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0.1 Introduction

A new monography or review on an old and established subject as QFT should
Justify and measure itself relative to the many existing review articles and text-
books. The main motivation underlying these notes consists in the desire to
unify two presently largely disconnected branches of QFT: (1) the standard
(canonical, functional) approach which is mainly perturbative in the sense of an
infinitesimal " deformation” of free fields! and (2) nonperturbative constructions
of low-dimensional models as the formfactor—bootstrap approach (which for the
time being is limited to factorizable models in d=1+1 spacetime dimensions)
and the non-Lagrangian construction of conformal chiral QFT’s..

The synthesis requires a significant step byond the concepts which were used
in order to formulate the two mentioned separate branches. On the physical side
the S-matrix regains some of its early prominence, however unlike in the pro-
posals of Heisenberg (and later in the S-matrix bootstrap approach of Chew

lUnfortunate]y only in the sense of an infinitesimal deformation around free fields, and not
in that of an approximatjon of an existing QFT,
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et al.), here it remains subservient to the locality and causality principles en-
capsulated in the theory of local observables (the heartpiece of algebraic QFT).
In the new context of the TCP- and the Tomita-reflection operators explained
in these notes, the S-matrix takes the role of a powerful constructive tool in
QFT. In particular local fields turn out to be Just ”coordinatizations” of local
algebras, and different fields in the same local class describe the same physics.
In addition to the charge superselection rules (including statistics and spin), the
S-matrix reveals itself as the most valuable ”net” invariant of the field net which
incorporates all charge sectors.

On the mathematical side one needs the Tomita-Takesaki modular theory
which is closely related to the concept of KMS states in Quantum Statisti-
cal Mechanics. In our present context they will be mainly used to implement
localization and geometrical properties in Local Quantum Physics. It is the
proximity of these concepts to TCP symmetry and other fundamental notions
in QFT which gives confidence in our approach. The change of paradigm which
accompanies the new approach is that those structures of QFT which were al-
ways thought of as fundamental but "kinematical” properties as TCP and Spin
& Statistics, now move into the center of the "dynamical” stage. Of course such
statements should be taken with the full awareness that the cut between ”kine-
matics” and what was hitherto considered as "dynamics” was never as rigid and
a priori as the textbooks make us believe.

A new approach is also expected to cast some new light on past successes.
For this reason we will attempt a rather systematic presentation which includes
a substantial part of the standard material of QFT (especially chapter 2), but
occasionally somewhat different from the standard textbook treatments by em-
phasis and interpretation. Since the new method (build on old physical princi-
Ples of local quantum theory) is still in its infancy, it is to early to expect an
exhaustive treatment of the algebraic approach and the modular construction
method.

In fact QFT, despite its age, is still in its conceptual infancy, especially from
the new viewpoint. This goes contrary to the widespread (but unfounded) belief
that the basic equations of the world below the Planck scale are already known,
and that if we would be more clever in our computations (bigger computers
etc.) we would have a description of all phenomena below that scale.

It is interesting to understand how this overly optimistic (and somewhat
dull) picture about QFT developed in time. The greatest success of QFT and
the raison d’etre for its continuing existence was certainly the renormalization of
QED and its more recent extension via the standard model 2. But it is helpful to
remind oneself that in physics (and also outside) success and disaster often are
close together. A big step forward naturally lends itself to an extension of the
formalism through which it was obtained. In the case at hand, the perturbation
theory was streamlined by the functional formulation without which one would

2However the remarkable aspect of the electro-weak theory beyond QED is not so much
its precision, but rather its power to combine a overwhelming body of experimental facts into
a reasonable quantum field theoretical shell which appears to be a good starting point for
future conceptual advances.
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be unable to understand most contemporary publications. To press ahead with
a successful formalism and to see what it leads to, if extended beyond laboratory
energies, is of course in the best tradition of theoretical physics, even if at the
end it should turn out to be the wrong path.

Since formal extensions are easy and take less time than conceptional in-
vestigations, their rapid pursuit is very reasonable indeed. It only may lead to
desaster if this develops into the main research topic for several generations and
the if broad conceptual basis which led to the first success gets narrowed in its
Potential conceptional richness and at the end becomes lost with the younger
generation. Whether we already reached this state of physical stagnation and
crisis is left up to the Jjudgement of the reader.

In any case this report is not written for those who still (after a quarter cen-
tury of post standard model stagnation) are convinced that the extension of the
standard formalism is all one needs in order to make progress. It rather tries to
attract those physicists who, on the one hand still have not lost their conceptual
curiosity, and on the other hand feel uneasy about the present predominance
of formalism over conceptional insight. The present author has tried to analyse
the contemporary situation in terms of the lost balance between the conceptual
” Bohr-Heisenberg”- and the esthetical mathematical ” Dirac”-approach3.

Hopefully the reader will be able to appreciate the use of the unifying phys-
ical point of view which is encapsulated in the "local nets” and which gives
e.g. all the low-dimensional richness without invoking special structures (as
e.g. Virasoro- and Kac-Moody- algebras) which are restricted to low space-time
dimensions only. After all, the main physical value of low dimensional mod-
els is their use for a better conceptual and structural understanding of general
QFT (and perhaps also for basing universality explanations in condensed matter
physics on firm grounds) and only in second Place the increase of our mathe-
matical culture. For this reason the Presentation of low dimensional models (in
particular chiral conformal QFT) may appear different from the way the reader
may have met this material in other reviews.

