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Abstract

We revisited the quantum Zeno paradox, which claims that a generic quantum system prepared
in a state which is not an eigenstate of the Hamiltonian operator and is continuously observed
never decays. Since any perfectly isolated quantum system always interact with a vacuum field,
we analyze the possibility of using this fact to solve the above mentioned conceptual problem.
Therefore we discuss a two-level system or qubit-Bose field interaction Hamiltonians. We consider
the quantum dynamics of this two-level system, prepared in the excited state interacting with a
Bose field prepared in the Poincaré invariant vacuum state. Using a first-order approximation
in time-dependent perturbation theory, we evaluate the probability of spontaneous decay of the
two-level system driven by the vacuum field. This probability is evaluated for a finite time interval.
Using the standard argument to obtain the quantum Zeno paradox, we consider N measurements
where N → ∞ and we obtain that the non-decay probability law is a pure exponential, recovering
the classical behavior.
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1 Introduction

In the present paper we are interested to determine what would be the general type of evolution
of a two-level system, i.e., a qubit interacting with a Bose field prepared in the Poincaré invariant
vacuum state, if we perform continuous observations in the two-level system. The central idea of
the paper, to revisit the quantum Zeno paradox, is that there is no perfectly isolated system in
Nature, in such a way that it is totally decoupled from others, in special from a vacuum field.

Unstable systems in quantum mechanics have been the subject of many investigations since
the origin of this formalism, and have a long story starting with the seminal papers of Gamow [1]
and Wigner [2]. The temporal evolution of these quantum systems can be roughly divided in three
different behaviors. A gaussian-like behavior at short times, an exponential decay at intermediate
times and finally a power-law decay at long times [3] [4] [5]. The gaussian behavior for short times
is the key point of our discussions bellow, since it leads under general physical conditions to the
inhibition of the decay of a unstable quantum mechanical system.

This paradoxal result was obtained by Misra and Sudarshan [6] [7] using the von Neumann
description of measurement processes [8]. These authors proved that the realization of many
successive measurements originate the following behavior: the evolution of the unstable quantum
system can be dramatically slowed down by the act of observations. In the limit of continuous
observations, the temporal evolution of a quantum system can be frozen, defining respectively
the quantum Zeno effect and the quantum Zeno paradox, after the paradox given by the Greek
philosopher Zeno [9]. Actually, many years before, a close related result to the one obtained
by Misra and Sudarshan was achieved by Khalfin [10], where a proof of the deviation from the
exponential decay-law for large times was given.

The first conceptual question in the Misra and Sudarshan construction is the following: we may
ask whether is possible to realize this limit of continuous observation. Although some authors argue
that this limit of continuous observation is not physical and must be regarded as a mathematical
idealization [11] [12] [13], we prefer to discuss this delicate issue later. It is interesting to point out
that there are some references in the literature claiming that it is possible to recover the quantum
Zeno effect through conventional quantum mechanics without use the repeated collapse of the
wave function [14] [15].

As has been stressed by many authors [16] [17] [18] [19] [20] [21] [22], any quantum mechanical
system which we are interested to investigate its behavior on time interacts with the surroundings.
In other words, in Nature we deal actually only with open systems which are influenced by the
surrounding world through exchange of energy, or in a more abstract way, information. These
considerations motivate us to investigate the Zeno paradox including a vacuum field in the problem.
One can not say that a small system in a free space is actually isolated in absolute sense. There is
always a vacuum field and the vacuum modes. Of course, there are some ways to shield the qubit
from the vacuum modes. In the rotating-wave approximation, one way is to introduce macroscopic
structures in the system, and confine the qubit in a region where the characteristic length is much
smaller than the wavelength associated to the qubit transitions. In this way, the qubit is decoupled
from the environment. In this paper we are studying the qubit in a free space, without introduce
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macroscopic boundaries in the system.
According to our above discussion, a more pragmatic way to analyze the quantum Zeno effect

deserves a proper discussion concerning the description of the small system, as for example a qubit
system interacting with an environment, and how to focus on the time evolution of the small system
only eliminating the environment degrees of freedom. Therefore the two-level system, prepared in
a eigenstate of its free Hamiltonian, can make a transition to the lower eigenstate driven by the
vacuum field, which acts as a reservoir interacting with the qubit. This is a development of an
old idea. In the derivation of Planck’s radiation law, Einstein introduced the idea of spontaneous
emission, where a system makes a transition to a lower eigenstate without external stimulation
[23].

In considering an open system one has to specify the boundary defining its interaction with
the environment. Therefore, let us start with the discussion of the time evolution of quantum
systems using the above discussed ideas. In quantum mechanics, in treating arbitrary systems
the time evolution of closed systems is described by one-parameter group of unitary operators.
Therefore the equation of motion of such systems are symmetric to time reversal. To explain the
irreversibility that we see everywhere, we have to study the quantum dynamics of a system which
can not be represented in terms of unitary time evolution. The essential point here is that when
a small system interacts with an reservoir, which is characterized by an infinitely large number
of degrees of freedom, the time evolution of the small system can not be represented in terms of
unitary Hamiltonian dynamics and we call it an open quantum system. The special situation that
we are interested to study is given by a two-level quantum system weakly coupled to a quantized
Bose field. It is worth mentioning that there are a variety of theoretical models of reservoirs. The
first situation is when the system S is coupled to an infinite number of harmonic oscillators. In this
situation there are two kinds of reservoir of common interest. The first one is a thermal reservoir,
where we assume that the harmonic oscillators are in thermal equilibrium at temperature β−1.
The second one is a squeezed reservoir. The specific system-reservoir model which is appropriate
for the study of several interesting situations is when the harmonic oscillator bath is constituted
by a Bose field in free space.

The aim of the paper is to critically analyze the quantum Zeno paradox. The situation that
we are interested to study is when the two-level system is prepared in the excited state and is
interacting with a Bose field prepared in the Poincaré invariant vacuum state. Using the interaction
picture and first-order approximation in perturbation theory we compute the probability of decay
evaluated in a finite time interval. These calculations are not new in the literature. Svaiter
and Svaiter [26] [27], discussing model detectors, assumed a weak-coupling between a two-level
system and a Bose massless field. They evaluate the transition rates of the two-level system in
different kinematic situations without use of the rotating-wave approximation [24] [25]. Further,
Ford and collaborators [28], using the same model, assumed the presence of one or two infinite
perfectly reflecting plates which change the vacuum fluctuations associated to the Bose field. They
evaluate the probability per unit time of spontaneous emission at zero and finite temperature. We
would like to point out that radiative processes of atoms in waveguides and cavities have been
investigated by many authors. See for example the Ref. [29]. In the Refs. [30] [31] one of the
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authors continue to investigate radiative processes associated to the Unruh-DeWitt detector [34]
[35] [36], in interaction with a massless scalar field. Being more precise, in Ref. [31], it was
calculated the detector’s excitation rate when it is uniformly rotating around some fixed point,
when the scalar field is prepared in the Poicaré invariant vacuum state, and also when the detector
is inertial and the field is prepared in the Trocheries-Takeno vacuum state [32] [33]. These two
response functions allow to the authors to present questions analogous to those discussed by Mach
in the Newton’s bucket experiment in a quantum mechanical level.

