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Abstract. A relativistic degenerate neutron gas in equilibrium with a background of electrons and protons
in a magnetic field exerts its pressure anisotropically, having a smaller value perpendicular to than along
the magnetic field. For critical fields the magnetic pressure may produce the vanishing of the equatorial
pressure of the neutron gas. Taking this as a model for neutron stars, the outcome could be a transverse
collapse of the star. This fixes a limit to the fields to be observable in stable neutron star pulsars as
a function of their density. The final structure left over after the implosion might be a mixed phase of
nucleons and a meson condensate, a strange star, or a highly distorted black hole or black “cigar”, but
not a magnetar, if viewed as a superstrongly magnetized neutron star. However, we do not exclude the
possibility of superstrong magnetic fields arising in supernova explosions which lead directly to strange
stars. In other words, if any magnetars exist, they cannot be neutron stars.

1 Introduction

Gravitational collapse occurs in a body of mass M and
radius R when its rest energy is of the same order as its
gravitational energy, i.e., Mc2 ∼ GM2/R. We would like
to argue that for a macroscopic magnetized body, e.g.,
composed of neutrons in an external field �B (| �B| ≡ B),
new physics arises and a sort of collapse occurs when its
internal energy density U is of the same order as its mag-
netic energy density �M · �B, where �M is the magnetiza-
tion. This problem is interesting in the context of both
cosmology and astrophysics, as for instance in the study
of objects such as neutron stars. A gas of neutral parti-
cles having an anomalous magnetic moment (as a model
for neutron stars (NSs); here we assume, as usually, a
background of electrons and protons in β equilibrium,
which is demanded by Pauli’s principle to guarantee neu-
tron stability), when placed in extremely strong magnetic
fields, has a non-linear (ferromagnetic) response to the
external field and is also unstable due to the vanishing
of the transverse pressure for surface fields strong enough
(Bsurf ≥ 1016 G). In this phenomenon quantum effects
play an essential role due to the coupling of the particles’
spins to the microscopic field �B seen by the particles (spin-
polarization). For fields of this order of magnitude there
are values of the density for which the magnetic energy of
the system becomes of the same order of magnitude as its

total energy. Under these physical conditions any struc-
ture of superdense matter composed of neutral particles
having a magnetic moment may undergo a transverse col-
lapse when its pressure perpendicular to �B vanishes. This
implosion is driven by the same mechanism described in
[1] for charged particles.

We present in this paper, which is an elaborated ver-
sion of [2], the main ideas concerning the role of ultra-
strong magnetic fields in a gas of neutral particles: The
standard model of NSs, as envisioned by Duncan and
Thompson in their model of magnetars [3]. The funda-
mental result that we obtain shows that a NS, i.e., a neu-
tron gas permeated by a superstrong magnetic field, is
unstable and must collapse. This result seems to ban the
possibility of the formation of magnetars. We stress in
this respect the fact that similar results were obtained
by two different groups: Khalilov [4] and Ghosh, Mandal
and Chakrabarty [5]. Although both teams of researchers
arrived at the same conclusion as we did, quite different
approaches were pursued.

This paper is organized as follows: Sect. 2 reviews the
concept of anisotropic pressure in self-gravitating systems
like NSs. In Sect. 3 are given the tools to construct the
energy-momentum tensor of a neutron gas. Section 4 dis-
cusses the main differences between the classical and quan-
tum collapse of a gas configuration in an approximation-
independent way, based on the sign of the electromagnetic
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response of the medium to the external applied field. In
Sect. 5 the dynamics of the neutron gas composing a NS
is studied in the presence of a magnetic field, followed in
Sect. 6 by the derivation of its thermodynamical poten-
tial and magnetization. Section 7 discusses the conditions
for the collapse to take place, and an application of this
physics to the stability analysis of the proposed magnetars
is given. The main result of this paper shows that such ob-
jects should not form if they are envisioned as a standard
neutron gas in Fermi beta equilibrium as is claimed in the
original idea introducing the concept of a magnetar. Some
closing remarks and further potential applications of this
theory are part of the final section.

2 Anisotropic pressures
in self-gravitating systems

The issue of local anisotropy in pressures was extensively
reviewed by Herrera and Santos [6] in a general relativistic
approach. These authors present several physical mecha-
nisms for its origin in both extremely low and very high
density systems, which may include astrophysical compact
objects. In the case of highly dense systems, it was pointed
out that “exotic” phase transitions could occur during
gravitational collapse, which is exactly the problem we are
concerned with in this paper. However, the more funda-
mental problem regarding the appearance of anisotropic
pressures in strongly magnetized compact stars was left
open. More recently, Mak and Harko [7] presented a class
of exact solutions of Einstein’s equations corresponding to
anisotropic stellar configurations which can describe real-
istic neutron stars.

We want to provide a more detailed description of the
arising of anisotropic pressures in a relativistic system like
a NS, an essential point in understanding the physics be-
hind the problem of stability of ultramagnetized compact
stars. We shall give firstly general arguments to support
our view, and then we concentrate on the specific calcu-
lations, in the one-loop approximation, of the thermody-
namic potential of the neutron star configuration and its
magnetization, the properties from which the most crucial
conclusions can be drawn.

To fix ideas, we shall work in the grand canonical en-
semble, and we are considering a subsystem, some region
inside the star. Such a subsystem is under the influence
of the magnetic field created by the rest of the system,
which we name �H (| �H| ≡ H). The response of the sub-
system is to polarize itself creating a magnetization �M
in the medium (the neutron gas) satisfying the relation
�H = �B − 4π �M. Obviously, inside the subsystem the mi-
croscopic field is �B = �H + 4π �M, since �B (also called
magnetic induction) and the electric field �E are the true
fields acting on the electric charges and magnetic dipoles
of elementary particles [8,9]. (Note, however, that Lan-
dau in [10] uses the notation �H to denote the magnetic
field in vacuum). The field �B, as well as �E, satisfies the
Maxwell equations for particles in vacuum. In what fol-
lows, when we are to discuss the dynamics of the particles

in the neutron gas, we will sometimes refer to �B as the
external magnetic field, as it is usually called in quantum
field theory and astrophysics. For an external distant ob-
server, �B = �H (in Gaussian units), since the magnetiza-
tion is assumed to exist only inside the star. We emphasize
that actually �B and �H are external fields within different
contexts: �H is external to the subsystem object of study
in the grand canonical ensemble, whereas �B is external to
any particle chosen in the subsystem (it feels, in addition
to �H, the contribution from the magnetization field 4π �M
due to the other particles of the subsystem).

In the case of a gas of electrically charged particles in
an external constant magnetic field �B, in classical electro-
dynamics, it is the Lorentz force �F = e�v × �B/c that is the
source of an asymmetry in the pressure components paral-
lel and perpendicular to �B. By writing e�v = �j∆V , where
∆V = dx1dx2dx3, calling fi = Fi/∆V the ith component
of the force density, and substituting �j = c∇ × �M, one
has

fi = −(∂iMs)Bs + (∂sMi)Bs . (1)

By multiplying by ∆V = dx1dx2dx3 and assuming
Bs = Bδs3 and ∂Mi/∂x3 = 0 (actually we also have
Mi = Mδi3), only the first term in (1) remains non-
zero, and one recovers the expression for the Lorentz force,
which is obviously perpendicular to the field �B. For the
corresponding pressure it yields PL⊥ = − �M · �B. This is
a classical effect and obviously PL⊥ must be added to the
usual kinetic isotropic pressure P0, so that the total trans-
verse pressure becomes P⊥ = P0+PL⊥. As in classical elec-
trodynamics, by the Lenz law, �M is opposite to �B (spin
effects are neglected); then �M · �B < 0, and PL⊥ > 0. The
opposite case occurs when �M is parallel to �B, which oc-
curs in the quantum case, i.e., when spin effects are taken
into account. We should be alert, however, that in the def-
initions and derivations that follow use will be made of the
magnitudes | �B| and | �M| ≡ M of the two vectors �B and
�M instead of the vectors themselves.

