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ABSTRACT

We examine the gravitational coupling of neutrinos to
matter vorticity; in the context of Einstein theory of gravi-
tation and for technical simplicity, we have considered Gddel
model as the cosmological background, whose matter content has
a non-null vorticity. The presence of a vorticity field of
matter generates, via gravitation, microscopic asymmetries in
neutrino physics; At the microscopic level, currents are asy-
mmetric along the direction determined by the vorticity field:
neutrino (antineutrino) currents are larger along the direction
antiparallel (parallel) to the vorticity field. In case of pro

duction of pairs under CP violation, a net. number asymmetry is

generated between neutrinos and antineutrinos.



1. INTRODUCTION

In the present paper our purpose is to examine the
effect of matter vorticity to the physics of neutrinos, the
coupling of neutrinos to the vorticity field being realized
obviously through gravitation, in the context of the General
Theory of Relativity. For illustration we recall that the pre
sent observed rotation of galaxies and nebulae could be an
indication that the rotation of matter was a remarkable featu
re of earlier eras, in particular played an important role in
the dynamics of the primordial universe. In this sense the re
sults of our investigation could have some interesting appli-
cations inthe realm of Cosmology and theoretical Astrophysics.
Also our paper can be considered as a partial contribution to
the question of the cosmological effects on the local laws of
physics. ‘A complete program along this line has never been
accomplished for several reasons., Among them, technical diffi
culties in developing a consistent quantum field theory on a
general curved space-time, and in describing the geometry of
the universe in eras when these cosmological effects should

be dominant if not essential.

In the context of Einstein theory of gravitation and
for operational simplicity, we take G&del universe’l) as the
cosmological background. It is the simplest know solution of
Einstein field equations with rotating incoherent matter. The
vorticity field of matter is connected to the property that
matter rotates with non-zero angular velocity, in the local
inertial frames of its comoving observers. The model is sta-
tionary, and the existence of a global time-~like Killing vec-
tor is decisive for constructing invariant energy modes of the
neutrino field.



Neutrinos are introduced as perturbation (test fields) over
the cosmological background. They are described by spinorial
fields which satisfy Dirac's equation on the curved background

In section 2 we characterize G8del universe as the
Lie group H3 ¥ R with a left invariant metric defined on it.
This characterization garantees that all vector fields over
H3 X R exist globally, and that the invariant decomposition
into excitation modes of neutrino - provided by the Killing
vectors - is globally defined over the manifold. In section 3
the local dynamics of neutrinos is discussed, with its basis
in Dirac's equation, obtainnig as result the local precession
of the spin of neutrino, and the conservation of helicity. A
complete basis of neutrino solutions is obtained (eigenstates
of energy and helicity), which satisfy boundary conditions re-
lated to the perturbation character of neutrinos. In section
4 we introduce a normalization for neutrino states, and cons
truct a Fourier space wich allow us to describe, in section 5,
the local microscopic asymmetry of neutrino emission which
appears in the presence of a vorticity field. We also discuss
the symmetry groupsinvolved in our description of neutrinos,
and discuss asymmetries between neutrino and antineutrino am-
plitudes, which could appear due to CP violation and could pro
duce a net asymmetry between the number of neutrinos and anti
neutrinos.

2. THE STRUCTURE OF GODEL UNIVERSE AND THE EXCITATION MODES OF

NEUTRINO FIELDS

Gddel universe is characterized here as the simply
connected Lie group H3 X R - modulo identification of points,
with a left invariant metric introduced on H3 x R and which
is solutions of Einstein field equations for a perfect fluid QZ).
Since the invariant vector fields and forms of H3 x R are glo
bally defined(3), they are used to construct the invariant mo

des in which we expand neutrino wave functions yielding a com



plete set of solutions which exists globally.

Let E4 be the 4-dim Euclidean space with Cartesian
0 1 2 3
).

coordinates a= (a~, a~, a“ , a We define H3as the set of

points of E, which satisfy.
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-ba+ab+ab,ba-ba+ab+ab)
(2.2)

3
Under (2.2) H becomes a group, acting on itself by left mul-
tiplication; namely for a given v ¢ H3, a left motion of H

into itself is expressed

a=vVva (2.3)
3 3 3. .
and from (2.2) we have a'c H , for all a € H . H  is simply
transitive since for each a # 0 these exists only one left mwotion
v from a £H° to a given a'eHo.
3 . . g . .
H acting on itself by left multiplication (2.3) is
a Lie group, with the three independent left invariant vector

fields(s) on H3
e} (a)= (-ay af a7 ~a?)
H 2 3 0 1
e2(a)= (a, a, a, a ) (2.4)

M 3 2 1 0
63(a)= (a,~a,~-a, a )



They are obtained by an arbitrary left-motion a of the three
independent unit vectors (0,1,0,0), (0,0,1,0), (0,0,0,1), which
define the infinitesimal tangent space of H at the identity
(1,0,0,0).

We have the analogous picture for right-motions of
. 3 .
the Lie group H into itself, namely (cf. (2.3))

a = a\v (2.5)

With the corresponding independent right-invariantwvector fields

3
on H ,
u 1 0 3 2
fl = (-a, a, —-a, a )
= (a2 -a? a2 -aly 2.6)
u 3 2 1 o
f3 = (a, a, a, a )

6)
We have obviously that(

Eei , fj] =0 (2.7)

3
—_ 1 M 3 = -1 g 03 I
X=-2e X =-1e
0 2 150 1 2 73 330 % 2 2 3af (2.8)
= -1l 93 y=_-1gfu_20 =-1fu 9 (2.9)
0T Tl U T2 e T Y 752 %

XO,XJ = X2 ’ E(l,Xz:’ = = XO ’ E{ZIXO - Xl (2.10)
Y ,Y | =-v = = -
R T R



1 2
3
We introduce on H the coordinate system (t,x,x ) by the subs
titutions
1
- 1
27 2
aozle X cosE+COSh—X—Sin§ ’
2 2 2 2
1
X
5 1
1 2 2
a = _i. e x sin t + cosh X_ cos t
2 1 2 2 2
2‘ 2 1
a2= le x°sin £ + sinh % cos &
2 1 2 z
3 5 )
_ L %2 £ + sinh X sin t
a = = > X~ cos vl ?? > r