This paper is organized as follows. In Section II we briefly discuss the theory of the classical
and quantum mechanical decays and the quantum Zeno paradox. In Section III we discuss qubit-
boson field interaction Hamiltonians. In Section IV, assuming that the two-level system interact
with a Bose field prepared in the Poincaré invariant vacuum state, the probability of decay of the
two-level system is presented using the interaction picture and the perturbation theory in first-
order approximation. The probability of decay of the two-level system is evaluated for a finite
time interval. In Section V, using the same arguments as in the quantum Zeno paradox, we obtain
that in the case of continuous observations the non-decay probability law is exponential for all
times. Conclusions are given in Section VI. In the paper we use kB = c = h̄ = 1

2 The classical and quantum mechanical decays and the

quantum Zeno paradox

To introduce probability in classical physics we have to make use of a huge number of identical
prepared systems. The evolution of a dynamical system out of equilibrium can be described using
a Markovian or a non-Markovian approximation. A classical example of a reduced dynamics where
a Markovian or a non-Markovian approximation appears is the theory of Brownian motion. In
a short time scale, the dynamics of the environment particles in the presence of the Brownian
particle is time reversible. In a larger time scale the environment degrees of freedom dissipate
energy, generating friction with a irreversible behavior. The white noise is introduced in order to
obtain an equilibrium configuration at large time that satisfies the fluctuation-dissipation theorem.
To describe a Brownian particle using a Langevin equation, the friction coefficient can be replaced
by a memory function and in this situation this Langevin equation is called non-Markovian, since
we introduce memory in the model. The usual argument that is used to introduce a friction
that depends on the history of the velocity is that in a viscous fluid, the disturbances in the
fluid caused by the Brownian particle take time to propagate. Motivated by the fact that it
is possible to introduce a kernel in the Langevin equation, Menezes and Svaiter [37] studied the
stochastic quantization method for a self-interacting scalar theory, using a Langevin equation with
memory kernel and a colored noise. A topological field theory also investigated using the same
generalization [38].
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The classical theory of decay is quite simple and is based on the assumption that unstable
systems have a certain probability of decay and that this probability does not depend on the past
history of the unstable system. Let us assume N unstable systems, and that the decay probability
per unit time be a constant that we call Γ. For simplicity Γ is characteristic of the system and also
does not depend on the total number of unstable systems nor on the environment surrounding
them. Let us define the number of unstable systems at time t by N(t). Therefore the number of
systems that will decay in the infinitesimal interval of time dt in dN(t). Consequently we have

−dN(t) = N Γ dt. (1)

Defining the inverse of Γ, i.e., the lifetime of the unstable system by τE (Γ = 1
τE

), the number of
unstable systems at a generic time t is

N(t) = N(0) exp
(
− t

τE

)
, (2)

where N(0) is the number of unstable systems at t = 0, i.e., the instant of time that we start our
observation. One define the non-decay classical probability Pclass(t) as

Pclass(t) =
N(t)

N(0)
= exp

(
− t

τE

)
. (3)

For short times (t << τE) we can write

Pclass(t) = 1 − t

τE
+ ... (4)

The basic features of this simple model is that we are using a Markovian approximation. We are
also excluding cooperative effects, making Γ and also P (t) environment-independent. The solution
given by the Eq.(3) has a dissipative behavior and is a fundamental law that gives the behavior
of unstable systems, as in experimental nuclear physics, for instance.

In quantum mechanics we introduce probability even working with a single system. A quantum
mechanical treatment of the same problem give us a short and large time behaviors which are in
disagreement with the exponential law obtained in Eq.(3). Let us first discuss the deviation from
the exponential decay law for large times. We are following the arguments presented in the Ref.
[7]. Let us assume a quantum system with a set of observables, i.e., operators which commute
with the Hamiltonian of the system. The Hamiltonian has a complete set of eigenstates, which is
a basis of the Hilbert space, therefore every state vector os the system can be expressed in terms
of it. For simplicity we assume that there is only one unstable state that we represent by | a 〉,
which is orthogonal to the bound states of the Hamiltonian operator H . Since the dynamic is
time-translational invariant, the unitary operator U(t2 − t1) propagates the system from t1 to t2.
Using the self-adjoint operator H of the system, the dynamics is defined by the unitary operator
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U(t) = e−iHt. Suppose that we are studying the temporal evolution of the system after t = 0. Let
us define the spectral projection of the Hamiltonian operator by

H =
∫

dλ λ| λ 〉 〈 λ |. (5)

The energy distribution function of the state | a 〉 or the probability that the energy of the unstable
state | a 〉 lies in the interval [E, E + dE] is given by

∫ E+dE

E
〈 a| λ〉 〈 λ| a〉 dλ. (6)

The non-decay probability at the time t is defined by Pquant(t). Therefore, using the standard
interpretation of quantum mechanics, we have that

Pquant(t) = |〈 a | e−iHt | a 〉|2, (7)

where the decay probability is given [1 − Pquant(t)]. Let us study the non-decay amplitude. It is
given by

〈 a | e−iHt | a 〉 =
∫

dλ e−iλt 〈 a| λ〉 〈 λ| a〉 . (8)

If 〈 λ| a〉 = 0, for λ < 0, i.e., the spectrum of the Hamiltonian operator H is bounded from bellow,
then when t → ∞ the quantity Pquant(t) decreases to zero less rapidly than any exponential of the
form e−σt. Therefore we have a deviation from the exponential decay law at large times. Also, the
treatment for the same problem for short time give us a short time behavior which is quadratic
and therefore in disagreement with the exponential law obtained in Eq.(3).

Let us assume again a quantum system with an Hamiltonian operator H with a complete set
of eigenstates denoted by | i 〉 (i = 1, 2, 3, ...). If we prepare the system in a normalized state | a 〉
which is not an eigenstate of H , it is possible to show that the non-decay probability at short
times is of the gaussian type. A short time expansion using the Eq.(7) yields

Pquant(t) = 1 − t2

τ 2
z

+ ..., (9)

where the quantity τ−1
z = (〈 a |H2 | a 〉−〈 a |H | a 〉2) 1

2 is the inverse of the characteristic time of the
gaussian evolution. The important feature of this approximation is that the non-decay probability
after a short time t is quadratic. The quantity τz is also called the Zeno time.

Let us assume that the quantum measurement occurs instantaneously, and also that is possible
to perform infinitely measurements in a given finite interval. Suppose that we perform N measure-
ments at equal time interval which satisfies T = N∆τ , and in each measurement we observe that
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the system stays in the initial state | a 〉 which was defined before. The probability of observing
the initial state at the final time T after N measurements reads

P
(N)
quant(T ) =

[
Pquant

(
T

N

)]N
. (10)

Substituting Eq.(9) in Eq.(10) we have

P
(N)
quant(T ) ≈

[
1 − 1

τ 2
z

(
T

N

)2
]N

. (11)

For very large N we get

P
(N)
quant(T ) ≈ exp

(
− T 2

τ 2
z N

)
, (12)

and repeated observations slow-down the evolution of the unstable system and increase the prob-
ability that the system remains in the initial state at T . If we are able to set N → ∞ one
obtains

lim
N→∞

P
(N)
quant(T ) ≈ lim

N→∞
exp

(
− T 2

τ 2
z N

)
= 1. (13)

This is a very simple derivation of the quantum Zeno paradox. The unstable quantum system
becomes stable if we perform infinitely continuous measurements.