3 The energy-momentum tensor
of a neutron gas

Based on more fundamental grounds, one may write the
general structure of the energy-momentum tensor of a
neutron gas in an external field �B in the same way as
one does to construct general tensors, like the polariza-
tion operator tensors [11], for instance. In an external
field Fµν , in addition to the basic 4-velocity vectors of
the medium, uµ, and the particle momentum kµ, we have
two extra vectors Fµνkν , F

2
µνkν , to form a basis of inde-

pendent vectors (in what follows we shall use the nota-
tion F 2

µν = FµλFλν). From them we may build a set of
basic tensors which, together with the tensors δµν , Fµν ,
F 2
µν , serves as a basis in terms of which we can expand

any tensor structure related to the particle dynamics –
in particular, the energy-momentum tensor. However, to
get rid of tensor structures containing off-diagonal terms,
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which would correspond to unwanted shearing stresses in
the fluid rest frame u = (0, 0, 0, u4), we exclude some of
them, i.e., kµkν , kνFµλkλ, Fµν , uµkν , or any of their com-
binations. By following the arguments used in [11], we
conclude that we are left in the present case with three
basic tensors: δµν , F

2
µν , uµuν , to describe the dynamics of

such a neutron gas. Thus, the structure of such an energy-
momentum tensor is then expected to be of the form

Tµν = aδµν + bF 2
µν + cuµuν , (2)

where µ, ν = 0, 1, 2, 3, and a = p is the isotropic pressure
term, b = M/B and c = U + p. In the present case the
second of these tensors can be written in a simpler form
as F 2

µν = −B2δ⊥
µν . The tensor (2) has then the spatial

eigenvalues p − BM, p − BM, p, and the time eigenvalue
−c = −U −p, since uµuµ = −1. These eigenvalues exhibit
the anisotropy in the pressures perpendicular and parallel
to B.

In dealing with a quantum gas in an external field we
shall assume that the sources of the field �H are either clas-
sical (currents) or are due to quantum effects. Although it
is out of the scope of this paper to discuss the mechanism
for producing such a field, we suggest, however, some vi-
able sources able to induce a self-consistent field, as for
instance a condensate of the vector meson ρ, the neutron
spin–spin ferromagnetic [12] coupling (see below), or even
by diquark [13] condensation.

As in the case of the electron in an atom the basic
dynamics in our present case is described by the Dirac
equation in an external field, in place of the Lorentz force.
According to the Ehrenfest theorem, classical dynamics is
contained in the adequate average of quantum dynamics.
But quantum dynamics leads also to several new phenom-
ena not having a classical partner. After solving the Dirac
equation one gets the energy eigenvalue spectrum [14].
This energy depends on the microscopic magnetic field B
through some interaction term in the initial Lagrangian.
These energy eigenvalues, after the quantum statistical
average, determine the thermodynamic properties, such
as the neutron gas pressure. If the coupling constant is
turned to zero, the particles would not feel any pressure
coming from the external field. Thus, since the classical
Maxwell stress tensor of the field H does not express by
itself the interaction with the particles, i.e., it expresses
the momentum and energy of the external field, we have
no need to add it to the expression (4) below. The ten-
sor (4) already contains the basic tensor structures of the
problem, including the Maxwell stress tensor of the field
B, which depends on the external field H and the magne-
tization | �M|.

The total external field B contributes with virtual par-
ticles, expressed through the Euler–Heisenberg vacuum
terms arising in the regularization of the quantum vac-
uum terms [15]. These vacuum terms appear in the cal-
culation of the basic statistical quantity, the thermody-
namical potential: Ω ≡ −β−1 ln Z, where Z, the grand
partition function, is built up on the particle spectrum.
Our thermodynamical potential is the sum of two terms,
Ω = Ωst +ΩV, the finite statistical term Ωst plus the vac-

uum field contribution ΩV, which is divergent. In the pro-
cess of regularization, it absorbs the classical field energy
density term B2/8π. We observe here that Landau, on p.
69 of [16], uses the specific term thermodynamic potential,
denoted by Φ in that reference, to denote what in west-
ern literature is known as the Gibbs free energy, which is
denoted by G. Our thermodynamic potential is just what
Landau defines as a “new thermodynamic potential Ω”,
but we have taken it per unit volume, which is dependent
on T and µ in the absence of an external field, and in our
case is dependent also on B. Observe that Ω = F − G.
In the zero field case, it would be Ω = −P , where P is
the isotropic pressure. Due to the spatial anisotropy intro-
duced by the magnetic field B, the pressures are not the
same in all directions, and only in the direction parallel to
B it acquires the value Ω(B) = −P3 (see below).

The coupling of the spin dipole moment of neutrons in
an external magnetic field B produces a loss of rotational
symmetry of the particle spectrum (in what follows we will
consider B along the x3 axis). From the spectrum, which is
expressed in terms of B, by the standard methods of finite
temperature quantum field theory we obtain the thermo-
dynamical potential (per unit volume) Ω = Ω(B), and
from it all the thermodynamic properties of the system,
in particular its magnetization, as is done by Huang [17]
(p. 237), which is the statistical average M = −(∂Ω/∂B).

Notice that this definition is consistent with our con-
vention by which thermodynamical quantities are defined
in terms of the microscopic magnetic field B acting on
the particles as an independent variable (see for instance
[9]), instead of using the quantity H. Thus, the thermody-
namical variable conjugate to the magnetic field B is the
quantity M(B), the system magnetization as introduced
above. We may write then

Ω = −
∫

MdB − P0, (3)

where P0 = −Ω(0) is the term corresponding to the zero
magnetic field pressure. One must emphasize that in the
quantum relativistic case Ω depends on B non-linearly.
From the explicit expression for Ω given in another sec-
tion below, one finds that the dependence of the energy
spectrum on the particle momentum is not rotationally
invariant. This fact determines a reduction of the symme-
try of the otherwise isotropic thermodynamic properties
of the system such as the pressure, which is expected to
be axially symmetric for the reasons pointed out above.