Some ideas which enjoyed or still enjoy great popularity as e.g. supersym-
metry and the Seiberg-Witten duality will not be presented here. The reason
is not that they lack an experimental basis nor that I am against trends and
fashions, but rather that I know no compelling theoretical principle which leads
to such ideas. To the contrary, as recent investigations of the thermal behaviour
of supersymmetry showed (D. Buchholz and I. Ojima: ”Spontaneous Collapse
of Supersymmetry”, March 1997 University of Kyoto Preprint), this symmetry
is completely unstable in thermal KMS states*. '

Whereas the Lorentz-symmetry is only spontaneously broken as a result of
the presence of a heat-bath rest frame, the space-time symmetries beyond ("su-
per”) are wiped out without leaving any intrinsic physical trace behind. This
seems to be a general property, not Just of spinorial currents, but of other non-

3B.Schroer "Motivations and Physical Aims of Algebraic QFT” hep-th 9608083, to appear
in Ann.of Phys. March 1997

4The usual (broken) symmetry picture, which holds for locally generates internal and
external symmetries, does not apply here.
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causal currents as e.g. the nonlocal conserved axial current of the Schwinger
model which is responsible for the chiral symmetry and its breaking through
the ”seized” —vacua. Certainly temperature physics has higher physical prior-
ity than supersymmetry and perhaps nonlocal currents reveal their unphysical
nature mainly via temperature instabilities. This there seems to be a strong
theoretical veto in addition to the experimental situation.

The reason for the absence of the Seiberg-Witten Duality in these notes is not
only its proximity to supersymmetry, but also the fact that it is build on global
concepts as "effective potentials® whose relation to the structural properties of
real time QFT I do not understand (nor was anybody able to explain this to
me). It is not reasonable for an autor to comment on observations which he only
understands formally mathematically, but not in terms of physical concepts.

On the other hand the reader will find a detailed presentation of "Haag
Duality” which is a pivotal property of nonperturbative local QFT and is known
to lead to such fundamental issues as (braid group) statistics and an intrinsic
understanding of spontaneous symmetry breaking. In d=1+1 we also study its
relation to the Kadanoff order-disorder Duality which is the local version of the
global Kramers-Wannier Duality in lattice systems. In these notes we will not
sacrifice physical notions as equivalence classes of real time fields and TCP-
and Tomita J-reflections in favour of (imaginary time) cohomology or S- and
T-reflections.

I elaborated this material in the conviction that the best strategy in a time
of stagnation and crisis is to return to the roots of QFT and re-analyse the
underlying principles in the light of new concepts. For this reason we put heavy
emphasis on Wigner’s approach to particles which, long before algebraic QFT,
was the first successful attempt to do relativistic quantum physics in an intrinsic
fashion i.e. without recourse to quantization. Another cross road which merits
careful scrutiny, is the concept of local gauge invariance.

As a result of lack of time, I was not able to write a planned mathematical
appendix on nets on von Neumann algebras and their representation theory. In
section 3 of the first chapter the reader finds some material on finite dimensional
C-algebras. For the general case I refer the reader to a review article by Roberts
and some sections of the book of Brattel; and Robinson. A survey of important
mathematical structures of local quantum physics including more references can

of each chapter. Lack of time also prevented me from elaborating certain other
matters, but at least they will be briefly mentioned in the text at their logical
position.

I am grateful to Prof. José Helayel for arranging this visit of the CNBPF at
rather short notice.

Anybody who knows me, understands that my attachment to Brazil is not
only due to its natural beauty, but there are also deep scientific roots. With feel-
ings of nostalgia I remember those wonderful years (1968-1980) of collaboration
with J.A.Swieca. These were times of free-roaming scientific endevour, long be-
fore the globalization of physics, which nowadays forces young physicist to build
their carrier around some trendy formal ideas, started to do uncalculable harm
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to QFT.

Never before in the history of QFT it took so many researchers in QFT to
achieve so little of physical weight as in the post "electro-weak period”. A small
consolation is that at least some mathematicians seem to be able to build their
beautiful mathematical castles on top of our physical ruins.

This presentation should not be misread as a moral judgement against one
or the other approach to QFT. It rather is an attempt to revive some of the
conceptually based Bohr-Heisenberg—Wigner spirit in the present times of "ey-
erything goes” (as long as it lives up to that entertaining high caliber scientific
Jjournalism which characterizes parts of QFT in the post standard model glob-
alized physics®).

