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Abstract

In this manuscript one determines the first and second Kramers-Moyal moments of the Dow

Jones daily index return time series and compare them with the coefficients related to a

generalised Langevin equation, proposed a priori, whose associated Fokker-Planck equation

has as solution the distribution which optimises nonextensive entropy, known as Tsallis dis-

tribution. The results obtained show that coefficients, from data and from dynamics, are

similar confirming, thus, that the application of the current nonextensive statistical mechan-

ics formalism in the treatment of financial systems has, in fact, a dynamical foundation.
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The intricate character of financial systems has been one of the main motives for the

physicists interest in the study of their statistical and dynamical properties [1–3]. In fact, the

enormous number of degrees of freedom, the intricacy of the interactions and the set of power-

law behaviour empirically observed, turned financial systems, and particularly, financial

markets, in a standard case of complexity [4]. Besides their own importance, those empirical

observations have been the source of several new and better performing models (developed

at various system scales) [5–8] and inspired the application of classical physical treatments,

such as phase transitions and stochastic processes in the study of complexity [9, 10].

Though, it is now completely established that financial markets, have an anomalous

dynamics, corroborated by, e.g., the non-Gaussianity in the return probability density func-

tion (PDF) [11, 12] or the multi-fractal character of return time series [13, 14], therefore

incompatible with the celebrated Boltzmann-Gibbs statistical mechanics, the definition of

an appropriate statistical framework remained as an open question. If many authors sus-

tain that financial markets belong to some strange dynamical class out of Lévy regime [15],

another trend [16, 17] defends that, due to their main features, financial markets can be

analysed within non-extensive statistical mechanics (NESM) framework based on Tsallis

statistics [18] which already produced a collection of important results in the area [6, 19–

23].

In this Rapid Note one will compare the first and second Kramers-Moyal (KM) moments

of the Dow Jones (DJ) daily return time series from 1900 until 2003 with the corresponding

moments of a generalised Langevin equation introduced in a NESM. We show that, instead

of a ”simple fitting parameter” [24], the entropic index q, is intimately related with the

anomalous dynamics of the problem, in such a way that, for the limit q = 1, an ordinary

Brownian dynamics, like it was proposed by Bachelier/Einstein [25, 26], is recovered.

Although considered as the ideal description, purely deterministic microscopic models,

where one knows the equations of evolution for every microscopic degree of freedom and

therefore one could, in principle, rigorously determine system’s state are in a large major-

ity of the cases an inappropriate way of describing the evolution of systems macroscopic

observables, particularly of complex systems. One way out is to consider the description

of such macroscopic variables as a combination of deterministic terms and some stochastic

dependence which aims to heuristically reproduce microscopic effects on the general state of

the system [27]. In this kind of description one can include stochastic differencial equations



like the Langevin equation (LE), composed by drift and diffusion coefficients. From these

coefficients, closely related with the microscopic dynamics of the system, one can write the

corresponding Fokker-Planck equation (FPE) which describes the evolution of the macro-

scopic observables PDFs.

On first place one will define the macroscopic observable under analysis, the daily (log-

)return of a stock market index, as

r̃ (t) = log [S (t)] − log [S (t − 1)] ,

where S represents the index value. For simplicity reasons, one will deal with the normalised

daily return, r (t), by subtracting the average time series return and express it in standard

deviation time series units, i.e,

r (t) =
r̃ (t) − 〈r̃ (t)〉√〈
(r̃ (t) − 〈r̃ (t)〉)2〉 .

Now, let one try to describe heuristically the evolution of normalised daily returns by

splitting it into the two referred parts, deterministic and stochastic. The first one represents

the internal mechanisms which intend to keep the market in the average returnand that

can be written as a restoring force, with a constant k, similar to the viscous force in the

Langevin equation [28–30]. This term is compatible with the (fast) exponencial-like decay

in the auto-correlation function for returns observed in liquid (and stable) markets [1, 15].