By using the Green function method it is found that
the energy-momentum tensor of matter in an external con-
stant magnetic field obeys the general structure (2), and
we have [1]

Tµν =
(
T∂Ω/∂T +

∑
µr∂Ω/∂µr

)
δ4µδ4ν (4)

+ 4FµλFνλ∂Ω/∂F 2 − δµνΩ,

where r runs over the species involved. Below we will take
r = n, p, e to describe the neutron, proton and electron
component of the star gas. Expression (4) in the zero field
limit reproduces the usual isotropic energy-momentum
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tensor Tµν = Pδµν−(P +U)δ4µδν4 of a perfect fluid. From
(4) the spatial components are T33 = P3 = −Ω, T11 =
T22 = P⊥ = −Ω − BM. The time component T00 ≡
−Ur = −TSr − µrNr − Ωr, in which Ur ∼ µrNr ∼ Ωr

are quantities of the same order of magnitude. We shall
assume that inside a stable NS there is locally a bal-
ance between the mechanical stresses (and forces) from
the pressure exerted by the quantum gas and the gravi-
tational stress, i.e., the gravitational force per unit area,
exerted by the star mass, as defined below by (6) and (7).
By abusing a bit of the phrasing we shall refer in this pa-
per to this last equation as the “gravitational pressure”,
in an attempt to turn to more meaningful discussions re-
garding effects of the gas pressure and those stemming
from its own gravity. In the case of a neutron star the cor-
rect treatment of this problem requires general relativistic
corrections [18]. However, for the general purpose of this
paper we consider here the problem in a rough manner,
in a similar fashion as it was done in the white dwarf case
with zero magnetic field [17], in Newtonian gravity. If dSi
is a surface element and dxi an increase in the coordinate
i = 1, 2, 3, one can express the balance between the work
done on the star and the variation of its gravitational en-
ergy, Eg ≡ GM2R−1, under a small change of volume ∆V
by ∫ (

−TijdSj +
∂Eg

∂xi

)
dxi = 0 , (5)

where the quantity in parentheses must be zero; it de-
scribes the balance of forces. We will use now cylindrical
coordinates with the z axis parallel to B, and assume that
the shape of the deformed star can be (very roughly) ap-
proximated by the simplified model of a cylinder of height
Z and radius r⊥ (we could equally well use as a simple
model a cylinder of height Z ended by two half-spheres of
radius r⊥; then (6) and (7) below would differ by unimpor-
tant numerical factors). We assume also that the changes
of the cylinder’s volume ∆V and surface ∆S are small,
so that the total surface of the star S = 2πr⊥(r⊥ + Z)
is approximately constant. Then we have dS⊥ = 2πr⊥dz,
dS3 = 2πr⊥dr⊥ and integrating we get the equilibrium
between the gravitational and gas pressures P⊥ = Pg⊥
and P33 = Pg33, where

Pg⊥ =
1

2πr⊥Z

∂Eg

∂r⊥
(6)

and
Pg33 =

1
πr2⊥

∂Eg

∂z
. (7)

Equations (6) and (7) are to be interpreted respec-
tively as the transverse and longitudinal “gravitational
pressures” in the sense defined above. By assuming that
∂Eg
∂r⊥

and ∂Eg
∂z are quantities of the same order, to preserve

the balance of transverse pressures when P⊥ decreases
(due to the increase of the product BM), the quantity
1/2πr⊥Z must decrease. This is achieved whenever Z in-
creases faster than r⊥ decreases (all this can be seen by as-
suming that the total surface S = const and dr⊥/dτ < 0,
where τ is a parameter like time). In that case the outcome

is a stretching of the body along the direction of B. Thus,
the anisotropy of the pressures in our problem suggests
that matter in the body is also distributed anisotropically,
which leads to prolate isobaric surfaces1.

The condition P⊥ = 0 implies also that U ∼ BM. As
P3 > 0, an instability arises in the system leading to a
transverse collapse. Thus, as pointed out in the introduc-
tion, new physics arises in connection with the vanishing
of the transverse pressure, P⊥ = 0. This peculiar behavior
will be discussed in the forthcoming sections.

By writing M = (B − H)/4π, one may formally write
Ω = − 1

8πB
2 + 1

4π

∫
HdB − P0. We recall that as Ω ≡

F−G, the last expression is consistent with what would be
obtained in the classical non-relativistic case [19], where
F = F0 +

∫
HdB/4π is the Helmholtz free energy and

G = F +
∫

MdB + P0 = G0 + B2/8π is the Gibbs free
energy. Because of our definition of M, the last term is
given in terms of B and not in terms of H. As we have

T33 = −Ω =
1
8π

B2 − 1
4π

∫
HdB + P0, (8)

and also

T11 = T22 = −Ω−BM = − 1
8π

B2+
1
4π

∫
BdH+P0, (9)

it is straightforward to see that the spatial components
of the energy-momentum tensor Tij (i, j = 1, 2, 3) can be
rewritten as

Tij = P0δij − T M
ij (B,H) + S(B)ij , (10)

where S(B)ij = 1
4π

[
BiBj − 1

2 (B2)δij
]

is the Maxwell
stress tensor for the microscopic field B, and T M

ij (B) =
1
4π

[
HiBj −

(∫
BdH

)
δij

]
is the Minkowski tensor for rel-

ativistic non-linear media (see below). This last term re-
duces to the usual expression in the non-relativistic limit if
H depends linearly on B [9]. The definition (10) expresses
the total pressure as a sum of an isotropic pure mechanical
pressure (independent of the electromagnetic field) plus a
pressure coming from the Minkowski tensor due to the in-
teraction of the external field H with the microscopic field
B, plus the Maxwell stress tensor of the microscopic field
B. If H = 0, B = 4πM and Tij = P0δij + S(B)ij . In this
case the magnetic field is kept self-consistently.

At this point we want to refer to the recent paper by
Khalilov [4] where a problem similar to the present one
is studied. However, the expression for the stress tensor
in a medium is taken as given only by the linear approx-
imation of the Minkowski tensor term. This approach is
not justified in the relativistic case. Further, the Maxwell
tensor of the microscopic field B and the isotropic P0δij
terms are omitted. This leads the author to wrongly con-
clude that the collapse occurs like in the classical case (see
below), that is, along the �B field, in contradiction to our
present results and those of [2,1]. A consistent approach,

1 This is an effect opposite to the oblateness of the Sun,
Earth and other planets due to the effective decrease of the
transverse gravitational force by the centrifugal force
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as we have followed here, and discussed in the accompany-
ing paper [20], leads to opposite results compared to those
of [4] in what concerns the spatial direction of collapse, al-
though the fundamental issue regarding the collapse of the
neutron star remains taking place in both theories.

Note, in addition, that [6,7], where the problem was
also studied, did not take into account the dynamical ef-
fects of the strong (and superstrong) magnetic fields sup-
posed to exist in the core of canonical NSs; see for instance
[1,22–24]. Thence, it is the contention of this paper to ad-
dress this open issue. The novel results obtained here point
to the occurrence of new physics and processes in the (rel-
ativistic) astrophysics of compact objects that were not
manifest in previous papers.

4 Classical versus quantum collapses

In [1] we found that a relativistic degenerate electron gas
placed in a strong external magnetic field B is confined
to a finite set of Landau quantum states. As the field is
increased the maximum Landau quantum number is de-
creased favoring the arising of either a paramagnetic or a
ferromagnetic response through a positive magnetization
M, up to the case in which only the ground state is occu-
pied. The gas then becomes topologically one-dimensional,
and in consequence the pressure transverse to the field
vanishes for fields B = Ω/M [1]. Thus, the electron gas
becomes unstable due to the decrease of the transverse
pressure for fields strong enough, and the outcome is a
collapse.