51 strongly advice any Young person still in search of a permanent position not to say such
things in public.
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Chapter 1

The Basics of Quantum
Theory

1.1 Multiparticle Wave Functions, Particle Statis-
tics and Superselection Sectors

It is well-known that quantum mechanical multiparticle systems can be obtained
by the tensor product construction from one-particle spaces. Let :

¥(z,8) € Hy = L2 {R3, {~s,. . +8}} (1.1)

be a wave function of a nonrelativistic particle of spin s where, as usual, s; is
the component of spin with respect to an arbitrarily chosen z-quantization axis.
The L?—space has the standard inner product

Wa)i= 3 [ Pavste, sqy(z,00 (12)

3=—28

and norm ||¢]] = (¢, ¢)}

The two-particle space:
Mz = H}®cH: a,b..type of particle (1.3)

is simply the closure of the algebraic tensor product over the complex numbers
generated by vectors: 3", ¥? ®c v equipped with the scalar product (in the
following we omit the subscript C) induced by the formula:

(¥5 @ ¥1, ¥ @ ¥}) = (v8, ¥9) - (Wb, ¥t) (1.4)

continued by linearity in the right and antilinearity in the left factor. The
generalization to N factors:

Hy = Hi®H,..... §7{1 (1.5)
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is straightforward . The tensorproduct structure is the mathematical formula-
tion of kinematical "statistical independence” in the sense of quantum theory.
The dynamical variables of the subsystems (say particles with spin) at a given
time factorize:

Xi = 19..0#01..01 (1.6)
and similarly for };. and 51.

They act on N-particle wave functions ¥(z181,...zN5N) with s; the z-component
of the i**spin. Global symmetry transformations, as translations and rotations,
act multiplicatively :

(U(@)¥) (2181, ...2n8N8) = (Ui(3) ® ... @ U1 (@)9) (218, -INSN) (1.7)

U(7,0)¥) (2151, ~zNsN) = (Uy(R, 0)®..® Uy(7, 6)) ¥(z,s,, --INSN) L8)

U(a) = P2, P=3"18..0F5..01 (1.9)

U(ﬁ,ﬂ):c""'", f:Z}l@...@j}@...@l, J::i:'.-xﬁ-{-%&'.-
Operators which implement an interaction as the hamiltonian violate this
factorization:

u@) = e_iH', H = Ho + H;pny, Hipe = Z 1®..Vi(z; - z:)..®1 (1.10)
i<k

In the last expression the identity operator at the i** and k! place have been
replaced by a conventional local pair interaction which, in the exponentiated
form U(t), looses the pairing property of the infinitesimal generator. Therefore
at first sight it appears, that the localized pair-interaction leaves no mark at all
on U(t). Fortunately this is not quite correct, rather its marks are the important
”cluster properties”. In our context they are :

Hy — HN, @ HN,, Qv — Qn, ®Qy,, Sy — SN, ® Sw,
on clustering wave functions: (1.11)
limseoo¥(21,..2n,, 20,41 + 6, ...28,4 N, +a)

Here Q% = limy_ o, e'Aote~iH1 gre the Mgller operators and S is the S-matrix
S = Q**Q-. Equivalently one may introduce a partial translation Ucy, (a)
which translates the particles in the N a-cluster infinitely far away from the rest.:

limg_ oo Ucy, (a)HnUaua (a) = Hn, ® Hy,,

and similarly for ¢'H* | Q* and S with ® instead of @ (1.12)

The cluster property is therefore a kind of asymptotic factorization expressing
statistical independence for long distances. As we will see, it follows from more
fundamental locality structures in QFT. Although it is trivially satisfied for
short- range quantum mechanical interactions, it cannot always be taken for
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granted if the interactions become long-range. In that case the cluster decom-
position requirement is expected to affect the boundary conditions of scatter-
ing theory. For example for the relative Aharonov-Bohm interaction between
”dyons” (electrically and magnetically charged particles), the cluster decompo-

suring that the N-particle S-matrix passes to the previously determined (N-
1)-particle S-matrix upon removal of one particle to infinity. In this way the
N-particle problem becomes related to the N-1-particle problem via the cluster

Property as the relic of "local quantum physics”(Haag) in the nonrelativistic
limit. The statistics of particles must have this inclusjve structure and the fact
that the identity of particles is expressed by the braid group B, which is the in-
ductive limit of .. CB;CBiy1 C... (the same holds for the permutation group
Sco which is a special case of the braid group) reflects precisely the inclusive
”russian matrushka” structure of the clustering on an algebraic level.

It is well-known that the dynamical variables obtained as tensor products
form an irreducible system (“validity of Schur’s lemma) if the single particle

indistiguishability into our tensor products. Writing simply ¥n(1,2,...n) as a
short hand for our x- and spin-dependent wave functions, a permuted wave
function (the P act on the indices)

(U(P)¥), (1,2,..n):= yP(1,2, ey P) iz (L13)
= ¢n(P-1(l)) P-1(2), [ P-l(n)) )
must describe the same physical state, even though the permutation leads to a
different vector in Hilbertspace. This distinction between vectors and physical
states (in the sense of defining expectation values on the algebra of observables)
is crucial for the understanding of the (later presented) superselection rules,
In terms of observables, this simply means that the U (P)Y's commute with the
observables. If, as in standard Schrdinger theory, the observables form an
irreducible set of operators, the representation U/ (P) of the permutation group
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Sn must be abelian and hence:
ﬁuum)=qm%unm (1.14)
1 Bose
w(P) = { sign(P) Fermi

Mathematically this statement is a tautology and physically there is no reason
to assume irreducibility. In fact the occurrence of nonabelian representations
of S, is equivalent to the appearance of reducible quantum mechanical observ-
able algebras. In order to construct such a nonabelian example, a rudimentary
knowledge of the representation theory of the permutation group is helpful.
The equivalence classes of irreducible representations of Sn are characterized
by partitions:

M2N>2..2N.,, Y N=N (1.15)
§

They are pictured by so called Young tableaus, an array of N boxes in rows of
nonincreasing size (the admissibility condition for tableaus) see Fig.1.