There are many physical assumptions that we have to make to obtain this paradoxal effect.
Many authors claim that the limit of infinite measurements is non-physical, and it is in contradic-
tion with the Heiseberg uncertainty principle [39] [40]. We leave open these questions right now
and we shall come back to this important issue when we discuss the interpretation of time-energy
uncertainty relations [41] [42] [43] [44] [45].

We shall give latter a more satisfactory treatment for this paradox. As we discussed before,
perfect isolation of a quantum system is not possible, since in the best situation the quantum
system always interact with a vacuum field i.e., the vacuum modes. There are two approximations
essential in our approach: first, the fact that we have an environment which has an infinite number
of degrees of freedom, and in this case we use the term reservoir instead of environment. The second
point is that we are assuming a weak-coupling between the two-level system and the environment.

3 The qubit-Bose field interaction Hamiltonians

In this section we consider a very general situation where the system under investigation
contains a large number of non-identical two-level systems. In order to describe the dynamics
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of the reservoir and the two-level systems we have to introduce the Hamiltonian governing the
interaction of the quantized Bose field with free qubits. Free means that there is no interaction
between the qubits. Therefore let us consider a Bose quantum system B, with Hilbert space H(B)

which is coupled with N qubits, with Hilbert space H(Q). Let us assume that the reservoir is in
thermal equilibrium at temperature β−1. The Bose quantum system is a sub-system of the total
system living in the tensor product space H(B) ⊗ H(Q).

Let us denote by HB the Hamiltonian of the quantized Bose field, by HQ the free Hamiltonian
of the N -qubits and HI the Hamiltonian describing the interaction between the quantized Bose
field and the N qubits. The Hamiltonian for the total system can be written as

H = HB ⊗ IQ + IB ⊗ HQ + λ HI , (14)

where IB and IQ denotes the identities in the Hilbert spaces of the quantized Bose field and the
N qubits. In the Eq.(14), λ is a small coupling constant between the qubits and the quantized
Bose field.

The main purpose of this section is to discuss qubit-Bose field interaction Hamiltonians. There-
fore, let us introduce the Dicke operators to describe each qubit. The free j−th qubit Hamiltonian

will be denoted by H
(j)
D , since we are using the Dicke representation. Therefore, we have

H
(j)
D | i 〉j = ω

(j)
i | i 〉j, (15)

where | i 〉j are orthogonal energy eigenstates accessible to the j − th qubit and ω
(j)
i are the

respective eigenfrequencies. Using Eq.(15) and the orthonormality of the energy eigenstates we

can write the j − th qubit Hamiltonian H
(j)
D as

H
(j)
D =

2∑
i=1

ω
(j)
i (| i 〉 〈 i| )j. (16)

Let us define the Dicke operators σz
(j), σ+

(j) and σ−
(j) for each qubit by

σz
(j) =

1

2
(|2 〉 〈 2| − |1 〉 〈 1| )j, (17)

σ+
(j) = (|2 〉 〈 1| )j, (18)

and finally
σ−

(j) = (|1 〉 〈 2| )j. (19)

The Dicke representation is a second quantization of the qubits. Combining Eq.(16) and Eq.(17),
the j − th qubit Hamiltonian can be written as

H
(j)
D = Ω(j) σz

(j) +
1

2

(
ω

(j)
1 + ω

(j)
2

)
, (20)
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where the energy gap between the energy eigenstates of the j − th qubit is given by

Ω(j) = ω
(j)
2 − ω

(j)
1 . (21)

Shifting the zero of energy to 1
2
(ω

(j)
1 + ω

(j)
2 ) for each qubit, the j − th qubit Hamiltonian given by

Eq.(20) can be rewritten as

H
(j)
D = Ω(j) σz

(j). (22)

Note that the operators σ+
(j), σ−

(j) and σz
(j) satisfy the standard angular momentum commutation

relations corresponding to spin 1
2

operators, i.e.,

[
σ+

(j), σ
−
(j)

]
= 2 σz

(j), (23)

[
σz

(j), σ
+
(j)

]
= σ+

(j), (24)

and finally [
σz

(j), σ
−
(j)

]
= −σ−

(j). (25)

A well-known model is a combining system where we have only one mode of the quantized field.

The Hamiltonian of the j − th qubit H
(j)
D , with the contribution of the one-mode quantized Bose

field HS, and the interaction Hamiltonian λ H
(j)
I , can be used to define the Hamiltonian of the

total system, given by

IB ⊗ H
(j)
D + HB ⊗ IQ + λ H

(j)
I =

IB ⊗ Ω(j) σz
(j) + ω0 a†a ⊗ IQ +

(
a + a†)⊗ g

(
σ+

(j) + σ−
(j)

)
, (26)

where the second term in the Eq.(26) has the contribution from the quantized Bose field single
mode Hamiltonian and the last term is the interaction Hamiltonian of the j − th qubit with the
one-mode quantized field. The generalization to N qubits is described by

IB ⊗
N∑

j=1

H
(j)
D + HB ⊗ IQ + λ

N∑
j=1

H
(j)
I =

IB ⊗
N∑

j=1

Ω(j) σz
(j) + ω0 a†a ⊗ IQ +

(
a + a†)⊗ g√

N

N∑
j=1

(
σ+

(j) + σ−
(j)

)
, (27)

where the first summation in the right hand side

N∑
j=1

Ω(j) σz
(j) = Ω(1) σz

(1) ⊗ 1 ⊗ ... ⊗ 1 + ... + 1 ⊗ 1 ⊗ ... ⊗ 1 ⊗ Ω(N) σz
(N), (28)
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and 1 denotes the identity in the Hilbert space of each qubit. We can also introduce a qubit-qubit
interaction, which is relevant in the study of entangled states. In an entangled system, the state
of the composite system can not be factorized in to a product of the states of its sub-systems. For
example in the case of two-atom systems, takes the form

H(qq) =
2∑

i�=j

H(ij) σ+
(i) ⊗ σ−

(j). (29)

In the absence of the ”dipole-dipole” interaction the pure Hilbert space of the two qubit system is
spanned by the states | g1 〉 ⊗ | g2 〉, | g1 〉 ⊗ | e2 〉, | e1 〉 ⊗ | g2 〉, | e1 〉 ⊗ | e2 〉, where g and e denotes
respectively the ground and the excited state. If we include the ”dipole-dipole” interaction term
in the form of Eq.(29), the vectors | g1 〉 ⊗ | e2 〉 and | e1 〉 ⊗ | g2 〉 are not more eigenstates of
the Hamiltonian of the qubits systems. It can be shown that these two vectors states must be
substituted by the two entangled states, known in the literature as maximally entangled states
[46]

| s 〉 =
1√
2

(| e1 〉 ⊗ | g2 〉 + | g1 〉 ⊗ | e2 〉) (30)

and

| a 〉 =
1√
2

(| e1 〉 ⊗ | g2 〉 − | g1 〉 ⊗ | e2 〉) . (31)