For neutrons the magnetization is always positive (see
the arguments below) and non-linear, which leads to a
sort of ferromagnetic behavior. For fields strong enough
the pressure transverse to the field, P⊥ = −Ω − BM, is
considerably decreased and may vanish. If we assume that
extremely magnetized NSs, as the Duncan and Thomp-
son magnetars [3], have fields H ∼ 1015 G, and that inside
the star B increases by following a dipole law B(r′) =
Bsurf/r

3, we expect near its surface magnetic fields rang-
ing from 1016–1017 G [3,27] up to values of order 1020 G in
its core [23], where the field is maintained self-consistently,
i.e., H = 0. For fields of this order of magnitude super-
dense matter composed of neutral particles having a mag-
netic moment may undergo a transverse collapse since P⊥
vanishes. As discussed below, the emerging physics seems
to ban the possibility of magnetar formation. The outcome
of such a collapse might be a compact star endowed with
a canonical magnetic field, as discussed below.

In the classical case in which the response of the
medium is due to the Lenz law, the magnetization is oppo-
site to the external field H and it may happen that M < 0.
This also occurs in the diamagnetic case. Then H > B and
P⊥ > P3. Note that the opposite occurs in some perme-
able materials where M > 0 and H = B − 4πM is small
in comparison to either M and B; this is due to ferro-
magnetic effects which have a quantum origin, as in the
neutron gas.

In the case of a classical magnetized gas, as P⊥ > P3,
this leads to the Earth-like oblatening effect described

above. But opposite to this, for the critical quantum con-
figuration of the NS gas the coupling of the spin mag-
netic dipole with the magnetic field �B plays the main
role, and M > 0 (see (21) below and the subsequent dis-
cussion where this is shown explicitly), leading to ferro-
magnetic effects. The situation then is reversed and P⊥ is
smaller than P3 in the amount BM and it vanishes for
1
8πB

2 = 1
4π

∫
BdH + P0 leading, conversely, to a prolate

configuration.
In classical electrodynamics [10] it is suggested that

the total pressure is given by the sum of the Maxwell
stress tensor Sµν plus an isotropic pressure (P0) term. In
the case of a constant magnetic field parallel to the x3
axis, the total pressure tensor reads Tij = P0δij + Sij or
P3 = P0 − B2/8π and P⊥ = P0 + B2/8π.

As pointed out before, the body deforms under the
action of these anisotropic pressures. If the longitudinal
pressure decreases, the body flattens along the magnetic
field [21]. Thus, in this pure classical case, for the extreme
limit of flattening, P3 = 0 and P⊥ = P0 +B2/8π, and the
body would collapse as a disk or a ring perpendicular to
the field. Starting from general relativistic considerations
has been reported [22] the existence of a maximum mag-
netic field for the case having stationary configurations of
NSs. (We interpret that result as indicating the occurrence
of a classical collapse for fields larger than the maximum.)
This field induces a toroidal configuration, which is topo-
logically equivalent to a ring. In the quantum case, for
degenerate fermions, as M > 0, it is P⊥ = −Ω − BM
which is decreased by increasing B. As the NS is in equi-
librium under the balance of neutron and “gravitational”
pressures, the body stretches along the direction of the
magnetic field. Thus, for any density there are values of
the field B high enough so that these pressures cannot
counterbalance each other leading to a collapse perpen-
dicular to the field for P⊥ = 0. This collapse would leave
as a remnant nucleons plus a Bose–Einstein-like conden-
sate, a hybrid or strange star2 with canonical magnetic
field [28], or a distorted (“cigar-like”) black hole.

Our previous considerations are approximation inde-
pendent. In order to discuss a specific model, we shall
start by computing the free particle spectrum for neutral
particles in a magnetic field.

5 The neutron gas in a magnetic field

For free neutrons in a magnetic field B we have the Dirac
equation for neutral particles with an anomalous magnetic
moment [14]:

(γµ∂µ + m + iqσµλFλµ)ψ = 0, (11)

where σµλ = 1
2 (γµγλ−γλγµ) is the spin tensor, and Fλµ is

the electromagnetic field tensor describing B. By solving
this equation we get the eigenvalues [14]

En(p,B, η) =

√
p23 + (

√
p2⊥ + m2

n + ηqB)2, (12)

2 The reader is referred to the interesting publications of [50]
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where p3, p⊥ are respectively the momentum components
along and perpendicular to the magnetic field B, mn is
the neutron mass, q = 1.91Mn (Mn is the nuclear mag-
neton), η = 1,−1 are the σ3 eigenvalues corresponding
to the two orientations of the magnetic moment (paral-
lel and antiparallel) with regard to the field B. Here we
make the assumption that the magnetic moment remains
constant for large magnetic fields. Actually, this is not so.
Radiative corrections change its value as a function of B.
This problem is, however, beyond the scope of the present
approach.

From (12) we see that although the Hamiltonian is
linear in B, the eigenvalues depend on B non-linearly.
This makes the relativistic thermodynamic and electro-
magnetic properties of the system of neutrons very differ-
ent from the non-relativistic case. For instance, all ther-
modynamic quantities, Ω, M (and in consequence, H =
B −4πM), and N are also non-linear functions of B. The
expression (12) also shows manifestly the change of spher-
ical to axial symmetry with regard to momentum compo-
nents. This anisotropy in the dynamics is expected to be
reflected in an anisotropy in the thermodynamic properties
of the system, as it is expressed by the difference between
the transverse and longitudinal pressures discussed earlier
on an approximation-independent basis.

The partition function Z = Tr(ρ) is obtained from the
density matrix describing the model ρ =
e−β

∫
d3x(H(�x)−∑

µrNr) [31]. Here µj (j = 1, 2, 3) are the
chemical potentials associated with the lepton, baryon
and electric charge conservation, so that µn = µ2, µp =
µ2 + µ3, µe = µ1 + µ3 and µυ = µ1. The thermodynam-
ical potential can be written as Ω = −β−1 ln Z. Usually
the eigenvalues of H contain the contribution from neu-
trons, protons, electrons and some meson species, and the
densities are Nr = −∂Ω/∂µr, where r = n, p, e, · · · We
call Ω =

∑
r Ωr, M =

∑
r Mr the total thermodynamical

potential and magnetization, respectively.
A standard procedure is to work in the mean field ap-

proximation in which the meson fields σ, ρ, ω are taken
as constant, as done in [23,24], through which the mass
spectrum of the baryons is corrected and strong repul-
sive interactions between them are found. However, for
simplicity we will keep the spectra in the tree approxi-
mation to obtain the one-loop approximation for Ω, and
neglect the statistical contribution from meson terms in
Ω as compared with those of fermions (for them miβ ∼
103–104) except for fields B <∼ Bcρ = m2

ρ/e ≈ 1020 G,
since the contribution of the ρ vector meson condensate
to M becomes relevant, and in analogy with W±s [1],
leads to a self-consistent spontaneous magnetization B =
4πM = 2πeNρ

√
m2

ρ − eB, where Nρ is the condensate
density. However, for such fields the magnetic pressure,∫

MdB − MB = −B2/8π, overwhelms the kinetic pres-
sure term P0 (of order 1036 dynes/cm2) leading to P⊥ < 0,
and the star is definitely unstable: it collapses. This mech-
anism is valid for other quasi-particle vector boson con-
densates, as diquarks, which may be formed in the medium
even for smaller values of the field B [28,13].