The representation of S~ corresponding to each tableau of depth d is most
conveniently described by decomposing the natural representation on the N-fold
tensor product of a d-dimensional complex vector space V&N (of dimension d-N )
into irreducibles. Up to equivalencies one obtains all irreducible components by
applying Sy to the vector:

cig,(N,-N,) ® (e1 A 62)@(N3-Ns) ®....®(e1Aez... Aeg)®Ne

e)....eq basisin V (1.16)
with the tensor product action: )
U(P):®€,®...0¢6y = $pa) ®&p(a)- ®p(y , (1.17)

i € {ey....eq}

The cyclically generated subspace is the irreducible representation space cor-
responding to 1.16. Here the A designates the wedge product leading to com-
Pletely antisymmetric tensors. An ” admissible” numbering of a given tableay
is any numbering which is increasing in each row and column. The different
admissible numbering correspond to the multiplicity with which the irreducible
representation occurs in the regular representation (which is higher dimensional
than the above natural representation) of the group algebra CSy (see next
section).

Another method to construct the representation theory is the inductive con-
struction of tableaus according to Schur’s rules of adding a small box to a
Previously constructed tableaux:

T X 802 = @adm. T 440z (1.18)

The admissible ways to add a box are such that the resulting tableaus are ad-
missible in the aforementioned sense. But now there is no maximal height d and
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instead of the natural representation on tensor products on d-dim. vectorspaces
we are inducing the so called regular representation. The iteration starting
from n=1 gives a reducible representation of Sy with m(Tx)=multiplicity of
occurrance of the tableaux Ty:

@TNm(TN)ITny (119)

The multiplicity is the same as that of Ty in the group algebra CSy (next
section). It is obviously equal to the number of possibilities to furnish admissible
numbering (the box numbering inherited from the inductive Schur construction).
It bas a group-theorstic significance because it agrees with the size of a certain
conjugacy class.

Now we are able to scetch a (rather trivial) counterexample against the irre-
ducibility of the observable algebra. Imagine that we have Bose particle which
carry besides spin a "hidden” quantum number ("flavor”or "color”) i.e. an inter-
nal degree of freedom which can take d values. Assume that the measurability
is restricted to flavor neutral operators:

= ézz*“), P=..5=.. (1.20)

Clearly the flavor averaged multiparticle observables act cyclically on a
smaller "neutral” Hilbertspace which may be described in the following way:

HNS =M, ®...%, ® CSy (1.21)

Here the one-particle wave function spaces H;have no flavor degree of freedoms
and CSy is the N! dim. representation space of the regular Sy representation.
We connect the reduced inner product with the one in the flavor description :

(2@ P-L¥0Q™Y) , =

Lainaw (1 ® Cira) @ PN BCip), Y1 @Cig,, ®. QYN ® °"o(~)).ym
(1.22)

Here the ¢'s and ¢'s are the spatial wave functions without flavor and the
e’s are from the basis in d-dim. flavor space V. The inner product is the nat-
ural scalar product in the symmetrized tensor space (H ® V)?f,’nm' . On the
left hand side ® and ¥ are the tensor products of the ¢; and ¥;. The reduc-
tion is implemented through averaging over the flavor degrees of freedom. The

orthonormality relations if the e’s allow to simplify the result to:
Ziind™ N s I1; (S"js '/’s(j)) (€in» Ciay) =
= ZsI1; (45 ¥s0y) #™(PSQ-Y)

¢M)denotes a tracial linear functional on CSy which on the basis elements P
is given by :

(1.23)

¢ N (P) = —trUn(P) (1.249)
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where Un(P) is the previously introduced natural representation of Sy on
VALS

The memory on the averaged flavor is completely absorbed in the first mul-
tiplicity factor. Note that flavored fermions would have given a similar result
with the only difference of signP factors.

The conceptually aware reader will note, that this ”cooked up” parastatistics
illustration is precisely what an experimentalizer confronts, if in a nonrelativistic
atomic problem the electron spin would have no dynamical maifestation (negleg-
ible spin-orbit coupling) or if for a neutron-proton system he would not be able
to measure electric charge. Internal symmetry is a very clever theoretical inven-
tion which trades the unpleasant nonabelian Young-tableaux against the more
physical (more local!) standard compact internal symmetry-group description.
However it is not universally applicable, see the later discussion of attemnpts to
encode nonabelian braid group statistics into a "quantum symmetry” concept.