12
Where -« < x,x < « and 0 < t < 47, and the left invariant fields

(2.8) become

3 - ]
X. = ~-sin t — + cost Ji_ + e X sint — (2.12)
1 ot 2

3 ~xl 9
X = ~cost -2 -~ sint _9_ + e cost —

with the corresponding invariant l-forms
1

X
0 = dt + e dx?
1 1, & 2
07 = cost dx + e sint dX (2.13)
1
02 = =sint dxl + &8 cost dX2
Taking on R the coordinate x3, with vector field X3= 9 and
3
ax

3 , the group H3 X R can be characterized by

dual 1-form 03= dx
the left invariant vector fields (Xb,Xi, X, X3), which satis-

fy (2.10) and



[Xi,xj =0 i=1,2,3 , (2.14)

3
and which are a basis for the vector fields on H X R; corres
pondingly the invariant dual l-forms (00’01ﬂ2,03) are a basis
for the l-forms on H3 X R. The manifold H3 x R is the covering

group of the algebra (2.10), (2.14).

3
G8del universe is obtained by introducing on H x R
the left invariant metric (7}
2_ 1
as“= =5 1z 92 - (1?2 - (6?2 - ()2
w (2.15)

where w is a positive constant. (2.15) is a solution of Einstein
field equations (8’9)with cosmological constant A, and inccherent

matter whose density p must satisfy

2
kp =w = 2A (2.16)

The four velocity of matter is 3/3t. To express metric (2.15)

c .. . ZY .
in its original form, we use new coordinates x = v2X ,

t=/2t.
The model is stationary because (2,15) admits a ti-
me-like .Killing vector. The velocity field of matter has ze-

ro expansion and shear, but a non-null vorticity

Q=2 w9 (2.17)

Ix

We finally remark that G8del universe is locally isometric
to (2.15), but concerning connectivity in the large the above

model is obtained from G8del model by identification of cer-

tain point sets, namely by identifying the points (t+4nﬂ,>€l,

2 3 . . .
X", x7), n = integer. In G8del universe the geodesic congruen

ce determined by 3/9t are open time-likes lines.



From (2.7), (2.15) we have obviously that G&del' s

model admits the five Killing vectors

(Y ,v.,¥_,-2_, 2 ) (2.18)
0O 1 2 8x3 3t

(cf. (2.6), (2.9)). All these vector fields are globally defi-

3 C 1
ned on the group manifold( ). From (2,18) we select the Killing

vector fields(ll)

9

)
2’ Sx;' ot

X

to construct the invariant modes ¢(_)globally defined by
i

E ot st § t) TP a9
5 x2 5 x°
£ = -1 ¢
¢(0) ¢(0) (2.20)
9
ot
ik x2 ik3x3
with respective solutions ¢(2)m e 2 ’ ¢(3)% e H
-iet
¢(0)% e . 3/9t is a globally defined time-like Killing vec

tor, generates time translations and we interpret (2.20) as the
definition of invariant energy modes; as we shall see in section
3, 3/3t actually defines the Hamiltonian operator which descri-

bes the local dynamics of neutrinos. We use the invariant modes

¢

to separate neutrino equations and to obtain a complete set

(1)

of solutions for neutrino amplitudes in the modes (g, k2, k3).
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3. LOCAL DYNAMICS OF NEUTRINOS AND SOLUTIONS OF DIRAC'S EQUATION

Neutrinos in interaction with gravitational fields are
described by spinorial fields in the curved space-time. For a ge

neral review of spinors on a Riemannian space-time, see ref. (12),

Here we use four-component spinors from the point of view of

(A)
tetrad formalism. We choose a tetrad field ea (X) such that the

line element is expressed(l3)
2 A B
ds =mn_0606 (3.1)
AB
A (A) . o e . .
Where 6 = ea dx . The definition of the neutrino wave-function

y in a curved space-time involves two group structures. Its spi-
nor character is defined with respect to the local Lorentz struc
ture (3.1), that is, it provides a spinorial representation of

the local Lorentz group
4}
6B - LAB(x)eB (3.2)

with

A B _
L y&)Inapg L p(x) = npp (3.3)

These transformations, which can be made independently at each
space-time point, leave (3.1l) invariant. Under (3.2), (3.3) the

spinors Yy transform as

V(x) = S(x)y (3.4)
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(14)
where the 4x4 matrix S(x) must satisfy

-1 A B A -1
(L ) gx)y =8y 8 (x) (3.5)

By other hand, spinors { transform as scalar functions ~with respect to

general coordinate transformations of the space-time, and thus
provide a scalar representation of the isometry group of the

space-time.

The Lagrangian for neutrinos is
. A A
iveg @YV Y - V Uy y) (3.6)
A A

In the above formalism § = ¥¥Y0, where YO is the constant Dirac

matrix. The spinor covariant derivatives are given by

o
\Y = e 2 -
aY (a)°a ¥ " Ta ¥
(3.7)
v T > v+Uor
= e
A a) o A
where the Fock-Ivanenko coefficients FA have the form
ro- 1 B C (3.8)
A 2 YpcaY Y
The Ricci rotation coefficients y o are defined by
AB
o 8

Tase- T %@ 8 Sa®® (© (3.9)
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and Dirac equation for neutrinos coupled to gravitation is ex-

pressed
A A
Y VAl =y (efpy3, = Talv = 0 (3.10)

For (2.15) we take

1
2

60 = at + "% ax

1 1
5 = dx (3.11)

2

3 3

6 = dx

With this choice, we have the Fock-Ivanenko coefficients (3.8)

expressed as

T V2 12

0 == 5 wry
T = = ZZ wYZYO

1 4

s 01 @ 12 (3.12)

' = - Y2 w - —

2 1 Yy > Yy

=0

F3

For a neutrino field in invariant energy excitation

modes (2.20), and eigenstate of Y5,

Yy b =1y ' L = 1

(14)
We have in the representation used
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o (| _iet (3.13)
L¢ (x) |

and, using (3.11) and (3.12) Dirac equation (3.10) yields

0 .
ey y =+ V8% y - /—i_wvovlvzw - 2y (3.14)
> o 3 k k
where we use the notation A.B = Z A B . Denoting the spin ma-
k=1
trix
> 50> g 0
L=Yyy= N '
0 o
equation (3.14) can be rewritten
- > ’
ey = (L.m)y (3'15),