6 Thermodynamical potential
of a neutron gas

The Green function method [29] leads to a general expres-
sion for the relativistic thermodynamical potential. At the
one-loop level, where no radiative corrections are consid-
ered, it is a generalization of the usual non-relativistic for-
mula because of the fact that antiparticles must also be in-
cluded. Particles and antiparticles contribute with chemi-
cal potentials of opposite sign, leading to sums or integrals
over the quantum numbers involved, of terms containing
the product of the logarithms of (e−(µn±En) + 1). In this
case, when no external fields are present, a divergent term
accounting for the vacuum energy appears which is usu-
ally subtracted [29]. In the presence of an external field,
however, a term accounting for the vacuum contribution,
must also be included: the Euler–Heisenberg energy of a
vacuum in an external field [11,15,31,30]. One can obtain
an expression for the thermodynamic potential of the neu-
tron gas in the one-loop approximation: Ωn = Ωsn+ΩVn,
with

Ωsn = − 1
4π2β

∑
η=1,−1

∫ ∞

0
p⊥dp⊥dp3

× ln
[
f+(µn, β)f−(µn, β)

]
, (13)

where f±(µn, β) = (1 + e−(En∓µn)β) accounts, respec-
tively, for the contribution of particles and antiparticles.
The expression for the vacuum term thus reads

ΩVn =
1

4π2β

∑
η=1,−1

∫ ∞

0
p⊥dp⊥dp3En, (14)

which is divergent. In the appendix we will show how to
regularize this expression, and how to obtain the analog to
the Euler–Heisenberg energy of vacuum due to the neutron
contribution.

After integrating by parts in (13) its evaluation be-
comes easier. The Fermi distributions, which arise by dif-
ferentiating f± with respect to p3, are n± = 1/(1 +
e(En∓µn)β). In the degenerate case this expression reduces
in n− = θ(µ − En) and n+ = 0, since in that case only
particles contribute to Ω. The resulting expression splits
itself in two terms where the integrals are bounded by the
Fermi surfaces µ − En(η = ±1) = 0. These surfaces have
axial symmetry, and thus, the Fermi momentum is not a
definite number, given only in terms of µn and mn, but
on the opposite, it has infinite values. Thence, we have

Ωsn = − 1
4π2

∑
η=1,−1

∫ ∞

0
p⊥dp⊥

p3dp3
En

× θ (µ − En(η)) . (15)

The θ function bound these integrals in the intervals

−p3F ≤ p3 ≤ p3F , where p3F =
√

µ2 − (
√

p2⊥ + m2
n + ηy)

and 0 ≤ p⊥ ≤
√

(µ − ηy)2 − m2
n. After some transforma-

tions, it yields
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Ωsn = −Ω0

∑
η=1,−1

[
xf3

12
+

(1 + ηy)(5ηy − 3)xf
24

+
(1 + ηy)3(3 − ηy)

24
L − ηyx3

6
s

]
, (16)

where x = µn/mn, (mn(x− 1) is the usual Fermi energy),
and y = qB/m. We define the functions f ≡ f(x, ηy) =√

x2 − (1 + ηy)2, s ≡ s(x, ηy) = (π/2 − sin−1(1 + ηy)/x),
L ≡ L(x, ηy) = ln(x + f(x, ηy))/(1 + ηy). The functions
f = 〈pF〉/mn, where 〈pF〉 =

√
µ2n − (mn + ηqB)2 and we

call them the average Fermi momenta for η = ±1. We see
that mn−ηqB behaves formally as a two-valued magnetic
mass.

In the zero field limit one gets P0 = −Ωn(y = 0),
where

Ωsn(y = 0) = −Ω0

[
xf30
12

− xf0
8

+
1
8
L0

]
, (17)

where f0 =
√
x2 − 1 is the relative Fermi momentum

pF/m, and L0 = ln(x + f0). The neutron vacuum term
(see the appendix) has an Euler–Heisenberg-like form:

ΩVn =
1

4π2

∫ ∞

0
dyy−3e−(m2

n+q2B2)y

× [cosh(qBmy) − 1 − (qBmy)2/2!]

+
qB

2π2

∫ ∞

0
dyy−2

∫ ∞

0
dwe−[(w+mn)2+q2B2]y

× [sinh(2qB(w + mn)y) − (2qB(w + mn)y)
+ (2qB(w + mn)y)3/3!]. (18)

It can be shown (see the appendix) that the more sig-
nificant term in (18) is the first one, which for fields of
order 1017 G leads to ΩVn ∼ 1030 erg cm−3 and is negligi-
bly small as compared with Ωsn up to B ∼ 1018 G. Thus,
we neglect it in a first approximation in what follows. We
must point out, however, that since neutrons have a quark
structure, a more fundamental quantity would be the vac-
uum quark contribution, whose order of magnitude is ex-
pected to be near ΩVn. Apart from this note, it should be
emphasized that the role of the vacuum cannot be ignored
for fields greater than 1018 G.

From Nn = ∂Ω/∂µn one gets

Nn = N0

∑
η=1,−1

[
f3

3
+

ηy(1 + ηy)f)
2

− ηyx2

2
s

]
. (19)

In the limit B = 0 (19) reproduces the usual den-
sity of a relativistic Fermi gas at zero temperature, Nn =
N0f

3
0 /3.
Having an equation relating the chemical potentials,

and demanding conservation of both baryonic number
Nn + Np = NB and electric charge Np + Ne = 0, in prin-
ciple one may solve exactly the problem in terms of the
external field as a parameter. Nonetheless, we shall focus
our discussion on the properties of the equation of state.
Note in passing that our expressions for the spectra and

densities of neutrons and protons are similar to those of
[32] of a neutron gas in a magnetic field, but we get dif-
ferent equations of state.

Finally, for the magnetization, given as Mn = −∂Ωn/
∂B, we have

Mn = −M0

∑
η=1,−1

η

[
(1 − 2ηy)xf

6
(20)

− (1 + ηy)2(1 − ηy/2)
3

L +
x3

6
s

]
,

where N0 = m3
n/4π2 ∼ 2.04 × 1039, Ω0 = N0mn ∼

3.0 × 1036, and M0 = N0q ∼ 2.92 × 1016 and one can
write Mn = M+

n (η = −1)−M+
n (η = +1), and obviously,

Mn ≥ 0.
We confirmed by explicit calculation that M is a non-

linear function of B and, in this sense, the magnetic re-
sponse is ferromagnetic. A fully ferromagnetic response
demands the inclusion also of the spin–spin coupling con-
tribution. We briefly discuss this point below.

To see why the magnetization is always positive for
the neutron gas note that the magnetic susceptibility χ =
∂Mn/∂B can easily be obtained as

χ =
qM0

2mn

∑
η=±1

[
xf + (1 + ηy)2L

]
, (21)

which for x > 1, y ≤ 1, and f real and positive, is χ >
0. This means that Mn is an increasing function of B
(or y) under such conditions. As Mn(y = 0) = 0 and
Mn(y = 1) = 2M0(1 + π) > 0, this means that Mn > 0
in the region between these two points, which is the one
of interest for us (the region I discussed below and shown
in Fig. 2).

The fact that we are summing over the magnetic mo-
ments oriented parallel (η = −1) and antiparallel (η =
+1) to B is similar to the well-known Pauli paramag-
netism in non-relativistic quantum statistics. We may con-
sider each term η = ±1 as representing a phase of the
system. One can draw in the x, y plane, for both x > 0,
y > 0, two regions limited by the lines x − y = ±1 and
x + y = 1 (see Fig. 1). The region I is bounded above
by the line x = y + 1, on which the contribution from
f(η = +1), and all other terms containing η = +1 vanish:
all magnetic moments are aligned parallel to B. Below,
such a region is limited by y = 0. For points in the region
x > y + 1 and y > 0 both terms containing η = −1,+1
are non-zero and real. Thus, the quantities Ω,Nn, and M
are real and although most neutrons have their magnetic
moments along B, there are some having their magnetic
moments antiparallel to B. In this region, near the line
x = y + 1, is located the curve P⊥ = 0, which we will
discuss below.