It is now easy to see that the normalized trace of the natural representation
has an intrinsic characterization in terms of a tracial state ¢ (a positive linear
function) on the group algebra CSw. Here S, is the inclusive limit of the Sn
groups:

S C....... CSNCSN41C ... CSw (1.25)
The normalized tracial functional #N)(P) on CSy (the extension from Sy to
the group algebra CSy is by linearity) has a natural extension  to the inductive
limit CS,,. It is characterized by the following three properties:

¢ (z) is tracial state on CSy (1.26)
e p(z°z) 2 0, p(1)=1, p(zy)=p(yz)

#(P = transposition) = :!:l, for flavoured fermions (1.27)
w fullfillsthe Markov-property: #(P1P2) = o(Py)p(P;) (1.28)

where P} = P, (n,rg....nvl_l)is a permutation involving the first N; -1 gen-
erators and P, = Py(7N,,....TN_1) is & permutation involving the remaining
generators. _
The generators r; (tra.nspositions) are most conveniently pictured as cross-
ings of the i** strand with its neighbor ¢ + 1, whereas all the other strands are
running parallel (say upward).
These generators are subject to two relations:

TiTi41Ti = T.‘+11’.’1‘.'+1, T? =1 (1.29)

The first relation by its own is most appropriately pictured by allowing over-
and under-crossings in the r; i.e.by introducing 'r.* = {=, T l} see Fig 2. If one
adds to this Artin relation the second one 13 = 1, the braid group (which even
for finite number of strands is an infinite group) B, passes to the permutation
group S,,. Both groups owe their physical relevance to the fact that they are
crucial for the understanding of particle statistics and normal commutation re-
lations between charge-carrying fields. Their natural inclusive structure should
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be seen as an algebraic counterpart of the physical cluster property. As we al-
ready pointed out, the S, representations described by Young tableaus occur
in the centralizer algebras of tensor products of group representations. Take e.g.
the algebra generated by the d-dimensional defining matrix representation x of
SU(n):

%(9) ® x(g)....... ®7(g) in V&N~ (1.30)

In this case the commutant (or centralizer of the group representation) of
these operators does not only contain the algebra CSw~ (this is evidently the
case for all tensor representations of groups ) but this algebra is even identical
to the centralizer. The following two questions are relevant for the statistics
classification:

(1) Can one argue that the indistinguishability requirement of particles (or
other localizable objects) together with other physical principles leads to the
above tracial representations of Seo ?

(2) Is it natural to interpret the appearance of a tracial state with the Markoy
property in terms an inner symmetry,]l and does one gain anything by introduc-
ing the symmetry multiplicities (Heisenberg’s isospin and its "flavor” general-
ization) explicitly into the formalism?

Both questions have an affirmative answer, i.e.statistics and internal sym-
etry are inexorably linked. The relevant theorem is the following:

Theorem 1 (Doplicher, Roberts) The most general statistics allowed in d=3+1
dimensions is abelian (Bosc-Fenm') together with a compact internal symme-
try group. The Boson Fermion alternative is related to that of integer versus
halfinteger spin (the spin-statistics relation).

Although the tracial nature and the Markov property can be derived from a
properly adapted (to the indistinguishability principle ) cluster decomposition
property, the natural place for its proof is QFT (as is the case with other strue-
tural properties as spin and statistics). The QFT locality and positive energy
requirements naturally imply the cluster property and the inclusive picture re-

in connection with the theory of superselection sectors. It is this picture and
not the N-particle quantum mechanics for fixed n (the quantum mechanical
”proof” for the F-B alternative in the books is a tautology) which is responsible
for the results on statistics (and in particular for new quantizations of statistical
dimensions for braid group statistics which one finds in d <2+ 1dim. QFT.)
Superselection rules appeared first in the 1952 work of Wick, Wightman
and Wigner. These authors pointed out that the unrestricted superposition
principle of quantum mechanics or equivalently the unrestricted identification of
self adjoint operators with observables (as formulated by von Neumann) suffers a
restriction through the appearance of superselection rules. Their main example
Was a quantum theory which describes integer as well as halfinteger spin. Its
Hilbertspace is a sum of H* where minus corresponds to halfinteger spin. A
linear combination of vectors from both spaces changes its relative sign under
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2x -rotation:
Y=a¥_+PY, — ¢ = U@y = —ay_ + By, (1.31)

Whereas the projective nature allows state vectors to suffer phase changes (the
quantum mechanical origin of halfinteger spin), observables and states (in the
sense of expectation values) are unchanged under such a 2 rotation (they trans-
form like classical quantities). The following calculation shows that this is only
possible iff the observables have vanishing matrix elements between %~ and H*

(¥, 4¢) = (v, 49"") <= (y_,A¥,) =0 (1.32)
for all observables A € 4

The proof just follows by inserting the above linear combinations. This selection
rule is called the "univalence rule”. In contradistinction to e.g. the Al = +]
angular momentum selection rules of atomic physics which suffer changes in
higher order radiative corrections, superselection rules are universally valid. The
vector state ¢ above cannot be distinguished from a density matrix p:

(V. AV) =trpA with p=laf [ ) (b_|+18P |9, ) (¥,]  (133)
The formal generalization for the Hilbertspaces and observables is obviously:
H=@&M;i, A=&iAi, Ai=Alp, (1.34)

Such observable algebras in block form have a nontrivial center. In the following
we will illustrate this decomposition theory by a simple but rich mathematical
example, the superselection rules of the group algebra.