> . .
where 7 is the generalized local momentum operator

; =-i;%x 0 4+ i W n + K2_5Y5 ’ (3.16)
o 2 1 4
Where El = (1,0,0) and
N :
£ = (0,0,w) (3.17)
is the vorticity of matter in the local frame (3.11). T.ow is

the operator which acts on the space of neutrino energy modes
(3.13). From (3.15) we have that the operator Lg. T is the
Hamiltonian of the system (expressed in terms of objects defi-
ned in the local frame determined by (3.11)), in the sense that
the time development of any operator acting on the space of neu

trino functions is proportional to the commutator of the opera-
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3 > >
tor and LI.m.With respect to this Hamiltoniany.rq is conserved,

s
that is, the projection of the spin ¥ on * ‘the direction of ‘the lo

> > >
cal momentum Tis conserved. In this sense L= I.m , has a preci

/e
se meaning as the helicity of neutrino, in the local Lorentz
frames determined by (3.11). The wave functions (3.13) are
energy and helicity eigenstates for neutrinos. Later we shall

characterize neutrino amplitudes by L = -1, €>0 and ' antineu-

trino amplitudes by L = +1, ¢€>0.

-5
We now determine the motion of the local momentum w.

-k -
m=i |mLy . om (3.18)

We have

> 5
and since ¥ comutes with Y, (3.18) reduces to

k > k>
T = iLI ET,N_J

After a straightforward calculation, using Ricci coefficients

(3.9) calculated from (3.11), we obtain

A

- . k Q m
=i /2
T L ¢ sz N e (O)BX

k
which acting on the space of eigenmodes of energy (3.13) redu
ces to

-k ¢ m

T = /2 g L ek DY)
Lm

or

3V .
]

)

™

=
™My

b

<y

(3.19)
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> >
Since the projection l.Tis conserved, that is, the helicity L

of neutrinos is conserved, we have from (3.19) that, for a gi

>
ven sign of €, the spin XIprecesses locally about the direc-

tion determined bylﬁ, with angular velocity proportional ZEE
-é w

!

1
of being neutrino or antineutrino. The local angular velocity

T:— and'independent of the sign of L, that is, independent

of precession will appear in the analysis of the exact solu-

tions of Dirac's equation.

From the expression (3.16) of the local momentum ope
rator ;, we observe that L behaves like a (leptonic) charge
in the coupling of the vorticity field to the neutrino spinor
structure. This fact also shall appear more clearly when we
describe the Fourier space of neutrinos associated to the com

plete basis of energy-momentumi~-helicity modes (e, ké, k L),

3 7
in next section.

To separate neutrino equations, we consider neutri-

no wave functions which belong to the complete set of modes

(15)
(g, k2, k3, L), described by

5 3 (3.20)
eik2X +ikgx -iet

1
d(x )

YT e (xh)

which are invariantly and globally defined, as we have discus

sed in section 2. Using (3.18) and the explicit expression of

o
€ (a) from (3.11), Dirac's equation (3.14) reduces to



6 + /2 ec3¢ -k 02¢ + /2 k_ e
1 3 2
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1
=L (ico ¢ +

1
where ¢, = 9¢/3x , and expressing

(16)
we obtain 1
_ . -wX
a + V2 ea + VY2 k e a +
1 2
1
-wx
Bl- V2 eB - V2 kze B +

We examine first the case
1
5 -WX
X= (uo/w)e , 0 <x< o,
' ‘/EE l,a :/i_k_zd =
( W .+§)§ 2
Yo
. (e - Ly8 4+ T2 ge
B+ ( YE
w 2 x 2
Yo
where ']T3= k +/_§LU)(Cf.

derivative.

N | E

N E

k

—wxl
o9 +w ¢ =
= 2
/2 wo ¢)
1
a(x )
1
AB(x7)
) V2
a =ik + = Lw +eL)B (3.21a)
4
B =i (~k - KZ’Lw + eL)a (3.21b)
3 37
# 0. Introducing the variable

equations (3.21) result

-i

ref.

—(Y2e 1
Al— (w+2)
__Y2e X
A2— -( " )

w

3
(EL""]T e
W

Intf%ducing the notation

. EL+ T B8

(15)), and a prime denotes

(3.22a)

(3.22b)

x—
- €L+n3
1 W
3
_ EL-=T (3.23)
2— W
v2k
2
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The second order equations resulting from (3.22) are

B" + B (1 + A+ Az)-g - By B = - (E4E, - AlAz)._B_2 (3.24a)
X

" _ _ - o . 2 = E _ A A )_QL_ .

o B, (1 - A - Ay)l2 - B} © (E4E, 182’ (3.24b)

2
We choose the constant u0 such that Bi %' which implies

2
u, = +2/2 k2 (3.25)

and, in this case, both equations (3.24) assume the form of

Whittaker's equation 7). a" {% Lif+d- uz)/x%}Az o,

with the linearly independent solutions

x4y
2 2 1
M xX)=-e X M(= + u-x, 1+2yu, x)
K,U 2
{(3.26)
_?25 ;L_+u
W (X)= e U+ u-k, 1+ 24, x)
K, 2
M.Ku and W are called Whittaker functions where M and U are
4 Kl
confluent hypergeometric functions. For (3.24) we have
1-u2—EE—AA (3.27)
1 12 12/ o
and k = Bl(l + Al + A2) for solutions B8 of (3.24a) ,
K = = Bl(l - Al- A2) for solutions o of (3.24b). We distinguish

two types of neutrino solutions:
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(I) Taking

=AM +AW
* lk,u 2 k,u

where A and A are constants, we must have for consistency

1 2
B = JL(A (L 4+ 0+ KM - AW for B_= + 1
Eli 1\ K+1,u 2 k+1l,u °r BT T =
g = =dA (L +1u - M - A (u-k+ L) (uee-Lyw
E 1 5 k=1,u 2 2 2" k=1,u
1
for B = -
or 1

(IT) Taking

B = A + A

M W
1K, 0 27K,H

we must have for consistency

o = ﬁh{A (i + U -k )M - A (l + = k) (4 + K —i)w
E 1°2 K 272 2
21 k=1,u

for B =

1
1 2

_ i 1 - = -1
=—{A (= + u+xk)M AW = - =
o E, 1 k+1,u 2 k+1l,u tor Bl 2

where k= A for B = * %. For both types (3.27) holds.
2 1
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On these sets of solutions we now impose boundary
conditions, namely, we impose that neutrinos - which are test
fields in the sense that they do not contribute to the curva-
ture of the cosmological background - are finite perturbations
at any spacetime point. This is equivalent to impose that the
above Whittaker functions must be bounded for all values of Xx.