The stochastic term will represent the microscopic response of the system to fluctuations

of the return. Since, low probability (most unexpected) return values, are those that will

certainly produce more instability in the market, i.e., will make it more volatile, it is prefectly

plausible that the stochastic term may have an inverse PDF dependence and so,

dr = −k r dt +

√
θ [p (r, t)](1−q) dWt, (q ≥ 1) , (1)

where Wt represents a regular Wiener process with null mean and unitary variance (using

Itô convention) [31](see typical run in Fig 1). From Eq. (1) one can determine the nth order

KM coefficients defined as

D(n) (x, t) =
1

n!
lim
τ→0

1

τ
Mn (x, t, τ)|r(t)=x , (2)

(where Mn (x, t, τ) = 〈(r (t + τ) − x)n〉 is nth order KM moment) namely the first, D(1) (r, t)

and the second



D(2) (r, t) yielding [27],

D(1) (r, t) = −k r, D(2) (r, t) =
1

2
θ [p (r, t)](1−q) . (3)

The respective FPE [33] is

∂p(r, t)

∂t
=

∂

∂r
[k r p(r, t)] +

1

2

∂2

∂r2

{
θ [p (r, t)](2−q)

}
. (4)

If one assumes, as it is generally done, that financial markets are in a stationary state, one

can restrict oneself to the evaluation of Eq. (4) stationary solution [34, 35] which is

p (r) =
1

Z

[
1 − (1 − q)

k r2

(2 − q) Zq−1 θ

] 1
1−q

, (5)

with

θ =

k (5 − 3 q) σ2

{
Γ[ 1

q−1 ]
Γ[ 3−q

2q−2 ]

√
(q−1)

(5−3 q)π σ2

}q−1

2 − q
(6)

Z is the normalisation constant and σ the PDF width. PDF 5 optimises Tsallis entropy [18],

Sq =
1 − ∫

[p (r)]q dr

q − 1
,

under appropriate constrains [36] and that has already been applied to adjust return PDF

of several markets [37].

If the dynamics proposed in Eq. (1) is approriate to reproduce return time series, then

the KM moments obtained from Eq. (3) and those obtained from the time series by

Mn (r, t, τ) =

∫
(r′ − r)

n
P (r′, t + τ |r, t) dr′ (7)

should be, at least similar (See PDFs in Fig. 2 and Fig. 3). In other words, at the steady

state,

M1 ≈ − τ k r = −k̃ r, (8)

i.e., a straight line with slope −k̃ and

M2 ≈ τ θ [p (r)](1−q) =
k̃

2 − q

[
(5 − 3 q)σ2 + (q − 1) r2

]
, (9)

which is a second order polynomial. As can be observed from symbols in Fig. 4 and Fig. 5

the KM moments, actually, do present such linear and parabolic dependence! Defining a

normalised 2nd KM moment as M = |M2/M
min
2 − 1| one verifies some discrepancy from



theoretical curve M = r2 for a small interval between −0.1 and 0.1 which represents the

slight skewness of the PDF. Besides DJ, such behaviour in the KM moments were also

verified in other indices [28, 29, 38, 39]. It is important to highlight that the substancial

difference between this and other works is that the KM moments (functionals) are defined

a priori from the dynamics instead of being the outcome of some fitting procedure.

The determination of θ and q is made by computing the second-order moment and the

kurtosis, κ = 〈r4〉 / 〈r2〉2 which only depends on the value of q. For the DJ daily return PDF

one obtained σ = 1.14 and q = 1.54 (Fig. 2). From the first KM moment one can determine

the restoring constant k = 1.06 and then the volatility constant θ = 0.883 from Eq. (6).

For q = 1, from Eq. (9) we get D(2) = θ/2, i.e., a constant degree of volatility and hence

a Gaussian PDF which only appears when one analyses returns for large aggregated times.