1.2 The Superselection Sectors of CQ

As a mathematical illustration of superselection rules we are going to explain
the representation theory of the group algebras.

Let G be a (not necessarily commutative) finite group.We affiliate a natural
C*-algebra, the group-algebra CG with G in the following way:

(i) The group elements g€ G including the unit e form the basis of a linear
vectorspace over C:

z€CG, z= Zz(g)g, with z(g) € C (1.35)
P)

(ii) This finite dimensional vector space CG inherits a natural convolution
product structure from G:

(Z =(g)9) : (E v(h)h) =D z@uhg-h=3 (k) (1.36)

g€G h€G 9.h€G kEG
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with 2(k) = 3 7 2(kh™")y(h) = 37 2(g)y(k1g)

heG 2€G

(iii) A *-structure, i.e. an antilinear involution:

z 2= z z(g)*g~!, iez*(g) = z(g™1)* (1.37)
9€G
Since :
@2) ()= e’ 20, (=iff z=0) (1.38)
9€G

this *- structure is nondegenerate.
(iiii) The last formula also suggests to introduce a norm which is compatible
with the *-structure:

llz|] := V(z*z)(e), C* - condition Hiz%z)| = {EMINIED]] (1.39)

A C'—pormon a *.algebra is Decessarily unique (if it exists at all). It can be
introduced through the notion of spectrum ( mathematical appendix).

It is worthwhile to note that (iii) also serves to introduce a tracial state on
CG i.e.a positive linear functional ¢ with the trace property:

v@%=dd,ﬂfﬂzm¢@ﬂ=dw) (1.40)

This state (again as a result of (iii)) is even faithful, i.e. the scalar product
defined by:

(2,9) := p(z*y) (1.41)

Hilbert space:
zy: =2y (1.42)

“The norm of these operators is identical to the previous one,

This construction of this "regular” representation from the tracial state on
the C*-group-algebra is a special case of the general Gelfand—Neumark-Segal
(GNS-)construction presented in a later section.

Returning to the group theoretical structure, we define the conjugacy classes
K, and study their composition properties.

Ky :={hgh'h ¢ G} (1.43)

In particular we have Ke={e}. These sets form disjoint classes and hence:

r—=1
G=UK;, |Gl=) |Ki|, K.= kK, Ki,...K,_1, r=#classes (1.44)

=0
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We now define central "charges”:

Q=) g € 2(CG) = {s, [2,2] =0 VzeCG) (1.45)
J€EK,

It is easy to see that the center Z(CG) consists precisely of those elements whose
coefficient functions z(g) are constant on conjugacy classes i.e. z(g) = z(hgh-1)
for all h. The coefficient functions of Q;:

l if ge K;

0 otherwise (1.46)

at0) = {
evidently form a complete set of central functions. The composition of two such
charges is therefore a linear combination of the r independent Qis with positive
integer valued coefficients (as a result of the previous formula.):

QiQ; =) N, (1.47)
[

The fusion coeficients N can be arranged in terms of r commuting matrices
Nj, with (N;)] = N, (1.48)

The associativity of the 3-fold product QQQ is the reason for this commutativity,
whereas the abelianess of the central algebra (only valid for abelian groups!)
results in the i-j symmetry of the fusion matrices,

Functions on conjugacy classes also arise naturally from characters x of
representations x:

X"(9) =Trx(g), x"(g) = x"(hgh~1) (1.49)

This applies in particular to the previously defined left regular representation
A with (A\;z) (h) = z(9~1h).Its decomposition in terms of irreducible characters
goes hand in hand with the centra] decomposition of CG:

CG=) PCG, Q=Y qrnp (1.50)
1 i

The central projectors P are obtained from the algebraic spectral decomposition
theory of the Qis by inverting the above formula. The "physical” interpretation
of the coefficients is: Q" = m(Qi) i.e. the value of the i** charge in the Ith
irreducible representation. The central projectors P are simply the projectors
on the irreducible components contained in the Jeft regular representation. Since
any representation of G is also a Tepresentation of the group algebra, every
irreducible representation must occur in A(CG).One therefore is supplied with
a complete set of irreducible representations, or in more intrinsic terms with
a complete set of r equivalence classes of irreducible representations. As we
had the intrinsic (independent of any basis choices) fusion rules of the charges,
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we now encounter the intrinsic fusion laws for equivalence classes of irreducible
representations.

T ®1r,:21\7[,‘1rm (1.51)
m

Here the fusion matrices N are "dual” to those of the charges namely N;; =
Nt The unsymmetry of these two fusions is typical for nonabelian groups and
corresponds to the unsymmetry of the character table: although the number of
irreducible representations equals the number of central charges (= # conjugacy
classes), the two indices in 71(Q;) have a different meaning. This character
matriz Sy; appears via diagonalization of the commuting system of N’s and the
surprise is that it shows up in two guises, once as the unitary which diagonalizes
this N-system and then also as the system of eigenvalues which can be arranged
in matrix form. We will not elaborate on this point.