(17)
This condition is realized if and only if

% + 1 - Kk = negative integer or zero (3.28)

Using (3.23) and imposing conditions (3.28) on (a,B) of the

above types, we have

type (I)
_ /26 . 1
1 ) n w 2 1/2
—(-2-+U—K,= r K = £ B =
A n+l B /2_8 + _l or l —1/2 7 (3.29)
w 2
type (II)
[ /2e + 1
n+1 w 2 1/2
2 n Y2e 1 1 13/2
w 2_}

n=20,1,2,... From (3.29), (3.30) and (3.27), we have for both ty-

pes the dispersion relations

/2 (n+1)w + /(n+l)2w2 + (TTB)TI]'
1/2

e = | for Bl= (3.31)
/2 (n+l)w * /Qn+l)2w2 + (n3)2 -1/2
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We remark that the only relevant momentum to the dispersion re
lation (3.31) is k3; ko does not contribute to (3.31), except
for determining signs (cf. (3.23)) .

In the next section we will see that a necessary
condition of normalization of the above we functions is u > 0,
and this implies (by a straightforward examination) that the

frequencies (3.31) must have a definite sign,

-

— - 1
£ = f{}i(n+l)w + /(n+l)2w? + (ﬂ3f—} for B,= 15 , (3.32)
and for all cases we have
b= —(n+l) + 22170 el ’ (3.33)

w

which is always greater than zero.

Observing that ﬂ3= k3+ ZZ Lw we see from (3.32)
4

that the minimum absolute value of the frequency €, for norma-

lizable modes, occurs for n= 0, k.= - L %% w, and

3

e =3 (vV2 + Do for B =

N -

In the following we consider for simplicity solutions
of the above types with A2= 0, and which are normalizable, that
is, u > 0. Thus general solutions for neutrinos in the helicity

and energy-momentum modes (3.20) are expressed
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1) By= - % , €>0
f
M/Z_IEI + = U(X)
W
€l -
¢§£;= le| + LW3 "
L M
—I—L/E € + lr U(X)
" 2
~iw(n+1) M
le] + Ln3 /2le] -
\ w
2) By= %, e <0
iLw (n+1) M/§I€[
le] + Lm w
(1) M __ (x)
oD | Llel (1,
iw(n+l) M
le| + L3 /Qigl -
LM (x)
V2 | e N l, y
w 2

(x)

e

i 2 3
-ilk,|x +ikyx -ife|t

(3.34)

[k | %o ikaxoHi e [t
1 1€
e 2 3

(3.35)



(L) _
Vi) T
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T
-1k, [x +ikyxT~ile|t

(x)

) (3.36)

ik, |xP+ik O+ e [t
J 2 el

(3.37)
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Solutions (1)} and (3), or (2) and (4), that is, with the same
value of Bl’ are linearly dependent for the same value of L,

because

Y2le - (n+1) ]
w M

IiLw [:2
-iLw (n+1)

le| + Law3 le| - Ln3

=1

We then select the two independent set of solutions (1) and (2),
respectively for positive and negative energy, which are rela-

ted by

5 2
where * denotes complex conjugation.

We now examine the case k2= 0. Equations (3.21) assu

me the form
ag + Y2 ea + W g = i(k_+ €L +.ﬁ2 Lw)B (3.39a)
2 3 4

N ¥l
By - V2 eB + %—B=l(-k3+ eL - 7 Lu)a (3.39b)

The corresponding second-order equations are

t

%11 a1
2 2 21la .
+ w + % - € _(173) =0 (3.40)

B11 By B
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whose unique bounded solutions are constants, related to a ze

: . 2
ro root of the characteristic equation of (3.40), A+ (02 / 4-

-82—(ﬂ3)2) = 0. This equation has a zero root only for

1=°¢ + () (3.41)

Condition (3.41l) implies that k_= 0 modes have bounded energy

2
2
and momentum modes, the absolute maximum of energy being ¢ =
2
Y _, for moment k3= - ZZ Ly, They have the form of free pla-
4 4
3
ne waves propagating along the x  direction. While these mo-

des k9= 0 exist for neutrinos, they are forbidden for sca-

y 24
lar(23) and vector fields( ). We also distinguish two types
_Of solutions ¢ = (%‘d)), namely
|
I . 5
ik.x - iet
(L) o
Y=
-iL(V/2e 4 w/2) (3.42)
e + Lﬂ3 j
[, \
iL(V2e - w/2) 3
3 ik,X-icet
(L) e - Lm 73
o = (3.43)
(I1)
L ]

Solutions (3.42) and (3.43) are linearly dependent for the sa
me L. Denoting w(i) positive or negative energy solutions, we

have for (3.42) and (3.43) the property
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(L) _ +.5.2 (=L)* _
Y(T) (+) k3= Iy w%II% (=) (7k3) (3.44)

analogous to (3.38). Neutrinos (3.42), (3.43) poses an inte-

resting question on the stability of the stationary backgrourd
universe because in principle they could be created by a pure-
ly time-dependent vorticity perturbationamﬁtt), with the con-
sequent perturbative Lagrangian LIfwdgAﬁﬁWY%Aw‘whﬂjL could
in principle create neutrino pairs from the vacuum of the neu

trino field.