Going back to Eq.(27), the interaction Hamiltonian is simplified if we assume the Jaynes-Cummings
model [47]. Considering the Jaynes-Cummings model for one qubit, we have

IB ⊗ H
(j)
D + HB ⊗ IQ + λ H

(j)
I =

IB ⊗ Ω(j) σz
(j) + ω0 a†a ⊗ IQ + g

(
a ⊗ σ+

(j) + a† ⊗ σ−
(j)

)
. (32)

The generalization to N qubits is straightforward and is given by

IB ⊗
N∑

j=1

H
(j)
D + HB ⊗ IQ + λ

N∑
j=1

H
(j)
I =

IB ⊗
N∑

j=1

Ω(j) σz
(j) + ω0 a†a ⊗ IQ +

g√
N

N∑
j=1

(
a ⊗ σ+

(j) + a† ⊗ σ−
(j)

)
. (33)

One point which is important to stress is that the terms which we ignore in Eq.(32) and Eq.(33)
are the so called counter-rotating terms. This approximation is known as the rotating-wave-
approximation. In the rotating-wave-approximation we ignore energy non-conserving terms in
which the emission (absorption) of a quantum of a quantized field is accompanied by the transition
of one qubit from its lower (upper) to its upper (lower) state. The rotating-wave-approximation
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ignores terms in which the j − th qubit raising (lowering) operators multiplies the field creation
(annihilation) operator.

So far we have discussed N non-identical qubits interacting with one-mode of the quantized
Bose field. Our aim is now to discuss the interaction of a system of N identical qubits with energy
gap (Ω = ω2−ω1), with an infinite number of harmonic oscillators which defines the reservoir. Let

b†k and bk be the creation and annihilation operators of the k− th harmonic oscillator of frequency
ωk. The total Hamiltonian, i.e., the Hamiltonian of the combined system of the reservoir and the
N identical qubits interacting with the reservoir reads

IB ⊗ Ω
N∑

j=1

σz
(j) +

∞∑
k=1

ωk b†k bk ⊗ IQ +
g√
N

N∑
j=1

∞∑
k=1

(
bk ⊗ σ+

(j) + b†k ⊗ σ−
(j)

)
. (34)

In the Eq.(34) the first term in the right side is the free Hamiltonian of N identical qubits, the
second term is the free reservoir Hamiltonian and the third term is the interaction Hamiltonian
between the reservoir and the N identical qubits. Notice that we shift the zero of energy for each
qubits, as we did before, and we are assuming the rotating-wave-approximation, where g√

N
is the

j-th qubit, k-th harmonic oscillator coupling constant.
We can also use a different interaction Hamiltonian, as the one introduced by Di Vicenzo

[48]. This author proposed a soluble model to study the influence of decoherence in quantum
computers, with the following model describing a system of one qubit coupled to a reservoir of
harmonic oscillators:

IB ⊗ HQ + HB ⊗ IQ + HI =

IB ⊗ Ω σz +
∞∑

k=1

ωk b†k bk ⊗ IQ + g
∞∑

k=1

(
b†k + bk

)
⊗ σz, (35)

where Ω is the usual energy level spacing of the qubit, b†k and bk are respectively the bosonic
creation and annihilation operators of the harmonic oscillators. Notice the particular coupling
between the reservoir and the qubit, that allows the loss of quantum coherence induced by the
reservoir without affecting the qubit. There are two straightforward generalizations for this model.
The first one is the introduction of a mode-dependent coupling constant [49]. Therefore we have

IB ⊗ HQ + HB ⊗ IQ + HI =

IB ⊗ Ω σz +
∞∑

k=1

ωk b†k bk ⊗ IQ +
∞∑

k=1

(
λk b†k + λ∗

k bk

)
⊗ σz. (36)

Other straightforward generalization is to introduce N identical qubits and the Hamiltonian of
the composed system reads

IB ⊗ HQ + HB ⊗ IQ + HI =



CBPF-NF-027/06 11

IB ⊗ Ω
∞∑

j=1

σz
(j) +

∞∑
k=1

ωk b†k bk ⊗ IQ +
g√
N

N∑
j=1

∞∑
k=1

(
b†k + bk

)
⊗ σz

(j). (37)

Another generalization of the Hamiltonian given by Eq.(34) is not assume the rotating-wave-
approximation in the interaction Hamiltonian. Without the rotating-wave-approximation, the
interaction Hamiltonian between the N qubits and the reservoir of harmonic oscillators reads

HI =
g√
N

N∑
j=1

∞∑
k=1

(
bk + b†k

)
⊗
(
σ+

(j) + σ−
(j)

)
. (38)

To conclude this section we should point out that through the paper we use the simple model
where the interaction Hamiltonian between the two-level system and the scalar field is linear in
both field and qubit and is given by

HI =
(
m21 σ+ + m12 σ− + σz(m22 − m11)

)
⊗ ϕ(x), (39)

where mij = 〈 i |m(0) | j 〉, and ϕ(x) can be expanded as

ϕ(x) =
∑
k

(
akuk(t,x) + a†

ku
∗
k(t,x)

)
. (40)

The modes uk(t,x) form a basis in the space of solutions of the Klein-Gordon equation. It’s
convenient to restrict the uk(t,x) to the interior of a three dimensional torus of side L (i.e., choose
periodic boundary conditions). Then

uk(t,x) = (2L3ω)−1/2eik.x−iωt (41)

where
ki = 2πji/L ji = 0,±1,±2... i = 1, 2, 3. (42)

It is possible to show that the interaction Hamiltonian defined by Eq.(39) is equivalent to the
interaction hamiltonian given by HI = m(τ)ϕ(x(τ)). This model is known as the Unruh-Dewitt
detector. The detector is an idealized point-like object with internal degrees of freedom defining
two energy levels. Different coupling between the field and the two-level system was analyzed by
Hinton [50].

There is one point that we would like to remind. This Unruh-DeWitt detector which is uni-
formly accelerated though the Poincaré invariant vacuum state is excited with a thermal spectrum.
Since in the Unruh-DeWitt detector the rotating-wave approximation is not used in the amplitude
of transition from the ground state to the excited state the processes with the absorption of quanta
of the field with the excitation of the detector and the emission of quanta of the field also with
the excitation of the detector appear.

In the next Section we are interested in the quantum measurement of a single object and how
to evaluate the probability of transition in a finite observation time. The probability of decay
of the two-level system is computed using the interaction picture and the perturbation theory in
first-order approximation.
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4 The probability of decay evaluated for a finite time in-

terval

In this section we are interested in the quantum measurement of a single object. It should
be emphasized that this qubit can be described by the following system: A quantum system
described by a generalized coordinate q in a double-well potential, with two distinct minima, an
excited state and a ground state. This system is effectively described by a two-dimensional Hilbert
space. Although there is a non-zero probability of tunnelling between these two wells, in some
limit this probability is exponentially small and the tunnelling does not mix the states, i.e., the
ground and the excited state [51]. For simplicity we will use the following notation. The two
energy levels of the two-level system, i.e. the ground and excited energy levels, respectively, are
given by ωg and ωe (ωe − ωg = ω > 0), with eigenstates of the free qubit Hamiltonian | g 〉 and
| e 〉, respectively. We are assuming a non-zero monopole matrix element between these two states
and we can assume that the diagonals of the monopole operator vanish.