In the region II limited by x ≥ 1 − y, y + 1 > x ≥
y − 1 only the term η = −1 is real and the term η = +1
becomes purely imaginary, and all neutrons would have
their magnetic moments parallel to B. The term η = −1
contributes to Ω,Nn, and M. For x < y − 1, there are
no physical solutions. For y = 0, the magnetic field, and
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Fig. 1. This plot shows the regions in
the x, y plane where the neutron mag-
netic moments are oriented parallel or
antiparallel to the magnetic field �B.
Special attention should be given to re-
gions I and II, where the solutions dis-
cussed in the text are valid

Fig. 2. The instability condition, P⊥ = 0, in terms of the vari-
ables x, y. A nascent strongly magnetized neutron star having
a configuration such that its dynamical stage would be repre-
sented by a point above the central curve in this plot would be
unstable to transversal collapse, since P⊥ ≤ 0 there

in consequence, the magnetization M vanish. For y < 0
(magnetic field along the negative y axis) we have the
situation reverse to the one described above (See Fig. 1).

With regard to the background of electrons and pro-
tons, we recall that the case of the electron gas was dis-
cussed in [1]. We expect that for magnetic fields of order
Bce = m2

e/e ∼ 1013 G and densities around 1030 cm−3 all
electrons are in the Landau ground state, and the system

show the instability which arises from the vanishing of
the transverse pressure. For densities and magnetic fields
above these critical values, the stability of the electron gas
is doubtful. Recently Ghosh, Mandal and Chakrabarty [5]
have pointed out strong arguments against the equilibrium
of an electron gas under β decay in strongly magnetized
neutron stars. The situation may be modified if radiative
corrections are taken into account: if Bce = m2

e/e ∼ 1013 G
is the usual QED critical field, for larger fields of order
B′
ce ∼ 4π/αBce ∼ 1016 G the contribution of the electron

anomalous magnetic moment becomes significant and the
problem cannot be satisfactory treated at the tree level.
However, starting from the results of [1,5], one concludes
that the electron gas is hardly in equilibrium for fields be-
yond Bce. One possibility is the bosonization of the elec-
tron system, as has been recently suggested [33]. This may
be accomplished through the increase of the spin–spin in-
teraction, leading to the formation of parallel spin electron
pairs, equivalent to charged vector bosons.

If we include both the normal and the anomalous mag-
netic moments for protons, one can give a formula for their
spectrum in the external field B [14]:

Ep =

√
p23 + (

√
2eBn + m2

p + ηqpB)2, (22)

We have qp = 2.79Mn. For neutrons, the critical field at
which the coupling energy of its magnetic moment equals
the rest energy is Bcn = 1.57 × 1020 G. For protons it
is Bcp = 2.29 × 1020 G. By defining xp = µp/mp, yp =
qp/mp, b = 2e/m2

p, then yp = 2.79e/2m2
p. We mention

also g ≡ g(xp, B, n) =
√

x2p − h(B,n)2 and h ≡ h(B,n) =

(
√
bBn + 1+ηypB). Thus for the proton thermodynamical

potential we get
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Ωp = −
eBm2

p

4π2

∑
n

∑
±η

[
xpg − h2 ln(xp + g)/h

]
, (23)

and for its density

Np =
eBmp

2π2

∑
n

∑
±η

g(xp, B, n) , (24)

while the magnetization is given by

Mp =
em2

p

4π2

∑
n

∑
±η

{
xpg −

[
h2 + (ηyp (25)

+ (bn/2
√
bBn + 1))

]
× ln(xp + g)/h

}
,

where the coefficients of these formulae are N0p = empB/
2π2 ∼ 4.06 × 1019B, Ω0p = N0pmpB ∼ 6.1 × 1016B, and
M0p = N0pmp = Ω0/B. The maximum occupied Lan-
dau quantum number n may be given as nmax = (xp −
ηypB)2 − 1/bB. For B � Bcp, so that ypB � 1, and
xp ≥ 1, one can take approximately nmax ∼ (x2p − 1)/bB,
and for fields large enough nmax = 0. We expect that from
the equation µn = µp + µe, xp ∼ xn, the previous expres-
sion for the proton density Np decreases with increasing
B, favoring the inverse beta decay. For fields B ∼ mp/qp
and xp � 1, nmax ≥ 1, and thus large Landau numbers
are again occupied. However, for xn, xp >∼ 1, being quanti-
ties of the same order of magnitude, from the comparison
of Ω0p, N0p,M0p with Ω0, N0,M0 we conclude that for
fields below 1019 G, the dominant longitudinal pressure,
density and magnetization comes from the neutron gas.

7 Condition for zero transverse pressure
and collapse

In the electron gas case [1], the vanishing of the trans-
verse momentum can be guessed from the spectrum when
the whole system is confined to the Landau ground state.
The spectrum corresponds to a purely one-dimensional
system moving along the external field, and the transverse
Fermi momentum is zero. In a similar way, in the neutron
gas case we observe that the threshold of zero transverse
pressure P⊥ = 0 can be figured out from the spectrum
described by (12), since the contribution from the η = −1
term is dominant (observe that the term with η = +1 con-
tributes with a negative term to M). We shall consider on
the Fermi surface for η = −1 the quantity

p2F⊥eff = µ2n − p2F3 − m2
n

=
(√

p2F⊥ + m2
n − qB

)2

− m2
n, (26)

which we call the effective squared Fermi transverse mo-
mentum. If B � 1020 G, then q2B2 � 2eBmn, and the
vanishing of pF⊥eff is guaranteed if

pF⊥ ∼
√

2qBmn. (27)

The resulting Fermi surface would be equivalent to that
for one-dimensional motion, parallel to B, i.e., for parti-
cles having energy En �

√
p23 + m2

n, and in consequence
the transverse momentum (and pressure) vanishes. Notice
from (27) that for pF⊥/mn ∼ 10−1.5 one has qB/mn =
y ∼ 10−3, which means fields of order 1017 G. A more
accurate result is obtained, however, from the condition
T⊥ = 0.

In Fig. 2 we have drawn the equation P⊥n = −Ω −
BM = 0 in terms of the variables x, y. We observe that
there is a continuous range of values of x, starting from
x = 1.005 to x = 1.125 and from y = 0.001 to y = 0.1,
for which the collapse takes place. The latter values of y
means fields in the interval B ∼ 1017 to 1019 G. To these
ranges of x, y corresponds a continuum range of densi-
ties, from 10−2N0 (1012 g/cm−3) onwards. The transverse
compression of the whole mass of the star due to flux con-
servation leads to an increase of B and the mechanism of
collapse is enhanced.

7.1 The spin–spin coupling contribution

Although we previously used the term “ferromagnetic” to
denote the non-linear response of the medium to the exter-
nal field, what we have considered actually in our previous
calculations is the occurrence of relativistic Pauli para-
magnetism. We have not fully considered the spin–spin
coupling, which would lead more definitely to Heisenberg
ferromagnetism, and it is physically reasonable to expect
its appearance in nuclear matter for densities high enough.
This problem has been studied in [34] via the interaction
through axial vector and tensor exchange channels. These
authors show that if the interactions are strong enough
and differ in sign, the system loses the spherical symme-
try due to a mechanism independent of the one discussed
in the present paper. In the case of a quark liquid [35]
the problem has been studied under one gluon exchange
interaction, and conditions for ferromagnetism may arise.