4. NORMALIZATION AND GENERALIZED FOURIER SPACE OF NEUTRINO

AMPLITUDES

We consider first the case kZ# 0. Since Bl/k >
2

always, we have for any mode (g, k k3, L) thatk2kasjheopp9

2’
site sign of € and hence, for a given sign of the frequency ¢,

2
propagation along x is allowed in only one direction. Becau-

se of this, although we can say that the modes (g, k

k L)

27 737
are energy stationary states in the usual sense, it is not
possible - in a finite space-time volume - to have normalized
waves along x2, and this has a strong physical implication in
the definition of normalization of neutrino functions. To see
this, let us consider in Minkowski ipice—time a closed cubic
box with stationary plane-waves e Lk.x-let inside, for a gi-
ven value of the frequency €; suppose now that along a given

axis the waves can only propagate in one direction, of positi

ve y axis, for instance. These stationary states cannct nor
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malized in the volume of the box, because in one of the bounda
ry walls (transverse to y axis) of the box we should then ha-
ve waves being absorbed in the same rate in which they are
emitted in the opposite wall. In a finite space-time volume of
G8del universe the same problem would be posed because the sta
tionary solutions (g, k2, k3, L)have this property, and waves
which propagate along the x2 direction should in some way be
reinjected into the volume(lgl. We are led to normalize these
stationary modes using a normalization integral which must then
be taken over the whole manifold of the model.

To proceed, let us consider the local classical cur-

rent of neutrinos

(A) A (a) o

3 =W v=e o (xWy (x)y (4.1)
which for ¢ = (ﬁ;) assumes the form

(A)

i =2 (076, Lo 00)

b=z e ‘ (4.2)
The component j = 2¢+¢ of (4.2) is the local number density

of ‘neutrinos. As expected, j“n transforms like the zeroth com
ponent of a Lorentz vector with respect to Lorentz transforma-
tions (3.3), and it is a scalar function with respect to coor-
dinate transformations (and/or point transformation)  of the

, 20
space~time. The local number j(o%xjw—g d4x is thus a scalaé )

14

and integrated over a given volume of the manifold,
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— (0) 4
J/-g i d x (4.3)

yvields a number which is coordinate invariant. Furthermore the
integral is positive definite since /:E j(O)is easily seen to
be positive definite for the complete solutions (3.34), (3.35).

In view of this, neutrino wave functions are norma -
lized according to the integral (4.3), taken over the whole GY

del manifold for reasons discussed above, and for the comple

te set (3.34), (3.35) we then have the 8§ normalization

Day (kg kg, L[y ) (e kg kg, 1) > = (23N 6.

,,,,, l]

slel=le 18Ky |- Iky 118 0cy k), (4.4)

where i,j = +,-, corresponding respectively to positive (3.34)

and negative (3.35) frequency solutions, and

N2 /Eug 2 2( 1)2 2
= M w (Nt dx
R TR e L N -
w 0 m filu (|€|+LTT3)2, __u.)_f.i_l_-—jrll X2
(4.5)
Using expressions (3.26) of Whittaker functions in terms of con
(17,21)

fluent hippergeometric functions, (4.5) exists provided
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and can be calculated

24k[ v 1
N = ——a T(Qu)r(2u+l) (n+l) H{————- +
w 4 T (2un+2)
(n+1) w2 1 (4.7)
{[€[+Lﬂ3)2 I' (2u+n+1)

As we have discussed, condition (4.6) imposes that the frequen
cy € has a definite sign for a given sign of k2 (cf£. (3.32)),
and that for all cases of types (I), (II) neutrino solutions,
u= —m+l) + Y2lel (of. (3.33)). The factor (2 >N in the right-
hand-side ogu(4.4) can be interpreted as proportional to the
local number density of neutrino states (g, k2, kg, L), that
is, the local number density in the Fourier space associated
to the complete basis of solutions (3.34), (3.35).

Since we have used the local number density j(O) to
normalize the wave functions, the normalization depends on the
orientation of the field of tetrad frames eq(A) (x), with an
arbitrariness due to local Lorentz transformations (3.3). The

present orientation of the tetrad frame in which (4.4) and (4.7)

were calculated, is nevertheless a preferred orientation in

the sense that (3.11) is based on the matter flow of the model

o
= actually the zeroth vector of the tetrad frame € (0) is defi-

o o
ned by the four-velocity field of matter, e =46 , and (4.4)

0 0
and (4.7) are invariant under Lorentz transéo%mations which pre

0

serve this condition, that is, LA= 62. The matter flow of the

model singles out (4.4), (4.7).
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The Fourier space associated to the complete basis
(3.34), (3.35) can be constructed as follows. The kernel of the

transformation is defined

K(_k2.k3,€,X)= K(+) (—Ikzllk3[€{lx)+K(4~) (,’_kzlrkg, [E[,X) (4.8)
where
[
M/r M —
2|¢ " l'U v2le] _ %,u
K = diag v 2 ’ = ’
(+) 1/2 1/2
<M >. <M >
+ —
~ M Y
1/2 - 1/2
<M+> <M+>

and
M ~ M ~
/2[8' - =,u /2'8[ +l’u
K( ) —dlag W 2 ’ W 2 ’
1/2 1/2
<M_> <Mi>

M M
v2le| - L, 2le] 41
o) 2 w 2
1/2 1/2
<M_> / <M, > /

2 3
. exp[}i]kzlx - ikgX —i[el%], (4.10)
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and we have denoted

<M,> = — i
w

N

The Fourier transform of a neutrino solution ¥ has the form

~ ] ] ' 4 ' ! 1
Flo] = v (el kyl k)= |/=g d x k(ky,k3,e,%) 9 (x) (4.11)

where the integration is taken over the whole manifold.