As we discussed in the previous section, the coupling between the massless scalar field and the
qubit is given by a monopole interaction Hamiltonian, i.e.,

HI = m(τ) ϕ(x(τ)), (43)

where m(τ) is the monopole operator of the two-level system, ϕ(x(τ)) is the scalar field operator.
The total hamiltonian of the system is given by Eq.(14), where IB and IQ denotes the identities
in the Hilbert spaces of the quantized Bose field and a single qubit. In the Eq.(14), λ is a small
coupling constant between the qubit and the quantized Bose field.

We would like to stress that in general, measurement and state preparation are different phe-
nomena. In quantum mechanics preparing a particular state might involve a special type of
measurement, but there are an infinite number of prepared states which are not associated with
measurements. For example, a generic state for the two-level system |Ψ〉 can be written as
|Ψ〉 = α | e〉 + β| e〉. The normalization condition gives |α|2 + | β| 2 = 1. We can also prepare
the two-level system in this another state which is not an eigenstate of the Hamiltonian HQ.
Introducing the variables θ and φ we can write

|Ψ〉 = | θ, φ〉 = e−i φ
2 cos

(
θ

2

)
| e〉 + ei φ

2 sin

(
θ

2

)
| g〉. (44)

Clearly | θ, φ〉 is a complete set, since
∫ π
0 dθ sin θ

∫ 2π
0

dφ
2π

| θ, φ〉 〈 θ, φ| = 1. As already stated, we are
interested to study the probability of decay from the excited state. Therefore we assume that the
two-level system is in an eigenstate of the Hamiltonian HQ. To evaluate the probability of decay
(excitation) of the two-level system interacting with the Bose field, we can define the prepared
initial state of the system in τ = 0 as | τ0 〉 = | e 〉 ⊗ |Φi 〉 (| τ0 〉 = | g 〉 ⊗ |Φi 〉), where |Φi 〉
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is the initial state of the field. Both situations can be analyzed using the same formalism. In
the interacting picture, using the first-order approximation the probability of transition P (E, τ, 0)
after the time interval τ is given by

P (E, τ, 0) = λ2|〈 e |m(0) | g 〉| 2 F (E, τ, 0), (45)

where the response function F (E, τ, 0) is given by

F (E, τ, 0) =
∫ τ

0
dτ ′

∫ τ

0
dτ ′′ e−iE(τ ′−τ ′′)〈Φi |ϕ(x(τ ′)) ϕ(x(τ ′′))|Φi 〉, (46)

and in the above equation E = ±ω, where the signs (+) and (−) represent the excitation and
decay process, respectively. Note that to obtain Eq.(46) we sum over all possible final states of
the Bose field and we are using the completeness relation

∑
f |Φf 〉 〈Φf | = 1, where |Φf 〉 is an

arbitrary Bose field final state. We are obtaining information about the time evolution of the sub-
system, i.e., the two-level system. This approach must be equivalent to study the density operator
of the sub-system, i.e., the two-level system, which describes the dynamic evolution of this sub-
system interacting with the environment through master equations. The equivalence between the
density operator description and first-order perturbation theory to evaluate the quantum non-
decay probability was demonstrated by Fonda et al [3], a long time ago.

To proceed, let us suppose that it is possible to prepare the scalar field in Poincaré invariant
vacuum state | 0, M 〉, or the Minkowski vacuum state. Therefore in the above equation the
quantity 〈Φi |ϕ(x(τ ′)) ϕ(x(τ ′′))|Φi 〉 becomes the positive Wightman function associated with the
Bose scalar field evaluated in the world-line of the qubit. There are two points that we would
like to stress. The first is that in the integrand of Eq.(46), the two-point correlation function
depends only on the time difference (τ ′ − τ ′′). The integration over τ ′ and τ ′′ is carried out over
the square 0 ≤ τ ′ ≤ τ , 0 ≤ τ ′ ≤ τ [26]. The second one is that we are not using the rotating-
wave approximation, used by Glauber [52] and others, to define an ideal photo-counter detector.
Therefore in the response function F (E, τ, 0) the vacuum fluctuations contributions associated
with the Bose field are taken into account and we are studying the radiative processes associated
to the qubit induced by a vacuum field.

To calculate the probability of transition evaluated in a finite time interval let us prepare the
system in the initial instant of time τi in the state

| τi 〉 = | e 〉 ⊗ | 0, M 〉, (47)

and assume that we observe the system in the ground state in the instant of time τf . In this
situation the response function becomes

F (1)(E, τf , τi) =
∫ τf

τi

dτ ′
∫ τf

τi

dτ ′′ e−iE(τ ′−τ ′′)〈 0, M |ϕ(x(τ ′)) ϕ(x(τ ′′))| 0, M 〉, (48)
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where E = −ω. We are using the subscript (1) to call the attention that this quantity is evaluated
in the first measurement. Defining ∆τ = τf − τi, and introducing the variables ξ = τ ′ − τ ′′ and
η = τ ′ + τ ′′, the response function given by Eq.(48) can be written as:

F (1)(E, ∆τ) = − 1

4π2

∫ ∆τ

−∆τ
dξ(∆τ − | ξ| ) e−iEξ

(ξ − iε)2
, (49)

where the iε is introduced to specify correctly the singularities of the Wightman function, to respect
causality requirements. Let us split the response function F (1)(E, ∆τ) in two contributions:

F (1)(E, ∆τ) = F
(1)
1 (E, ∆τ) + F

(1)
2 (E, ∆τ), (50)

where the functions F
(1)
1 (E, ∆τ) and F

(1)
2 (E, ∆τ) are given respectively by

F
(1)
1 (E, ∆τ) = − 1

4π2

∫ ∆τ

−∆τ
dξ∆τ

e−iEξ

(ξ − iε)2
(51)

and

F
(1)
2 (E, ∆τ) =

1

4π2

∫ ∆τ

−∆τ
dξ | ξ| e−iEξ

(ξ − iε)2
. (52)

After some calculations [26] [27] we obtain that the functions F
(1)
1 (E, ∆τ) and F

(1)
2 (E, ∆τ) can be

written as:

F
(1)
1 (E, ∆τ) =

∆τ

2π

(
−E Θ(−E) +

cos E∆τ

π∆τ
+

|E|
π

(
Si|E|∆τ − π

2

))
(53)

and

F
(1)
2 (E, ∆τ) =

1

2π2
(−γ + Ci|E|∆τ − ln ε|E| − 1) . (54)

In the Eq.(53) and Eq.(54), γ is the Euler constant and the Si(z) and Ci(z) functions are defined
respectively by [53]:

Si(z) =
∫ z

0

sin t

t
dt, (55)

and

Ci(z) = γ + ln z +
∫ z

0

1

t
(cos t − 1) dt. (56)

The Eq.(54) has two divergences. One given by ln ∆τ as ∆τ → 0+ and other given by ln ε.
In a full perturbative renormalizable quantum field theory, there is a regularization and also a
renormalization procedure, where the infinities can be eliminated. One way to circumvent this



CBPF-NF-027/06 15

problem is to define the rate R(1)(E, ∆τ) = d
d(∆τ)

F (1)(E, ∆τ) [54]. Since we are interested in

the non-decay probability in a finite time, let us define the renormalized probability of transition
P (1)

ren(E, ∆τ) by

P (1)
ren(E, ∆τ) = λ2|〈 e |m(τi) | g 〉| 2

(
F (1)(E, ∆τ) − ln

∆τ

ε

)
. (57)

To support this procedure we can use the argument that these divergences are spurious and can not
appear in the physically measured processes. Using this renormalization procedure, the probability
of decay can be written as

P (1)
ren(E, ∆τ) = λ2|〈 e |m(τi) | g 〉| 2 F (1)

ren(E, ∆τ), (58)

where F (1)
ren(E, ∆τ) is given by

F (1)
ren(E, ∆τ) =

1

2π2

(
|E|∆τ

(
π

2
+ Si |E|∆τ

)
+ cos E∆τ − 1 +

∫ |E|∆τ

0

1

ξ
(cos ξ − 1) dξ

)
. (59)

For a small time interval ∆τ the transition probability contains two contributions: the first one
that increases linearly with the time interval and the second one that increases quadratically with
the time interval. The probability of non-decay of this two-level system after a finite time interval

∆τ is given by P
(1)
still(E, ∆τ) = 1 − P (1)

ren(E, ∆τ).
Instead of using the interaction picture and the perturbation theory in first-order approxima-

tions, it is possible to use the Heisenberg equations of motion to the Dicke operators and also to
the annihilation and creation operators associated to the Bose field [55] [56]. Clearly both methods
of calculations must give identical results.

In the next Section we use this probability of non-decay and the standards argument used to
derive the quantum Zeno paradox to show that the observed non-decay probability is exponential
of the time T . There are some technical problems in the second measurement. Although we
assume that the interaction between the qubit and the field is weak, we can not suppose that
the state of the field does not change in time. We conclude that to study the time evolution of
the system in the second measuremet, we have to suppose that the qubit is still in the excited
state | e 〉, and the Bose field is in an arbitrary state |Φi〉. We will suppose that the initial sate of
the field in the second measurement is a many particle state. A more realistic description of the
second measurement can be done, but we study the previous situation for the sake of simplicity.
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5 The exponential decay after N successive measurements

The aim of this section is to show that if we couple the two-level system with the Bose field in
the vacuum state we recover the exponential non-decay probability if the system is continuously
observed.

Before presenting our results, we would like to stress that there are a lot of conceptual problems
in the measurement problem in quantum theory which are unsolve today. Among they, one of
them is the fact that if the initial state of a quantum system before a measurement is a pure
state, using the Schrodinger equation we have that there is no way to transform the pure state
into mixed states. Also there is a problem related to how to analyse the quantum system and the
apparatus dynamically. If the apparatus is also a quantum system, how to obtain the reduction
of the state vector of the apparatus.

There are three different ways to justify our results. The first is that we are following the
philosophy that the state of the two-level system is observed by means of macroscopic device
which behaves classically. There is some correlation between the state of the two-level system and
some macroscopically state of the apparatus. For example, a measuring device is probably a macro-
system with several metastable states close together in energy, where a very small perturbation
make it evolve to a stable state correlated with the state of the quantum system [57]. The problem
of this statement is that, in the model that we adopted, there is no coupling between the composed
system qubit-Bose field with the measuring device. In this situation, the Bose field is measured
through an indirect measurement on the qubit. The second way is to accept that to extract
information that the qubit is in the excited state, an indirect measurement on its environment
must be carried out. The third one is to follow the arguments of Braginsky and Khalili [58] that
if there is a suppression or enhanced of the quantum transition, this is not a measurement related
to a macroscopically apparatus itself, but it is related only to the interaction between the qubit
with the vacuum field. Therefore we continue to use the word measurement avoiding puzzling
aspects of the problem. Some references with complete discussion of the interpretation problems
of quantum mechanics can be found in Refs. [59] [60] [61].

Suppose that we perform N measurements at equal time interval which satisfies T = N∆τ , and
in each measurement the system stays in the initial excited state | e 〉 defined before. For instance,
the fundamental question is how to extract information from the qubit. Again, we would like to
stress that to obtain the Eq.(46) we assumed that no observation was made to discriminate among
possible final Bose field states. Therefore to calculate the probability of observing the initial state
of the qubit | e 〉, at the final time T after N measurements we have to point out the following

fact. In the first measurement, to obtain the probability P
(1)
still(E, ∆τ) = (1− P (1)

ren(E, ∆τ)), where
P (1)

ren(E, ∆τ) is given by Eq.(58) and Eq.(59), we summed over all possible final states of the Bose
field. This reflect the fact that we are interested in the final state of the qubit and not that of the
field. For this reason, in the second measurement we can not assume that the initial state of the
Bose field is identical with the initial state of the field prepared in the first time interval ∆τ .
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Before the second measurement, the information of the state of the field is retained by the
system. Since the initial Bose field state in the second measurement is indeterminate for us, we
choose an arbitrary state |Φi 〉. Therefore to study the time evolution of the system in the second
measuremet, let us suppose that the qubit is still in the excited state | e 〉, and the Bose field is
in an arbitrary state |Φi 〉. To find the probability of transition from the state | e 〉 ⊗ |Φi 〉 to
the final state | g 〉 ⊗ |Φf 〉 after the second time interval ∆τ we have to evaluate the expression
P (2)(E, τf + ∆τ, τi + ∆τ) given by

P (2)(E, τf + ∆τ, τi + ∆τ) = λ2|〈 e |m(τi + ∆τ) | g 〉| 2 F (2)(E, τf + ∆τ, τi + ∆τ), (60)

where the new response function F (2)(E, τf + ∆τ, τi + ∆τ) = F (2)(E, ∆τ) can be written as

F (2)(E, ∆τ) =
∫ ∆τ

−∆τ
dξ(∆τ − | ξ| )e−iEξ〈Φi |ϕ(x(τ ′)) ϕ(x(τ ′′))|Φi 〉. (61)

Note that we are using the same convention used in the section IV. We have again that ∆τ = τf−τi,
and ξ = τ ′ − τ ′′. Note that to obtain the Eq.(61) we are using again the completeness relation
over the final states of the field in the second measurement.

