). The function X is also uniquely
defined by the iterative method applied to the eq. (7.10) and
thus g given by eg. (7.12), comes to be known apart from a
multiplicative constant.

We now turn our attention to the time dependent solu-
tions of the diffusion equation in the case of non-liouvillian

constraints:

Q
O

(<54
t
arle

- 1v5 (@' 22, - p? o] . (.13
3q” ' 3q’ J

We write

pla,t) = plg,t)py(a)

and
Yl - Qlj Bwj _ bl
oq

With these definitions we may rewrite eqg. (7.13) as

28 = p | & 25 l) Byt 280 T . a0

¥ ag? g sgqt -

We observe that

]
[en)

—T (u Yl)
Lot

it is ancther form of saying that te 1s the equilibrium soluticrn.



_26..

The boundary condition for p(qgq,t) is obtained by im-
posing that no current flows through the surface I of the con-

tainer and we must have

(0t 22 - ptp) do, =0
J 1
og

or, equivalently
o'l 22, a5, = o . (7.15)

Let us now consider the vector space of the functions
defined in the volume  with normal derivative at the boundary

Y satisfying eq. (7.15). In such a space we define the operator

0 1
with
Hyf = - = 2 (y o) ﬁﬁg) (7.16)
Y oag 3q
and ]
- HE = -yt 25 X (7.16a)
i
Llef
We observe that H0 and Hl are hermitean and anti-

hermitean operators respectively.
To construct the Green's function for H we will consi-
der the bi-orthogonal basis generated by H and its adjoint H+.
Let us call fa the eigenfunction of H corresponding to

the eigenvalue o. We have

ol
Hh
il

{2
Hh
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In general o will be a complex number. In this case
fz is the eigenfunction corresponding to the eigenvalue o* and

we have

Because of that, the spectrum of H is the same as the spectrum

(*)

4+
of H and to every fa there corresponds a f; such that

gtet = ot .
a
We further have
[ £t aq = 0 if o # o
J afar ¥ 9= 1

and we normalize these functions by the condition

The Green's function satisfying the following equation

(é— + DH}G(q,q';t—t') = 6n(q—q')6(t—t')

3t
is
G =} e Dolt-th) f@E (g for >t
¢ (7.17)
G =20 for t < t! .

It is a simple matter to show, from the fact that complex eigen-
values always occurs in conjugate pairs that G(g,q';t-t'), de-

fined by eq. (7.17), is a real, non-symmetric function with res-

=
(%) : : -  ethde f : :
See, for example, P.M. Morse anc¢ E. T n, Methods of Tneoretical Phy-

3

sics, Vol. 1, MacGraw-Hill Book (X.Vo
> 3
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pect to exchange of g by g'.

The time dependent solution p(g;t) is

pla;t) = pyla) ( G(a,q';t)p(q';0)pylq") Vg aq .

We should observe that the non-hermitian character of
the diffusion operator H may lead to unexpected behaviour of the
system. If the imaginary parts of some eigenvalues of H are
larger than their corresponding real parts, the system, exciting
these modes, comes to equilibrium through an oscillatory be-

haviour, unusual in the transient behaviour for diffusion.

8 - AN EXAMPLE

To illustrate the formalism we consider a simple example
of non-liouvillian systems. Let us consider the three-dimensional
euclidean space and let us introduce toroidal coordinate (r,¢,8)

by the following transformation

x = (a + rsing)cos®
y = (a + rsing¢)siné (8.1)
z = rcosd¢ .

We take for the surface of the container, two tori

defined by r = ry and r = Iy and we will assume

th

We will set D, the diffusion coefficient, ecual tc unit.

mn
}_l

oyl P 4 o +— =
oY tThe Cconstr e Thie I0IM:

int

ot

rt
g{
D
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w = adr + A |rd¢ + (a + rsing¢)de (8.2)
where
(r-r,) (r-r,)
A= 1 20 . (8.3)
(ro—rl)

The choice of A given by the previous eguation makes
the constraint self-confining in the sense that the surfaces
r=r, and r = r, are natural boundaries for particles moving
between these two tori as the field aj is everywhere normal to
these two surfaces. To see this better let us first introduce
the metric in the toroidal coordinates. We observe that

dx? + ay? + dz® = ar? + r2a¢® + (a + rsing)® ds®

and we therefore set

{1 0 0 }

_ 2 I

(9;5) = {o r 0 |
Lo 0 (a+rsing) 2

where the indices (1,2,3) corresponds to the (dr,d¢,d6) direc-

tions respectively. We also have

L

(ai) = A {a,Ar,A(a+rsin¢)
L

and

from where we obtain
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At the surface of the container, where A = 0, we have

(a;) = (1,0,0).

To calculate (bi) we use the formula

which avoids calculating the affine conexion. On the surface of

the container, we obtained:

sind) for r = ro

f———#L—-— (O,ro,a+rO

(0,-r ,—(a+rlsin¢)) for r=r

1

As (bi) is tangent to the surface of the container, ¢

satisfies the boundary condition

Q2
<

@
he
()

If one would calculate the divergence of (bi) in the
bulk of the fluid one would find it to be different from zero,
what would say that Y is not constant over the volume of the
system. We cannot calculate the divergence of { in the d¢ and
d directions on the surface unless we solve its eguation expli-

1 the solenoidal currents on the surface

iv. T¢ ceT an iagea ©

Fh

cit
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of the container, we observe that Qlj is the identity operator

in the tangent plane of these surfaces and we have

1 3y
Y, = - T—— + . for r = r
¢ rg~ry o¢ 0
and
(a+r,sing)
= - 0 oy -
Yo © alry-1q) Typ for FE Ty -

Because (ai) does not depend on 6 we may assume that y is also

independent ©of 6 and

(a+rosin¢)
= - for r =
Ye a(ro—r?)

To

what shows that there exists, in this example, a permanent socle-
noidal current in the opposite directions of d§, everywhere on
the outer surface of the container. On the inner surface, this
current is in the positive direction of d¢. We also have a
current in the negative d¢ direction on the outer surface whose

circulation is given by

(£'Y dd\:—l_ .
J ¢ Io'_rl

Such an example should be easily simulated on computers

and the solenoidal currents observed.

9 -~ CONCLUSIONS

We have stabilished by twc different approcaches the
yifTfuginn aooat r fAYy rnor-nolioncT o SoUosTome . WA rzirs oz ior
(@] SN ,V_uc_*C- Lol D1l Uiliioiioae o> ells Voo cve olx=s
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specified the procedures for solving it for both liouvillian and
non-liouvillian systems and discussed the equilibrium and tran-
sient states of such systems. With these results we believe that,
unless microscopic physical systems with non-holonomic cons-
traints are found in nature, further development of the theory
here developed is pointless. We have even suggested in the intro-
duction, where we should look for such systems in nature. How-
ever, two aspects of the theory seen to us worth while pursuing
its development. One is the probability of classifying the cons-
traints, let us say in three dimensional space, by applying
group theoretical considerations. We have in mind a development
somewhat similar to the applications of homotopy theory to crys-

tal defects(é)

. Though we helieve that the situation here is

complicated by the lack of translational invariance of the non-
2

~holonomic structures. The other direction is the large A

limit which cannot be reached by the method here presented.
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