This aggregation is related to the convolution of several returns associated to a Tsallis

distribution with q ≤ 5/3, leading hence to the Gaussian distribution [39]. An on-going

analysis inspired in Drost and Nijman work on the convolution of GARCH processes [40],

points that new r′ variables generated by aggregating time series elements given by Eq. (1)

can be mapped onto another Eq. (1) with a smaller q value which approaches unit as the

lag increases like it seems to happen for data.

To summarise, one has analysed a possible connection between dynamical and statistical

properties of the DJ daily return time series and an a priori proposed Langevin-like stochas-

tic differential equation which has emerged within NESM framework. This model provides

a fairly good agreement with both time series PDF and Kramers-Moyal moments explain-

ing why models based in akin equations, like Borland’s option-pricing theory [6], give so

remarkable results. Despite other dynamics are capable to afford the same PDF [41, 42], the

one presented herein, seems to be the only which has such KM moments and it is naturally

dependent on the volatility degree. In other words, large returns, which correspond to low

values in the PDF, are those that introduce large degrees of unstability and make the market

more volatile leading to subsequent large positive/negative return values. Further improve-

ments of this model should take into account the well-known slight asymmetry in the PDF

(usually related to risk-aversion) as well as the subtle feedback effects that allow the imple-

mentation of artitrage on markets. Nevertheless, it is worthy to emphasise the simplicity of

the model and its aptitude to provide a quite good portrait of financial markets.
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[14] A. Arnéodo, J.-F. Muzy and D. Sornette, Eur. Phys. J. B 2, 277 (1998).

[15] H.E. Stanley, L.A.N. Amaral, X. Gabaix, P. Gopikrishnan and V. Plerou, Physica A 299, 1

(2001).

[16] C. Tsallis, C. Anteneodo, L. Borland and R. Osorio, Physica A 324, 89 (2003).

[17] S.M. Duarte Queirós, C. Anteneodo and C. Tsallis in N oise and Fluctuations in Econophysics

and Finance, D. Abbot, J.-P. Bouchaud, X. Gabaix and J.L. McCauley (eds.), Proc. of SPIE

5848, 151 (SPIE, Bellingham, WA, 2005).

[18] C. Tsallis, J. Stat. Phys. 52 , 479 (1988). Bibliograhy



http://tsallis.cat.cbpf.br/biblio.htm.

[19] L. Borland, Quantit. Finance 2, 415 (2002).

[20] R. Osorio, L. Borland and C. Tsallis in Nonextensive Entropy - Interdisciplinary Applications,

M. Gell-Mann and C. Tsallis (eds.) (Oxford University Press, New York, 2004), 321.

[21] C. Anteneodo, C. Tsallis and A.S. Martinez, Europhys. Lett. 59, 635 (2002).

[22] S.M. Duarte Queirós and C. Tsallis, Europhys. Lett. 69, 893 (2005).

[23] S.M. Duarte Queirós, Europhys. Lett. 71, 339 (2005).

[24] A. Cho , Science 297, 1268 (2002) 1268; S. Abe and A.K. Rajagopal; A. Plastino; V. Latora,

A. Rapisarda and A. Robledo, idem 300, 249-251 (2003).
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FIG. 1: Upper Plot: Time series of the 20k first days of the DJ daily return beginning in 1900.

Lower Plot: A numerical realisation of Eq. (1) for typical values of k = 1.06, θ = 0.883 and q = 1.54

(t0 � 0).



FIG. 2: Probability density function for the DJ daily return versus return from 1900 until 2003

(symbols). The line represents the best q-Gaussian (Eq. (5)) with q = 1.54 and σ = 1.14.



FIG. 3: A map representation of the immediate DJ daily return conditional probability density

function p (r (t) |r (t + 1)).



FIG. 4: First Kramers-Moyal moment for DJ daily return time series (symbols), M1, versus return.

The line represents Eq. (8) with k = 1.06.



FIG. 5: Symbols M versus absolute return; dashed line r2 curve in log− log scale. The agreement

between 0.1 and 10 is rather good. Inset: Second Kramers-Moyal moment for the DJ daily return

time series (symbols), M2, return. The line represents Eq. (9) with θ = 0.883.