For (4.8) we have the unitarity property

(,— 4 + 1
v-g d X K (<k21k3r€ ’ x)K(kz,k3,€,X) =

= ard 1.8 ([el=[el) .8 ([ky[-[ky[) .6 (k3=k3) (4.12)

We remark that the first term K(+)of the kernel (4.8) can be

considered as a projector - in the sense of (4.11) - into posi
tive energy states, since its action on negative energy states

(3.35) gives zero; analogously the second term K(_) in (4.8)

is a projector into negative energy states since its action on
positive energy states (3.34) gives zero. Because the inverse
of a projector is not a one-one map, the inverse Fourier trans
form is then defined separately for positive and negative e-

nergy amplitudes, with kernels K(+) and K(_) respectively, that

is,
. (4.13)
dk dk de¢

-1 +
F [‘P (|k l,k I|€|I+)]= J —g_‘i"—K , ([k I Korjel, x)0
F 2 3 50 (21T)3 (+) 21 %3 l l F



- 31 -

for positive energy states, and

[ dk_dk_de
2 3 K ([sz,kyIE[,x)wF

-1
: ﬁ (lkzl,kylel,-ﬂ _ |
LT - Jeso (2m)3

(4.14)

for negative energy states. (4.13) and (4.14) are consequence

of the unitary properties

dk;dk;ds' . o '
. (2m)
e'>0
4 L
-1 S (x-x') (4.15)
V=g
dk'dk de! + ] ' v '
3 L ] [}
____2_______5___]{(_) (lkzl’kBI’Ie[’x )K(_) (Ikzl,k3llellx) =
(27)
e'>0
4
-1 & x=x') (4.16)
V=g
-1 -1
which actually imply FF = F F = 1, as expected. We remark

that the inverse unitarity properties (4.15), (4.16) do not
hold for the total kernel (4.8); only separately for positive
and negative energy kernels does the complete unitarity hold.

The Fourier transform of a normalized positive ener

gy state (3.34), for instance, is the four-spinor
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oy 5172
+
~ilw(ntl) o >/
le| + LTT3
3 1/2
wF(|k2l1k3r|€irL,+) = (2;) L4 L<M+> °
1/2
-iw(n+l) <M_>
e + Lﬂ3
L )
S (ky =1k 8 (k3-k3) 8 (|e' [=[e] (4.17)

which under the local Lorentz group (3.3), (3.4) transforms as

'ILI | I [ dkédkéde Sk .k kl k' I)
(k.| ,kq,le],n,+) = | —2—— s(k_,k_,e;k_,k_,e ).
T [ T
YUk, lik3, [e |,L,+) (4.18)

where

S(ky,k3,e5kork3,e ) = J/:g aix K(+)(|k2[,k3,[€[,x).

+ [ ' '
S(IK () Uk, ik3, e [,x) (4.19)
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The group of transformations (4.18), (4.19) is induced on the
Fourier space by the local Lorentz rotations (3.3) of the field
of Lorentz frames, with respect to which the spinor structure
is defined.

The Fourier space described above is actually a mo-

mentum space for neutrinos. In fact, expressing a positive ener

gy state (3.34) as

dk,.dk_de +
w((ig;_ 2 2 '_Ig(_..'_)(ik2[1k3lIEIIX)IPF(Ikzl,k3,{g[,L,+)
(2m)

. A
and using Dirac's equation ¥y VAw = 0, we obtain after a long

calculation the transformed Dirac's equation

A
-ir Yy ¢v_ =0 (4.20)
A F
(22)
where Ta is given by
1/2 /2 5 3 2]

| (<M_>) <M > _ ,
T = {lel, & [ = w(n+l) - |—t— e-(mr) ¢
A 2§ (<My> <M_> w (n+1)

/2 2 32 (<M >)1/2
_._:_I_-_ fk] w + y o w(_n+l) , —(k3+ _‘/_42_ Lw)}
2| {<M_>] w (n+1) l<M+>
(4.21)
We have

T =20 (4.22)
A
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A AB
as expected for a massless particle, where m = n WB- The spa

tial components of the local four-vector WA are the eigenva-
lues of the momentum operator (3.16), corresponding to positi
ve energy, and momentum eigenstates (3.34). The imaginary cha
racter of wl is connected to the fact that j(l)= 0 (cf. (4.2).
The form of the component m;(along the direction of the vorti
city vector) shows that the "leptonic charge" L behaves 1like

the coupling constant in the coupling of the spinor structure

of neutrino to the vorticity field. For a negative energy so-

lution
ak dk de .
(L) = | 23 «x k. |,k _
V) 2m)3 () R lkga el (i, [k, [e],L,-)

(4.23)

we analogously obtain (4.20), where ﬂA is now

mw =

<M >}1/2 <M, > - 3
- ] / w(n+l) - { + J g - (m) '
A

~lels <M_>
2 <My> - w(n+1)

~

g - (m7)

N =

<M >11/2
[ = J w(n+l) +
<M+>

<M >Y1/2
+]/ 2 3)2

<M_>

r - (k3+ i—z_Lw) :
w (n+1) 4

(4.24)

. A .
with wAn = 0. Comparing (4.21) with (4.23), we see +that 7

(positive energy) and n (negative ener
A

in the 0 - ang 2 - components. We remark that the component

A

gy) have opposite signs
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g is the same for (4.21) and (4.24) due to our definition of

(4.10); indeed if in (4.10), (4.23) we change k3+ —kg, L >~ =L
we have in (4.24) that m,> -7, without altering other  compo-
nents, analogous to the fact that positive and negative ener-
gy solutions related through property (3.38) shall have “3Wiﬂ1
opposite signs. This fact is important when we consider symme-
try transformations between particle and antiparticle amplitu-
des, in next section.

We can now calculate the component j£3)(that is, along

.-).
the local vorticity field Q) of the local four current

— + — >
J = = ( Y 4.25
b .Y ¥ U%WF ,wF V) ( )
For the positive energy state (4.17) we have

6
. (3) (21) 2 n+1) 2
g 7 2t ‘%; < > - Aokl 2<M'> - 8 (kg l=lka )
N o (le|+mnd)

S8 0=k .6 (e =)

By using that

M,> = I'(2y) (n+1) I1 (2u+1 ) and  <M_s - L[(2WyniT(2u+1)
I (2u+n+2) T (2u+n+l)

and after some simplifications we obtain

] 3 3 " " "
Jbﬁ_,)= 232 {LUT3)2+{€IW3}6([kZ[—[kzl).6(k3—k3).6(le I=lel)

(4.26)
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where J2 is the positive definite quantity

2 - 2(2mb (n+1).  T(2y) F(2u+1)
N2 T (2u+n+l) . (|e|+Lm3y & 2p+n+1)

We use the expression (4.26) in next section, to discuss the
microscopic asymmetry of neutrino emission in presence of a
local vorticity field. The Fourier space associated to the
plane wave modes k,= 0 has a trivial construction, as in the
case of plane wave spinor solutions in Minkowski space-time.

Since all conclusions for this case are analogous to the case

ko # 0, we do not consider it here.