We have a considerable arbitrariness in the choice of the initial state of the field after the first
measurement. An appropriate starting point is to suppose that the initial state of the field in the
second measurement is a many particle state with n1 quanta with momenta k1 and energy ω1, n2

quanta with momenta k2 and energy ω2 and so on. Therefore the two-point correlation function
that appears in the Eq.(61) can be written as

〈Φi |ϕ(x(τ ′)) ϕ(x(τ ′′))|Φi 〉 = 〈n1(k1)...nj(kj)|ϕ(x(τ ′)) ϕ(x(τ ′′))|n1(k1)...nj(kj)〉. (62)

Using Eq.(62) it’s not difficult to show that we can write the two-point correlation function
〈Φi |ϕ(x(τ ′)) ϕ(x(τ ′′))|Φi 〉 in the following way:

G+(x(τ ′), x(τ ′′)) +
∑

i

niuki
(x(τ ′))u∗

ki
(x(τ ′′)) +

∑
i

niu
∗
ki

(x(τ ′))uki
(x(τ ′′)), (63)

where G+(x(τ ′), x(τ ′′)) is the positive Wightman function evaluated in the world line of the qubit
and ni is the number density of quanta in the k-space. The set (u∗

ki
(x), uki

(x)) is a basis in the
space of solutions of the Klein-Gordon equation. Without loss of generality we can choose the
plane-waves for the basis.

Taking the continuous limit, assuming that the quanta are distributed isotropically, and sub-
stituting Eq.(62) and Eq.(63) in Eq.(61) we have that the response function F (2)(E, ∆τ) in the
second measurement can be written as

F (2)(E, ∆τ) = F
(2)
1 (E, ∆τ) + F

(2)
2 (E, ∆τ). (64)
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In the Eq.(64), the quantity F
(2)
1 (E, ∆τ) is the vacuum contribution given by Eq.(49) and the

quantity F
(2)
2 (E, ∆τ) is the non-vacuum contribution given by

F
(2)
2 (E, ∆τ) =

1

4π2

∫ ∆τ

−∆τ
dξ (∆τ − | ξ| )e−iEξ g(ξ). (65)

In the above expression the function g(ξ) that depends on the the number density of quanta in
the k-space in the continuous limit is

g(ξ) =
∫

dω ω n(ω)
(
eiωξ + e−iωξ

)
. (66)

To proceed, we can extend the integration over all frequencies in the Eq.(66) and also replace the
number density of quanta in the k-space, n(ω) by a constant value in the interval [0, a]. Using
that [62] ∫ ∞

−∞
dx fn(x) eixξ =

n!

(−iξ)n+1

(
1 + eiaξ

n∑
k=0

(−iaξ)k

k!

)
(67)

where fn(x) = xn for 0 < x < a and zero otherwise and n = 1, 2, ... we get that Eq.(66) can be
written as

g(ξ, a) = − 2

ξ2
− 1

ξ2

(
eiaξ + e−iaξ

)
− 2a

ξ
sin ξa. (68)

The first term in the above equation will give a contribution to the response function which is
proportional to the vacuum field contribution. The second and the third terms also give contribu-
tions that can not modify the result obtained before. Finally the last term also does not change
our previous results. To obtain the final result, let us substitute Eq.(68) in Eq.(65). Therefore we

have that F
(2)
2 (E, ∆τ) can be written as

F
(2)
2 (E, a, ∆τ) = f

(2)
1 (E, ∆τ) + f

(2)
2 (E, a, ∆τ) + f

(2)
3 (E, a, ∆τ) + f

(2)
4 (E, a, ∆τ)), (69)

where f
(2)
1 (E, ∆τ) = 2F

(2)
1 (E, ∆τ), and the two other terms in the above equation are given

respectively by

f
(2)
2 (E, a, ∆τ) = − 1

4π2

∫ ∆τ

−∆τ
dξ (∆τ − | ξ |)e

−i(E+a)ξ

(ξ − iε)2
, (70)

and f
(2)
3 (E, a, ∆τ) = f

(2)
2 (E,−a, ∆τ). Again the iε is introduced to respect causality requirements.

Finally, the function f
(2)
4 (E, a, ∆τ) is given by

f
(2)
4 (E, a, ∆τ) = − a

4π2

∫ ∆τ

−∆τ
dξ(∆τ − | ξ |) e−iEξ sin ξa

(ξ − iε)
. (71)
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The integral above can be written in the following form:

f
(2)
4 (E, a, ∆τ) = −a∆τ

4π2i

(∫ ∆τ

−∆τ

dξ

ξ
e−iξ(E−a) −

∫ ∆τ

−∆τ

dξ

ξ
e−iξ(E+a)

)
+

a

π2

∫ ∆τ

0
dξ sin ξa cos ξE. (72)

To carry out the integrations we use the fact that the two integral in the right side of the Eq.(72)
can be interpreted as the principal value, i.e.

ε(x) =
1

iπ
P
∫ ∞τ

−∞
dξ

ξ
eiξx (73)

and also the last integral of the Eq.(72) can be carry out immediately and gives

∫ ∆τ

0
dξ sin ξa cos ξE =

1 − cos(a + E)∆τ

2(a + E)
+

1 − cos(a − E)∆τ

2(a − E)
. (74)

We conclude that in this second small time interval ∆τ the transition probability contains also two
contributions: the first one that increases linearly with the time interval and the second one that
increases quadratically with the time interval. Following this line, the probability of observing the
initial state at the final time T after N measurements reads

P
(N)
still(E, T ) =

[
P

(1)
still

(
E,

T

N

)] [
P

(2)
still(E, a,

T

N
)
](N−1)

. (75)

Using the fact that P
(i)
still

(
E,
(

T
N

))
=
[
1 − P (i)

ren

(
E,
(

T
N

))]
for i = 1, 2, we have

P
(N)
still(E, T ) =

[
1 − P (1)

ren

(
E,
(

T

N

))] [
1 − P (2)

ren(E, a,
T

N
)
](N−1)

. (76)

For ∆τ = T
N

, expanding for small arguments and keeping terms only through order
(

T
N

)2
the

quantity F (1)
ren(E, ∆τ) is written as

F (1)
ren

(
E,

T

N

)
≈ σ

[
Γ T

N
+
(

α Γ T

N

)2
]
, (77)

where α2 = (2π − 6), Γ = |E|
4π

and σ = λ2|〈 e |m(τi) | g 〉| 2. The quantity F (2)
ren(E, ∆τ) also in the

same order of the approximation can be written as

F (2)
ren

(
E, a,

T

N

)
≈ σ

(
p (E, a)

T

N
+ q(E, a)

T 2

N2

)
, (78)
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where p (E, a) and q (E, a) are functions of E and a given by

p (E, a) =
1

4π
(3|E| + |E + a| + |E − a| + a ε(E − a) − a ε(E + a)) (79)

and

q (E, a) =
1

8π2

(
5E2(π − 3) − 2a2

)
. (80)

It is easy to see that, if |E| < | a|, then

p (E, a) =
3|E|
4π

. (81)

For |E| > | a|:
p (E, a) =

5|E|
4π

. (82)

Finally for |E| = | a|, we obtain

p (E, a) =
|E|
π

(83)

and

q (E, a) = (5π − 17)
E2

8π2
. (84)

We may write the probability of observation the initial state at a finite time T after N measure-

ments P
(N)
still(E, T

N
) as

P
(N)
still(E, a, N) ≈

[
1 − 1

N

(
p (E, a, σ)T + q(E, a, σ)

