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ABSTRACT

On the lights of Einstein equations. a system only con
taining two scalar fields is considered: ome is of long range
and attractive, the other is of short range and repulsive. The
sources of these fields are taken nonsingular and spherically
symmetric, éll components of the energy momentum tensor are con
tinuous. A static solution of the equations is obtained, in the
weak field approximation. The gource of the gravitational field
shows a finite concentration on the center of symmetry, and di-
lutes monotonically to zero outwards. A Séhwarzschild—type gra-

vitation is found at infinity.

1 - INTRODUCTION

One finds in literature an increasing hope that gene

ral relativity can account for the structure and mass spectrum



of the so called elementary particles. Solutions of the Einstein
equations are then looked for, in which the energy momentum ten
sor is nonsingular and corresponds to quantities with physically
acceptable interpretation. |

The first exact solution of the non-empty field equa-
tions is that of Schwarzschild (1916), which corresponds to an
uncharged, stable, spherically symmetric static distribution of
matter with uniform density; the gravitational collapse of the
sphere is prevented by a pressure field. However, pressure
effects are usually considered a final macroscopic result of
some microscopic interactions; it seems then advisable to avoid
the concept of pressure in the description of a very elementary
system.

A next candidate to prevent the collapse of the system
is the inertia of matter; in an Einstein cluster, for example,
we have'a collection of many gravitating masses in randomly
oriented circular motions around a center of symmetry (Einstein
1939, Teixeira and Som 1974). However, besides being unstable,
these clusters only postpone the solution of our problem to that
of a large number of small individual massive systems.

Coulomb repulsive effects can also be introduced in
order to balance the gravitational attraction; one can then
consider systems with density of matter and of charge (Bonnor
1§60). One soon verifies, however, that a static equilibrium
can only be obtained when these two densities bear a constant
and universal ratio; this in turn implies that all static sys-
tems of that nature should have the same charge-by-mass ratio,

a fact which is not observed experimentally.



‘Arbitrary charge-by-mass ratios were obtained (Teixei
ra et al. 1976) with the addition of long range scalar fields
of the type considered by Buchdahl (1959) and Wolk et al.(1975).
However, one finds that two equally constructed spheres of this
kind are insensitive to each other, in the sense that their
mutual gravitational, electric and scalar asymptotic effects
exactly balance; this also is in disagreement with observations.

It was recently pointed out (Teixeira et al. 1975)
that short range scalar fields are very appropriate for the des
cription of elementary systems; stable solutions were found for
static massive spheres, the constituents of which produced not
only gravitation but also a repulsive short range scalar field.
The energy-momentum of the system was taken 85 + puuuv, where
BS corresponds to the scalar field and p represents the matter
density with velocity u™. However, that model did not fully ex
ploit an important output of general relativity, namely that all
fields contribute to gravitation; it is then possible to obtain
nonsingular solutions which do not contain explicitly matter
density, but nevertheless produce gravitational fields with
physically écceptab]e asymptotic behaviour.

In the present paper‘we consider the simplest system
of this kind which can present stability: it contains only a
diffuse source of a short range repulsive scalar field (with
one parameter, the range £) and of a 1long range (zero para-
meter) attractive scalar field. The field equations are derived
through variational principles. A class of static solutions
with spherical symmetry is obtained; the solutions are regular

everywhere, and present the usual Schwarzschild gravitational

behaviour at infinity.



2 - BASIC EQUATIONS

We shall obtain our field equations from a Lagrangean

density
-~ <.
L-ofvl, v Sy (2.1)
dog = - -00PR o« = smesct (2.2)
1/2 x
<loy = - (-9)'/ Ao PG ¢*f + 200, (2.3)
172 0B _ n2,,2 x
«dog = (-9) (B B 49 B°/L%) + 2Bog (2.4)

in these expressions R is the scalar curvature (Anderson 1967),
g is the determinant of the gravitational potentials guv’ A is
an attractive (Teixeira et al. 1976) scalar field of long range,
and B is a repulsive scalar field of short range £ . An explicit
dependence of ;é on the four coordinates x" occurs in o; and
0;; these are scalar densities of weitht + 1, and represent the
sources of the fields A and B. Subscripted commas mean ordinary
derivative.

Upon variations of the gravitational potentials guv we

get the Einstein equations

ol s U s U _ M g2,,2
R, = 2A A’v + 2B B,v 8, B°/2 , (2.5)

while the variations of the fields A and B give

§'U —
Al - -, , (2.6)
B3V B/2% = op (2.7)

where we introduced the scalar quantities of weight zero

g = (--g)_]/2 o : (2.8)



a semicolon means covariant derivative. The contracted Bianchi

identities give, using (2.6) and (2.7),

op A, +togB =0 . (2.9)

We shall consider a static and spherically symmetric

system, so we use the metric element

ds? = 27 (dxo)2 - e gr2 - 12402 - Z54n%g d¢2 , (2.10)

with n and o functions of r alone; with the fields A and B, and
the densities o and Op also functions of r a]oné, we obtain from

the preceding equations

(ngq *+ 2ny/r + 0% = npay) e 2% = B2/l (2.11)
(ny - 2aq/r + 0§ - nqoq) e %% = B%ef2(al - B2)e7 | (2.12)
(ny/r = ag/r + 1%y 2% - r? 2 822 (2.13)
PTEr® e ALy e o , (2.14)
P (r? e ) e L opre? - - o5 (2.15)
with the identity

OAA] + OBB1 =0 ' (2.16)

a subscript 1 means d/dr.