Although the problem requires further research, one
expects that if Heisenberg ferromagnetism is to appear, it
would increase the magnetization to Ms = κM, where κ
is the internal field parameter. If κ >> 1 our previous es-
timates for the vanishing of the transverse pressure might
be largely exceeded, with the arising of a new spontaneous
magnetization Ms ∼ κM = B/4π. This would mean
that the magnetic field B could be kept self-consistently
and our previous calculations would be a lower bound of
the fully ferromagnetic case. The vanishing of P⊥ is ex-
pected to occur surely at values of B smaller than those
depicted in Figs. 2 and 3. As a rough estimation, if we as-
sume the exchange interaction J among neutrons to be of
the order of a few hundreds of MeV, and the number of
nearest neighbors to be z ∼ 10, by dividing their prod-
uct by the dipole interaction energy, say, for the core of
the star where N = N0, we get κ ∼ 104. This means
B ∼ 4πMs ∼ 1020 G. For such extremely large fields
the magnetic coupling of quarks with B would become of
the order of their binding energy through the color field
producing a deconfinement phase transition leading to a
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quark (q)-star, a pressure-induced transition to uds-quark
matter via ud-quark condensates, as discussed in [43,44].
But fields of that order lead surely to the collapse of the
star and even to the instability of the vacuum.

8 Magnetar formation and stability

Next we briefly review the basic ideas supporting the the-
ory of magnetars and then show why these hypothetical
objects cannot survive after reaching the claimed super-
strong magnetic fields. We then present prospectives for
a hybrid or strange star to appear as a remnant of the
quantum magnetic collapse of a NS. According to Dun-
can and Thompson [3], NSs with very high dipole sur-
face magnetic field strength, B ∼ [1014–1015] G, may form
when the (classical) conditions for a helical dynamo ac-
tion are efficiently met during the seconds following the
core collapse and bounce in a supernova (SN) explosion
[3]. A newly born NS may undergo vigorous convection
during the first 30 s following its formation [39]. If the NS
spins (differentially) sufficiently fast (P ∼ 1 ms) the condi-
tions are created for the α−Ω dynamo action to be built,
which may survive depletion due to turbulent diffusion.
Collapse theory, on the other hand, shows that some pre-
supernova stellar cores could acquire enough spin so as to
rotate near their Keplerian equatorial velocity, the break-

up spin frequency: ΩK ≥
([ 2

3

]3
GNM/R3

)1/2
, which im-

plies a period PK ∼ 0.6 s, after core bounce. Under these
conditions, fields as large as [42,3]

B ∼ 1017
(

P

1 ms

)
G (28)

may be generated as long as the differential rotation is
dragged out by the growing magnetic stresses. For this
process to efficiently operate the ratio between the spin
rate (P ) and the convection overturn time scale (τcon),
the Rossby number (R0), should be R0 ≤ 1. Duncan and
Thompson warned that R0 � 1 should induce less effec-
tive mean-dynamos [3]. In this case, an ordinary dipole
BD ∼ [1012–1013] G may be built by incoherent superpo-
sition of small dipoles of characteristic size λ ∼ [ 13–1] km,
and a saturation strength Bsat = (4πρ)1/2λ/τcon � 1016 G
may be reached at the surface during this early evolution
of the nascent neutron star. At such fields, the huge rota-
tional energy of a NS spinning at ωNS ≥ 1 kHz, is leaked
out via magnetic braking and an enormous energy is in-
jected into the SN remnant. This process may explain the
power emitted by a plerion.

As shown above, at the end of the SN core collapse we
are left with a rapidly rotating NS endowed with an ex-
tremely strong magnetic field (ESMF) strength and a large
matter density ρ ∼ [1014–1012] g cm−3. As illustrated in
Fig. 1, those are the conditions for the quantum instabil-
ity to start to dominate the dynamics of the young pulsar.
At this stage, the magnetic pressure inwards may pass the
star energy density at its equator and the collapse becomes
unavoidable. As the collapse proceeds, higher and higher

densities are reached till the point the supranuclear den-
sity may reverse the direction of the implosion. A hybrid or
strange star (SS) may have formed. We explore next this
plausible outcome, among the other possibilities quoted
above. From that moment, the sound wave generated at
the core bounce builds itself into a shock wave traveling
through the star at VSW ∼ c/

√
3 km s−1. Although the

ESMF strength could be quite large as long as the collapse
advances, the huge kinetic energy, E ∼ 1051−52 erg, the
mean energy obtained in calculations of energy release in
neutron star phase transitions to strange (twin) stars [36–
38] and some prompt shock supernovae (Ep−s ∼ 1051 erg)
[39], carried away by the shock wave drives a kind of su-
pernova explosion inasmuch as in the quark nova model
and similar scenarios [38]. Such a huge ram pressure may
counterbalance the magnetic pressure, and even surpass
it, i.e.,

ρejectV
2
SW ≥ B2

8πµ0

(
R

rA

)6

, (29)

at a location from the star center equivalent to the Alfvén
radius of the magnetar

rA =
(

2π2

Gµ20

)1/7 [
B4R12

MṀ2

]1/7
∼ 80 km. (30)

This radius is quite large, about 7 times the NS radius
(see Table 1). Here Ṁ defines the accretion rate of the free-
falling overlaying material making up the NS crust, which
is left out when the transition occurs (see definitions and
further details in [38], and references therein). Therefore,
it is quite legitimate to expect that most of the magnetic
energy stored inside the magnetosphere to be drained out
of the Alfvén radius. Notice in addition that the strange

star radius scales as RSS = RNS

(
ρNS
ρSS

)1/3
, where the den-

sities ratio reads ρNS
ρSS

� 0.1–0.2. Other relations between
both stars can be obtained by using conservation laws or
appropriate scalings.

Then the ESMF lines are pushed out and finally bro-
ken, in a process inverse to the standard accretion one,
from rA onwards into the SN remnant surroundings, as a
violent explosion that dissipates a large part of the mag-
netic flux (Φ ∼ B2r2A) and the energy trapped inside
the magnetar magnetosphere [28]. Energy from the mag-
netic field can be dissipated via vacuum polarization and
electron–positron pair creation, as well as acceleration of
charged matter flowing away ( synchroton and curvature
losses [40,41] with the explosion and material trapped in
the star magnetosphere and near the Alfvén radius. This
is analogous to the mechanism operating during a solar
flare or a coronal mass-ejection, where the very high B
in a given Sun-spot is drastically diminished after flaring
for a short period of time (see also [42]). In the Sun-spots
outbursts and coronal mass-ejection launches into space,
part of the Solar wind of charged and neutral particles
passes by the Earth [46,47]. In the case of an implod-
ing NS, the phase of open magnetic field lines over which
the strange star is acting as a propeller lasts for about
∆Tprop ∼ Espin/Lprop ∼ [102–103] s, with Lprop ∼ 2Ṁc2



A. Pérez Mart́ınez et al.: Magnetic collapse of a neutron gas 11

Fig. 3. The curve P⊥ = 0 in terms of
the neutron star mean density N and
the surface magnetic field B

Table 1. Parameters used in modeling the phase transition of a neutron to a strange star,
as discussed in the text

Mass M Radius R Period P Magn. field B Accretion rate
[M�] [km] [ms] [G] [ M� s−1]

Neutron star 1.5 12.5 2.0 2 × 1015 10−15

Strange star 1.5 9.5-10.0 0.5 2 × 1013 10−5

the propeller luminosity, and Espin ∼ Iω2
SS the star rota-

tional energy. Thence, the large amount of matter ejected
from the strange star at such large velocities and the pairs
created, in the vacuum breakdown, drains out the dipole
field of the remnant below the quantum electrodynamic
limit of Bce ∼ 4.4 × 1013 G [28].