T 2

N

)]N

. (85)

At this moment we would like to discuss the interpretation of time-uncertainty relations. There
are a large amount of literature devoted to the interpretation of quantum mechanics. Nevertheless,
concerning the time-uncertainty relations, there are a few papers discussing the implications of
such relations. Landau and Peierls [41] and also Landau and Lifshitz [42] claim that the energy of a
quantum system can be measured exactly at a given time. Nevertheless, we must take into account
the change caused by the process of measurement. In the relation ∆E ∆τ > 1, the quantity ∆E
is the difference between two exactly measured energy values at two different instants of time,
where ∆τ is the time interval between the measurements. If we accept this interpretation, there
is a finite but very large N constrained by an upper bound given by the Landau, Peierls and
Lifshitz interpretation of the time-energy uncertainty relation (N < TE), and we obtain that the
non-decay probability is polinomial but very similar to the exponential behavior.
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On the other hand, this interpretation of the time-energy uncertainty relation is not universally
accepted. Aharonov and Bohm [44] [45] claim that the time-uncertainty relations are not consistent
with the general principles of quantum mechanics which require that the uncertainty relations be
expressible in terms of operators. Therefore, they concluded that the energy of a quantum system
can be measured in an arbitrary short time. In this framework we are able to take the limit
N → ∞, and we get

P
(N)
still(E, a, T ) = exp

(
−p (E, a, σ)T − q(E, a, σ)

T 2

N

)
. (86)

To conclude, we obtain that repeated observations slow-down the evolution of the unstable system
and increase the probability that the system remains in the initial state at T . If we are able
to perform only a finite but very large N number of measurements in a finite time, constrained
by an upper bound given by the Landau, Peierls and Lifshitz interpretation of the time-energy
uncertainty relation, we obtain that the non-decay probability is polinomial but very similar to the
exponential behavior. On the other hand, if we are able to perform continuous observation and
the limit N → ∞ can be used, the non-decay probability becomes a pure exponential. Although
much of our analysis has been pure mathematically, we are based in the orthodox interpretation of
the quantum measurement theory. We obtain through a very simple derivation that the quantum
Zeno paradox does not arise if we follow three different steps: first, we prepare the composed
system in an initial state | e 〉 ⊗ | 0, M 〉, i.e., we couple the two-level system with a vacuum field.
Second, the system evolves under the influence of the unobserved Bose field. The third one is that
we are able to perform continuous observations in the two-level system.

6 Conclusions

In this paper we study the time evolution of unstable systems after repeated but finite observations
and also in the limit of continuous observation, analyzing the quantum Zeno paradox. As has been
stressed by many authors, any quantum system interacts with the surrounding and therefore a
different formulation of the quantum Zeno effect taking into account this fact is necessary.

Using perturbation theory in first-order approximation where a two-level system is interact-
ing with the Bose field in the Poincaré invariant vacuum state we obtain two distinct types of
behaviors. We consider N measurements in two different situations: first a finite but very large
N constrained by an upper bound given by the Landau, Peierls and Lifshitz interpretation of the
time-energy uncertainty relation, and second, the case where N → ∞, allowed by the Aharanov-
Bohm interpretation of the same relation. Studying the non-decay probability in both situations,
we obtain that the non-decay probability is polynomial and very similar to the exponential be-
havior for the first case. For the second case the non-decay probability is given by

P
(N)
still(E, T ) = exp

(
−T

τc

)
, (87)
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where τc ∝ 1
E

. It is important to remind that in the interaction Hamiltonian for our model, we are
not assuming the rotating-wave-approximation, that excludes terms that represent simultaneous
qubit and field excitation and de-excitation respectively. Although these terms are not-energy
conserving, representing virtual processes, we understand that only for very large time interval
∆τ the contribution coming from these terms can be neglected. In the case that we are interested,
i.e., a small ∆τ , a more carefully procedure is not to omit the energy-non-conserving terms.
This procedure allow us to obtain the above equation that accounts very well for experimental
observed facts, as for example the decay of many quantum systems, as unstable atoms or nuclei.
The result establishes that the quantum theory allow us to recover classical behavior under suitable
circumstances.

From the preceding Sections it is seen that, although our model of the qubit-Bose field composed
system is quite satisfactory to obtain the experimentally observed non-decay probability law with
the exponential behavior, the approach of the paper is intrinsically limited since we would like to
predict the same behavior in quite general quantum systems. We know that many systems have
a complete set of discrete eigenstates but also a continuum spectrum. Therefore to construct a
more realistic model to study the quantum Zeno effect and paradox we have to generalize our
model to one with two bound states and also a continuum of states. For example in the case
of the atom, which is a practical photo-detector, there is a continuum of final electron states.
Assuming the same two-levels and a continuum of states |ωa〉, with energy in the range [ ωc,∞ ],
and preparing the small system in the state| e〉 and again the Bose field in the vacuum state we
have that the probability, evaluated for a finite time interval, of the system to makes a transition
to the continuum is given by

P (∆τ) =
∫ ∞

ωc

dωa ρ(ωa)P (ωae, ∆τ), (88)

where ωae = ωa −ωe and ρ(ωa) is a density of final excited states. Again, the quantity P (ωae, ∆τ)
is given by

Pren(ωae, ∆τ) = λ2|〈 a |m(τi) | e 〉| 2 Fren(ωae, ∆τ). (89)

Note that we have to choose a particular form to the density of final excited states ρ(ωae), to
make sure that the integral given by Eq.(88) converges at infinity. This generalization is under
investigation by the authors.

There are also different directions for investigation. To mention a few: first is to assume a
strong-coupling between the qubit and the Bose field [63] [64]. Second, still in the weak-coupling
regime, is to assume that the reservoir is in thermal equilibrium or in a squeezed state [65]. It
can be shown that the behavior of the two-level system in a squeezed bath depends on the way in
which the squeezed bath is prepared, showing Zeno or anti-Zeno effects. Also it is interesting to
consider N qubits (N → ∞) interacting with one mode of the Bose field, analyzing the situation
where the qubit system acts as a reservoir whereas the Bose field is an open system, and study
the dynamics of the reduced system.
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Finally, this two-level system, referred to as a qubit is the elementary building block of a
quantum computer [66] [67] [68] [69] [70]. This new area of research has revived the interest
in open quantum systems. The fundamental technological problem is if it is possible to create
entanglement properties of states in systems that interact with a reservoir. Several situations
of entangled systems have been proposed, as for example involving trapping and also cooling a
small number of atoms. How to isolate atoms from the environment in order to make the effect
of decoherence negligible is an open problem until now.

Therefore, another natural extension of this paper is to generalize some results of the paper
in the case of two-atom systems prepared in an entangled state. Using time-dependent pertur-
bation theory in a first-order approximation, evaluate the probability per unit-time of decay of
the symmetric and anti-symmetric states given by Eq.(30) and Eq.(31) respectively to the ground
state | g1 〉 ⊗ | g2 〉. Note that we have to continue to assume that the qubits also interact with the
vacuum modes. The possibility to prepare the two-atom system in a entangled decoherence-free
state is a question that has fundamental importance in quantum computing applications.
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