5. SYMMETRY TRANSFORMATIONS FOR NEUTRINO AMPLITUDES AND THE

MICROSCOPIC ASYMMETRY OF NEUTRINO EMISSION

In order to examine questions connected to neutrino-
antineutrino symmetry of some processes, we shall try to defi-
ne amplitudes for particle and antiparticle states. To this
end we obtain transformations which can be interpreted as lea-
ding from particle to antiparticle amplitudes, and which are
actually symmetry transformations for the present neutrinos -
in the sense that they preserve the Hilbert space of neutrino
solutions generated by the basis (3.34), (3.35). These trans-
formations can be reasonably understocd as corresponding loca-

lly to known symmetries of particle physics.
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As we have discussed already, the use of tetrads is
practically unavoidable to describe the interaction of fer-
mions with gravitation (12,25) and, in this context, the theory
has two groups of transformations involved: the local Lorentz
rotations (3.3) of the tetrads, and the isometry group of the
manifold. Spinors are defined with respect to the local Lorentz
structure, in the sense that they provide a basis space for a
spinorial representation of the local Lorentz group. By other
hand, these spinors provide a basis space for a scalar represen
tation of the isometry group of the manifold. For the present
case of neutrinos, we are restricted to a subspace of spinor
functions which are eigenstates of %5 , that is, the Hilbert
space of neutrino solutions generated by (3.34), (3.35).

In the definition of neutrino and antineutrino ampli-
tudes, both groups will be involved, for instance the energy
eigenmodes are related to the Killing vector 3/3t of the isome-
try group, while the charge conjugation operation must take in-
to account the local spinor structure. Our procedure will be to
obtain consistent neutrino-antineutrino symmetry transforma-

tions of the Hilbert space of neutrino solutions (26)

generated
by (3.34), (3.35) and which then necessarily takes into account
the two group structures present.

Starting from a negative energy solution (3.35).

(L)
(L) 6 ) (k)
V(g (k) = ((;;) 3
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where
( }
iLw (n+l)
— Mael o1l 2, easi e [t
Iw[+Lk§+%§_w ' - %,U; el k, x tiks+ile]|
(L)
(=) (kq)=
M —
V2 |e] 1
+ =
) 2'
) J
we define the transformation
(L) 7
Y ; -1—
(=) (k3) - s leE;(k3)

(5.1)

where S is a matrix of the algebra of Dirac matrices, which sa

tisfies
sYUS’l'= —Y“T (5.2)
(14)
In the present representation , (5.2) is satisfyed by
S v vy’ (5.3)

where N denotes equality up to a constant phase factor. An ex=-

plicit calculation of (5.1) gives

T
2 0 (L) (-L)
- v -
Transformation (5.1) has the following properties: (i) it is a
symmetry transformation of the Hilbert space of neutrino solu-
tions, since it takes a negative energy solution (3.35) to a

positive energy solution (3.34), and vice-versa; (ii) the S ma

trix (5.2), (5.3) has the character of a charge-conjugation o-
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perator on the amplitudes (3.34), (3.35); (iii) neutrino am-
plitudes related by (5.1) have opposite helicity L and momen-
tum k3; this implies that the eigenvalues of the local momen-
tum T change sign under (5.1), as may be seen from the real

components of m, (cf. (4.21), (4.24) and the remarks below

A
(4.24)). We note that (5.4) is precisely the symmetry (3.38)
between positive and negative energy solutions. From the abo-
ve properties, we interpret (5.1) as a charge-conjugation-pa-

rity (CP) transformation for neutrino amplitudes, and hence we

have the independent positive energy wave functions interpre-

ted as

Wfig(k3) = neutrino amplitude.

(5.5)

w(lii(—k3) = corresponding anti-neutrino amplitude

The positive energy amplitudes (5.5) are said CP related in the

sense that the corresponding negative energy amplitude

W(E%G<)(w(ju)bk )) one is transformed into the other
(=) 37 1 (=) 3
(-L) (L) , ,
w(+) (-k3l(w(+)(k3)) under (5.1). From the local CP invarian-

ce of neutrinos physics (only negative helicity neutrinos e-
xist) we take L = -1 for neutrinos, which implies L = +1 for
antineutrinos (cf. (5.5)). Neutrino and antineutrino amplitu-

->
des (5.5) have their respective momentum 7 with opposite signs
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We can now discuss the microscopic asymmetry of neu-

trino emission along the direction determined by the vorticity
.+
vector field. From expression (4.26) for the component of J
-

along Q, we take the relevant factor

. 3 2
Jé3) = le|n + L(ﬁ3) (5.6)

and considering that |e| is always greater than [w3[ (cf. (3.32))

- 3
we have that jé3) has the same sign of m and: for neutrinos

(L= -1), (5.6) is larger for 73 < 0 than for w3 > 0; for anti-

neutrinos (L= +1),(5.6) is larger for #>0 than for 1%0! In the other words,

: >
for neutrinos (L= -1) we have that j is larger along the direc
> F
tion antiparallel to @ than along the parallel direction; for

-
antineutrinos (L= +1) j is larger along the direction parallel
F

->

to . For both cases (neutrino and antineutrino) the asymmetry
. (3)
J

F >
illustrative (note that © = (0,0,w)).

, . . 3
in is proportional to 2|em |. The following diagram is

antineutrinos

jé3)(L=+l)

Y

i

l

!

‘Tl

T i
v

neutrinos

.(3)
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The preferential emission of neutrinos (antineutrinos) along
the direction antiparallel (parallel) to the local wvorticity
5 has a macroscopic analog in the case of neutrino evapora-
tion by a rotating black—hole(27,28). Besides the microscopic/
macroscopic distinction in the calculated effects, a basic
difference however lies in the local character of the vortici
ty field of matter flow as well in the local interpretation of
L as the helicity fo neutrino spinor fields, for the present
case, in contrast to the asymptotic meaning of rotation and
other quantities in the space-~-time of a rotating black-hole.
Finally we draw some interesting conclusions concer
ning the number density of neutrino and antineutrino states,CP

violation and lepton asymmetry, for the present problem. To
this end we note that the number density of states - which is
proportional to [k[e]—/f(n+l)w)/(k3+l% Lw)}N where N is given
by (4.7), and which we denote by n(Lk3) - aepends strongly on

the sign of Lkj (through [e| and Lw3; cf. also (3.33)), for

[k3l of the order of w. Consequently for a given value of

(k2,k3,n,w), such that |k3| is of the order of &), such that
|k3]is of the order of w, we could have a number density  of
states different for L= -1 and L= +1. This fact can be signi-
ficative in the presence of CP violating interactions, as we
shall discuss now for the case of creation of neutrino-antineu
trino pairs in the presence of a CP violating - perturbation,
when a neutrino-antineutrino number asymmetry may possible
occurs.