To give an insight into this piece of the physics of the
problem, notice that once the propeller phase is over and
no more luminosity is coming from that mechanism, the
magnetic field lines can recombine again if the energy re-
leased in this new stable phase is essentially the strange
star rotational dipole luminosity (as the one from a mil-
lisecond pulsar), which then becomes the star’s dominant
mechanism of energy emission, that is,

4
B2
SSR

6
SSω

4
SS

9c3
= IωSSω̇SS . (31)

For the parameters shown in Table 1 and the observed
luminosity from fast rotating pulsars, this relation implies
a new equilibrium magnetic field B ∼ 1012−13 G, which is
below the quantum electrodynamics threshold.

Since all the differential rotation has been dragged up
to build up the former ESMF, then nothing else remains
to make the magnetic field grow to its pre-collapse value.
Thence no such ultrahigh B should reappear. We may

be left with a sub-millisecond strange star [43] or a hy-
brid star [44] with “canonical” field strength, but not any
magnetar. We note in passing that the above theoreti-
cal result is attained on the standardized assumption that
the structure of the magnetic field of the pulsar is dipolar.
This premise is underlying the claim by Kouveliotou et
al. [45] that a magnetar had been discovered in the soft
gamma-ray repeater source SGR 1806-20. Notwithstand-
ing, for other NS (multipolar or uniform) field configura-
tions we do expect the overall behavior here discussed to
persist, since once the spin–spin coupling is taken into ac-
count the unavoidable consequence is the appearance of
a ferromagnetic (axial) configuration or structure which
is dipolar in nature, and therefore the theory propounded
here still holds, because the magnetic field could then be
amplified by a factor 104 ), putting the nascent pulsar
above the threshold for stability, and the collapse ensues.
Rephrasing this, one can think of this theory as a field-
configuration independent constraint on initial NS mag-
netic field strengths.

In looking for other contexts far from those involving
compact remnant stars, we noticed that recent “Tabletop
Astrophysics” experiments performed by Wieman et al.
[48] have succeeded in refining sophisticated techniques to
switch atoms in a Bose–Einstein condensate (BEC) [48]
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from states of implosion to states of re-expansion (or ex-
plosion). In certain cases they observed that some col-
lapses appear to be rather similar to microscopic super-
novae. The initial implosion is followed by an explosion in
which atoms are ejected as a hollow ball or in narrow jets,
like in the collapse and rebound of a exploding star that
forms characteristic expanding balls or streams of out-
flowing gas. The Wieman team named the phenomenon
“bosenovae” because of the similarities with typical su-
pernovae. In fact, in both phenomena some material is
left after the implosion as a compact object. Because of
the similarity of the physics of Bose–Einstein condensates
with the one we presented above, we are confident that
to this our theory can also be adapted to explain these
impressive results by Wieman et al. [48] and Ketterle and
Anglin [26]. The main feature of these oscillating Bose–
Einstein condensates, said to be a scaled-down version of
either a neutron star or a white dwarf [48], is that for
some critical fields what appears is an attractive force be-
tween the atoms, and the condensate implodes and re-
bounds driven by some sort of internal negative pressure.
We claim in this paper (a detailed description of BECs
phenomenology is to be given in a work in preparation
[49]) that such a negative pressure could be explained in
the context of the theory introduced in this paper, since
a precise relationship between gas density and magnetic
field strength in the BEC is settled by switching the atoms
between attractive and non-attractive states. Thence the
negative pressure acts as the equivalent of an attractive
force among the atoms directed towards the magnetic field
axis, leading to the BEC implosion.

9 Conclusions

We conclude by claiming that if a degenerate neutron
gas is under the action of a superstrong magnetic field
Bce

<∼ B <∼ Bcn, for values of the density typical of NS
matter its transverse pressure vanishes, the outcome be-
ing a transverse collapse. This phenomenon establishes a
strong bound on the magnetic field strength expected to
be found in any stable neutron star pulsar, regardless of
its initial field configuration, and suggests a possible end-
point in the early evolution of highly magnetized neutron
stars. They could likely be a mixed phase of nucleons and
a π±, π0,K±,K0, K̄0, σ, ρ±, ω meson condensate, a hybrid
or strange star, or a distorted black hole but not any mag-
netar at all. We point out, nonetheless, that if by any
mechanism a strange star could be formed directly in a su-
pernova explosion (which is uncertain, but not ruled out)
and if a vigorous dynamo action operates in the strange
quark matter bulk, “pulsars” with fields higher than Bce

could still be formed. In other words, if any magnetars
exist, they cannot be neutron stars.

A Appendix

We use the integral representation

a1/2 = π−1/2
∫ ∞

0

dx
x2

(e−ax2 − 1)

= π−1/2
∫ ∞

0
dyy−3/2(e−ay − 1). (32)

We regularize the divergent term dependent on a in
(32), by introducing a small quantity ε as the lower limit
in the integral, and neglecting the term independent of a

a1/2(ε) = π−1/2
∫ ∞

ε

dyy−3/2e−ay. (33)

By taking a(ε, η) = p23 + (
√

p2⊥ + m2
n + ηqB)2 and sub-

stituting in (15) and performing the Gaussian integral on
p3, one obtains

ΩVn(ε) =
1

4π2

∑
η=±1

∫ ∞

0
p⊥dp⊥

∫ ∞

ε

dyy−5/2

×e−
(√

p2
⊥+m2

n+ηqB
)2

y
. (34)

By substituting z =
√

p2⊥ + m2
n +ηqB one is left with the

expression

ΩVn(ε) =
1

4π2

∫ ∞

ε

dyy−3e−(m2
n+q2B2)y cosh(qBmy)

+
∑
η=±1

ηqB

4π2

∫ ∞

ε

dyy−2
∫ ∞

mn+ηqB

e−z2
ydz. (35)

By introducing the new variable w = z − mn − ηqB, the
second integral in (35) becomes

ηqB

4π2

∫ ∞

ε

dyy−2
∫ ∞

0
e−[(w+mn)2+q2B2]y

× sinh(2qB(w + mn)y). (36)

After subtracting from cosh(qBmy) and sinh[2qB(w+
mn)y] the first two terms in their series expansion, one
can take ε → 0 and obtain the finite expression (18). This
process is equivalent to the subtraction of divergent terms,
one of which is proportional to B2 and absorbs the clas-
sical field energy term B2/8π.

It is not difficult to check that for fields B � 1020 G,
the first term in (18) is the dominant one. Its first contri-
bution after the series expansion of cosh(qBmy) is
q3B3m3

n/2π2(m2
n + q2B2). For fields of order 1017 G such

a term is of order 1030 ergs/cm3, much smaller than Ωsn.
But for fields near 1020 G its contribution is comparable
to that of Ωsn.
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Mart́ınez, H. Pérez Rojas, Phys. Rev. Lett. 84, 5261 (2000)
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