Since in the five independent equations (2.11) to
(2.15) we have six functions (n,a,A,B,oA,oB), one constraint is
necessary in order to get explicit solutions: it seems more

natural for our purposes to consider

o = f O , f = const . (2.17)



In view of difficulty in finding exact solutions, we
try an approximate method: we expand our four fields n, a, A, B
and our two densities Ops Og in integral powers of some small
dimensionless parameter €, to be identified later. In the lowest
approximation we have taken Ops Opo A, B proportional to e, and

we have taken n, o proportional to ez;then (2.71) to (2.17) sim

plify to

g+ 2ng/r = 8905, (2.18)
nyq - 20q/r = BE/2% - 2(ad - BE) (2.19)
ny/r - ag/r - 2a/rf = 32/22. . (2.20)
Ay + 2A)/r = o, : (2.21)
By + 2By/r - B/L° = - fo, , (2.22)
(A + fB)o, = 0 . (2.23)

One finds that in this order of approximation the field
equations decoupled themée]ves; we can then use the three last
equations to obtain the fields A and B, then from (2.18) we get
the gravitational potential n , and finally we obtain o directly

\]
from a combination of (2.18) to (2.20):

1 2,2 2
a = rng -5 oAl - BE 4 B%e%) (2.24)

3 - THE SCALAR FIELDS

In regions where op # 0 we get from (2.21) to (2.23)

2 -1 2

811 + ZB]/r + (f° = 1) B/t = 0 : (3.1)



since we must have f2 > 1 1in order to prevent the collapse of
the system (Teixeira et al. 1975), we obtain the solution re-

gular at the origin

B. = s (vr) sin vr , s = const s (3.2)
v o ety l/e , - (3.3)

where the subscript i means internal. Then from (2.22) and

(2.21) we obtain the solutions also regular at the origin

oy = s vz(vr)- sin vr (3.4)

Ay = - fs [kvr)_] sin vr + Q] , u = const . (3.5)
In regions where op = 0 we obtain from (2.21) and

(2.22)

Ae = - v/r s v = const s _ (3.6)

Bg = W pl e/t . w = const , (3.7)

where the subscript e means external.

We now have to imposé the continuity of the fields A
and B, and of their radial derivatives on the boundary r = a of
the sphere; as a consequence of these four impositions we obtain
the values of the three constants, u, v, w, and also a cons-

traint for the radius a:
cot va = - (f~ - 1)]/2 . (3.8)

A short reflection shows that variations of sign of
the densities op and og would induce instability in the system;

one then finds from (3.4) that the only acceptable solution for



va in (3.8) is the smallest one,

7/2 < va < . R (3.9)
which in turn implies that

sinva = [£]71 >0 , cos va= - (£2-1)"21¢7T ¢ 0 .(3.10)

We then obtain

A, = - s f [ﬁvr)'] sin vr - cos V%l , (3.11)
A, = - s fsinva (1+a/2)(vr)"! : (3.12)
B; =s (vr) ' sin vr (3.13)
B, = s sin va(vr)—] e (r-a)/t (3.14)

These fields A and B then present a maximum absolute
value on the origin, and have a monotonic variation tending to

Zero as r » o

4 - THE GRAVITATIONAL FIELD

We can now integrate (2.18) to obtain n(r) continuous
on the bounhary a , with radial derivative also continuous. For

r < a we obtain
¢

n; = n(0)+y sz(fz-l)[kar)_] sin(2vr)-1+£n(2vr)-ci(2vk)+é] :

(4.1)

n(0) = - + s (f2-1)[%n(zva)-ci(2va)+c-2f'2 g2/t Ei(-za/zi} ,

N

(4.2)

where C = 0.577... is the Euler constant, and the cosine and



exponential integrals are

¢i(x) = - J £ cos t dt , Ei(-x) = - f £ et 4t , x > 03
X X
(4.3)
for r > a we obtain
Ng = - % 52(f2-1)r']{a+£—f2[?e_2r/£+2rEi(-2r/£{}e2a/£}.(4.4)

Finally the gravitational potential a(r) is obtained

from (2.24): we get

a; = - % s2(£%-1)(1-vr cot wr)(vr) "% sinf e, (4.5)
Ge = ]7 s2(f2-1)r”! a+£-r'](a+£)2+f'2£(”U‘”)G—Z(r-a)/ﬂ '

(4.6)

These two expressions coincide on the boundary r = a .
We find that at the origin we have «a(0) = 0, while

at infinity we have the usual Schwarzschild behaviour

n=-a =g siEl ) (ase)rT P . (4.7)

5 - DISCUSSIONS

From (3.11) to (3.14) and from (4.1) to (4.6) we find
that we can identify sf with the dimensionless parameter e in
terms of which we expanded our gravitational and scaiar fields.

Our solution is then valid for

[sf] << 1 . (5.1)



-10-

Different]y from the Schwarzschild 1nterior¥exterior
solution, also the derivatives o and n1 of the gravitational
potentials are continuous through the boundary r = a; this is a
consequence of the absence of any discontinuous quantity (like
density of matter in Schwarzschild solution) in the field equa-
tions (2.5).

Remembering that in Schwarzschild-type systems the
mass parameter m is defined by the asymptotic behaviour ng =

2

= - Gm/cr, r - «, we find from (4.7) that our system be-

haves gravitationally as a mass

m =% s2(fi-1)(ar2)c?/e (5.2)

From (2.18) we find that the contribution for this value comes
solely from the square of the short range scalar field B; so
from (3.13) and (3.14) we get that the gravitational sources is
more concentrate in regions close to the origin, and dilutes

monotonically to zero with increasing r, in a negative exponen

tial rate.
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