Having in mind the CP symmetrv of (5.5) (cf.remarks
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below (5.5)) and that = = k3 + Y2 1.y we can draw the follow-

4

ing diagram for the amplitudes (5.5) according to the sign of

L=+1 IT
7ky

=4

el 4

Lky=-|k,|
; V2
Constraint |k3|>7r w

ILk ¢
3
L=-1 I
)
T X
=753 CP
T
Lk3=—|k3l /5
Constraint k3>7f W
L=-1 . ITT
k3
Ty =
2 2 P
Lk3= ,k3l
Exception

0<k3<£2 w, Lky=-|k

3l

1V

=+1 >
t %
3
% =
Lk3=|k3|
Exception
_%? w<k4<0, Lky=-|k,]|

In the previous diagram of currents, the large components of

neutrino and antineutrino currents correspond to amplitudes I

and II, and are CP related. The small components correspond to

CP related amplitudes III and IV, which shows clearly that the

asymmetric emission of neutrinos is CP invariant.

In case of creation of neutrino-antineutrino pairs

in the present universe, we can distinguish two possibilities:

(i) neutrino-antineutrino pairs whose amplitudes are CP rela-
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ted, namely (vI Y according to the above dia-

11} °r orrrVry)

gram; for each case the corresponding current diagram is Cp
invariant, and the number density of neutrino states is equal
to the number density of antineutrino states.

(ii) neutrino%antineutrino pairs whose amplitudes are not CP

related, namely (vIvI 1 or ( ). In both cases we note

v_ v
IIT IT
that Lk3 has opposite signs for neutrino and antineutrino am-

plitudes, which corresponds to a number density of states di-

fferents for neutrinos and anti-neutrinos. For (“vav) or
(

vIII;II) we have respectively the number densities of states
(n(lk3l), n(-|k;[))and t(-|kyD, n(|ky])). Nevertheless if the crea-
tion of pairs is due to a CP invariant perturbation both ca-

rrrory) and

no net asymmetry in neutrino-antineutrino number is possible.

ses will be equally probable since (v UIV)‘ CP (v
I

A net asymmetry (due to different number density of states
avaiable for neutrinos and antineutrinos) will appear if the
pair production perturbation violates CP. Indeed if pairs

(v.V__) are produced, the pairs ( ) are then forbidden

v —
I IV VitrViz
and a net asymmetry between neutrino and antineutrino number

will appear, proportional to the ratio.

n(k3) - n(-k3)

6 =
3 n(ky) + n(-k;) (5.7)

for positive values of k3 only. The ratio (5.7) is significan

tly non-zero only for k3 of the order of w. We also remark that
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the above discussion is independent of the space-time point con
sidered, since in our analysis we have dealt with scalar quan-
tities only.

The same analysis and conclusions follow for the mo-

6. CONCLUSIONS

The basic conclusion of our investigation is that
the presence of a vorticity field of matter can generate, via
gravitation, microscopic asymmetries in neutrino physics. We
have shown this in the context of Einsteiﬁ theory of gravita-
tion, and for operational simplicity we have considered Gd8del
universe as the cosmological background, because it is the sim
plest known solution of Einstein field equations which is sta
tionary and in which the matter content has a non-null vortici
ty. The results follow:

1) The local dynamics of neutrinos is obtained from Dirac equa
tion in the given background. The spin of the neutrino preces
ses locally about the direction of the vorticity field. The di
rection of the angular velocity vector is parallel to the vor-
ticity field, both for neutrino and anti-neutrino, and the ab-
solute value of the angular velocity of precession depends on
the enérgy of the neutrino/antineutrino. The Hamiltonian which
determines the local dynamics of neutrinos is defined with res
pect to the global time-like killing vector 3/9t, and we have
that the helicity L of neutrino (defined with respect to the

local Lorentz frames of the tetrads) is conserved,
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2) By separation into invariant modes defined by  the global

Killing vector fields of the space-time, we obtain a complete

set of solutions for neutrino amplitudes in the modes @gkz,k3r
L). The modes k2= 0 exist for neutrinos, while they are forbid .
den (as test fields) for scalar and vector fields; they have

the form of free plane waves propagating along the x3— direc-

tion, with bounded values of momentum k3 and energy. Pairs vV

of this type could in principle be created by purely time-de-

pendent perturbations sw® (t) of the vorticity vector field,

but this process should be restricted by the stability of the

cosmological background. We construct the Fourier space asso
ciated to these complete bases. In the case k2¢ 0, the comple

te Unitary relations for the kernel of the transformation are

separately defined for the positive energy part and negative

energy part of the kernel (cf. (4.15), (4.16));

3) From the symmetry properties of the Hilbert space of neu-

trino solutions and its corresponding Fourier space we are

able to define neutrino amplitudes and antineutrino amplitudes,
which are CP related as expected from the laws of neutrino phy
sics.

4) The Fourier current associated to neutrino amplitude is asy
mmetric along the direction determined by the vorticity field:
the component of neutrino current along the direction antipa-
rallel to the vorticity field is larger than the component
along the opposite direction. Also the Fourier component: associa -
ted to antineutrino amplitude 1is also asymmetric, since its

component along the direction antiparallel to the vorticity vec
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tor is smaller than the component along the direction parallel
to the vorticity wvector. Therefore at the microscopic level,
neutrino are preferentially emitted antiparallel to thelocalvorticity field,
as well antineutrinos are preferentially emitted parallel to
the local vorticity field. This result is CP invariant. In ca-

se of production of pairs under CP violation, a net number asy

mmetry appears between neutrinos and antineutrinos, which is
significantly non-zero for k3 of the order of the vorticity va

lue w.
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