In passing we mention that closely related to the group algebra CG is the
so-called ”double” of the group (Drinfeld):

D(G) = C(G) Mg G (1.52)

In this crossed product designated by tq , the group acts on the functions on
the group C(G) via the adjoint action:

an(f)9) = f(h~'gh) (1.53)

The dimension of this algebra is |G)? as compared to dimCG = |G|. Its irre-
ducible representations are labeled by pairs ([x;,,], K) of irreducible represen-
tation and conjugacy class and therefore their matrices N and S are selfdual.
In this sence group duals are "more symmetric” than groups.

Finally we may notice that the equivalence classes of irr.representations ap-
pear with the natural multiplicity :

mult.(x; in A,.,) = |K| (1.54)

The results may easily be generalized to compact groups where they are known
under the name of Peter-Weyl theory.

Since group algebras are very special, some remarks on general finite dimen-

- sional algebras are in order.

Any finite dimensional C*-algebra R may be decomposed into irreducible
components.and any finite dimensional irr.C*-algebra is isomorphic to a matrix
algebra Mat,(C) . If the irreducible component Mat,,(C) occurs with the
multiplicity m; , the algebra R has the form (is isomorphic to) of the following
matrix algebra:

R=PMatn,(C)@1m, inH= OHan, ® Hom, (1.55)

and the multiplicities are unrelated to the dimensionalities of the components.
The commutant of R in H is:

R' = @1, ® Mat,,(C), Z:=RAR = Bilily, ® I, (1.56)
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The last formula defines the center with AEC.

Let us conclude with some remarks on states over (finite dim.) C*-algebras.
Since finite dimensional C*-algebras decompose into irreducible components
(this decomposition agrees with the central decomposition), it suffices to look at
states on irreducibles i.e.on the matrix algebra Mat,(C). The linear functionals
can be identified with these matrix space since one can use the unique normal-
ized tracial state p(A) = 1TrA to define a nondegenerate inner product which
does this identification. By restricting these linear functionals to be positive
and normalized one obtains the well known representation of states in terms of
density matrices:

Pp(A) =trpA, p>0, trp=1 (1.57)

In the simplest case of M at3(C), which corresponds to the spin algebra generated
by the Pauli matrices together with the identity matrix, the convex space of
states (the space of density matrices p) is a 3-dim.ball:

_f(01 _[(0 i _(1 o
10 )= 0 )oes={o 21 )

Besides the normalization we used the positivity of p (which requires positive
eigenvalues and hence a positive determinant) to derive the inequality. The pure
states correspond to one-dimensional projectors and therefore cover the surface
of the ball. Note that pure states can be defined intrinsically (i.e.without re-
ferring to one-dimensional projectors or state vectors) by the property of inde-
composability of ¢ :

p:%(l-l—r"?), P<l (1.58)

ﬁ ‘Pl.‘Pz s.t. ¢=a¢1+ﬂ¢2) 0:320, Q+ﬂ=l (159)

Starting from Mat3(C), one meets the new phenomenon of a stratification of the
surface into convex subregions called ”faces”. Density matrices with 3 different
eigenvalues correspond to faithfull states inside the convex state space. If one
of the eigenvalues vanishes, one looses faithfulness and although these states
are ”purer”, they are not pure in the sense of indecomposability. They form
a "face” which looks precisely like the previous ball. In higher dimensions one
finds lower dimensional faces inside higher dimensional ones. Once one is on
a face, any further purification takes place inside this face. Returning to the
situation of a general finite dim.C*algebra, we now see that a state is described
by a collection of positive traces or #’s (one for each central component) with
normalized total trace.

In order to appreciate the structural differences to classical observables and
states, one should remember that the classical observable algebra consists sim-
ply of (continuous) functions on phase space and pure states are represented
by Dirac §—functions whereas the Liouville measure and the Radon Nikodym
derivatives with respect to it represent the mixtures and may be viewed as
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continuously smeared out §—functions. Since the notion of coherent superpo-
sition is absent, a classical analogon of the states for the M at,(C) toy models
would be a higher dimensional simplex . The pure states are the vertices and
every mixed state is obtained by a unique convex combination of the vectors
corresponding to the vertices. This is quite different from the the ball-shaped
region of quantum physics where the representation of a point in the interior in
terms of pure states on the surface is highly nonunique. In fact this structure of
states is, more than anything else, the most characteristic property of quantum
physics. The presence of superselection rules tells us that at least partially there
exists a classical structure within quantum physics: the central decomposition
of a C*algebra is unique, and the unrestricted superposition principle holds only
within each component (similar to the classical case).

The concepts needed in the infinite dimensional case are more subtle and
will be presented in a mathematical appendix.

The reader may ask the qQuestion of why superselection rules despite their im-
portance are rarely mentioned in quantum mechanics. The reason is the validity
of the Stone-von Neumann unicity-theorem on irreducible (regular)representations
of the Schrodinger theory . In QM of finite degrees of freedom it is only only
through topological nontriviality of configuration- or phase-space that inequiv-
alent representations may enter the quantization procedure. Let us look at a
typical example, the quantum mechanics of a particle in a circle. The geometric
argument in favour of many representations is as follows. Diagonalyzing first
the algebra of the position operator we represent the state vectors by (periodic)
wave functions ¥(p) on S'. In order to fulfill the Heisenberg-Weyl commutation
relations,the most general form for the momentumisp = ¢ 3%4- f(#). The ponly
commutes with itself iff the real function f is a constant (in higher dimensions
the p would be like a gauge covariant derivative, and the constancy of f like the
flatness of a connection or the vanishing of the field strength associated with
a vector potential). Its exponential function representing the translation shows
that this constant is only determined mod 2r :

p= i% +6, 6 mod2x (1.60)

Hence there are many Schrédinger theories parametrized by a theta-angle which
have different physical content (e-g. the spectrum of Hgs‘)). An equivalent
form is obtained by keeping the standard Schrodinger-form of P but accepting
quasiperiodic wave functions. The ”@-obstruction” is intrinsic, it can be shifted
from the algebra to the states, but only in a simply connected space it can be
removed by a nonsingular operator transformation;this is the case in ordinary
Schrédinger theory.

This geometric viewpoint has one disadvantage: there is no natural way to
consider the different §—theories as just different manifestations of one system,
rather they are different geometrical objects (generally inequivalent vectorial
fibre bundles). Here the algebraic view of superselection rules is physicall su-
perior: the different §—theories are simply different representation of one more
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abstract C*algebra ( in our case the "rotational algebra”). We will return to
this issue in a later section.

The mathematical example of a particle on a circle is closely related to the
Aharonov-Bohm effect. As long as the solenoid has not passed to the infinite
thin limit, the A.-B.system falls into the ordinary Schrodinger description. It
is only through the limiting overidealization that the 6—dependent circular me-
chanics with its nonsimple C*-algebra enters. There is a general message in this
example: all topologically nontrivial quantum mechanics result from an overide-
alization of Schrédinger theory. Only for infinite degrees of freedom in QFT it
becomes possible to encounter superselection rules which have a fundamental
origin (e.g. a phase transitions).

One lesson to be drawn for QFT from these illustrations is that one is not
limited by ”quantization” methods. Rather one may use the superselection idea
and try to classify and construct QFT’s by studying representations of observ-
able algebras instead of quantizing classical physics. It was realized by Haag,
Haag and Kastler as well as Borchers and Araki (see Haag: "Local Quantum
Physics™) already at the beginning of the 60’s that the principle of locality
makes such a formulatjon very consistent and structurally rich. But the path
from those early studies to the more recent advances in e.g. properties of low
dimensional QFT with surprising nonperturbative insights was very thorny in-
deed. Our approach to QFT is strongly influenced by this ”algebraic QFT".
In particular the problem of particle statistics will be Presented as part of the
understanding of superselection charges.

1.3  Illustration of Important Quantum Con-
cepts

In this section some additional quantum-physical concepts will be introduced in
a finite dimensional setting (for simplicity).

We start with the GNS-construction. It associates in a canonical way with
a given C*-algebra A and a state w on it a so called GNS-tripel (?(,,,x, (A).Q.)
which consists of a representation space H,, with a distinguished vector Q, on
which A through its representation *w(A) acts cyclically. The construction is
analogous to that of the regular representation of CG. Again one uses the state
w in order to construct a positive semidefinite sesquilinear form on the linear
space of A:

(Y4, ¥p) := w(A*B) = w(B*A) (1.61)

Here we use a notation which distinguishes the vectors from the elements of the
algebra. The reason is that whereas the tracial state ¢ on the CG was faithfull
i.e. the sesquilinear form was strictly positive, a general state w on A leads to
a nontrivial nullspace N,,

No={A€ A|w(A"A) = 0} (1.62)
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Fortunately this Nullspace N, is also a left ideal (the Gelfand ideal) of A i.e.
with A€ A, also BA € N, for any B € A. This follows from the Cauchy-
Schwartz inequality for states:

w(A*B)* < w(A*A)w(B* B) (1.63)
if we write the latter in the adapted form:
w((BA)*BA) < Ww(C°'Clw(A*A), C:= ((BA)*B)* (1.64)

In this form it is obvious that the left band side must vanish. The proof of the
Cauchy-Schwartz inequality for states is identical to that for scalar products of
vectors in Hilbert space.

If one now defines the state vectors ¢ as elements of A mod N. and the
action of A on these vectors as:

Tw(B)Y, :=v¢g,, Be€A (1.65)
then one obtains the desired relation between the state and the representation:
(), 70 (A)0) = w(4) (1.66)

Here Q,, is the distinguished vector in M. which corresponds to the Gelfand
ideal. The only additional step for infinite dimensional algebras is to form the
closure of the linear space and to continue the definition of x,,(4) to this Hilbert
space closure: A mod A,,. Since a dense set of vectors is obtained by applying
A to Q,, the proof is finished. It remains to be added that every other cyclic
representation x,(A) with the same w(A) turns out to be unitary equivalent to
the canonical GNS representation. )

As a preparation for the next topic let us use a tracial state as a reference
state. On a factor M at,(C)®1,, in the central decomposition of a semisimple
algebra a tracial state is unique and has the standard form:

(A)=TrA=trA Trd= ¥ i (1.67)

On a semisimple algebra there is a family of tracial states parametrized by
/\.‘ZO,Z;/\(=I:

[
TOads) (4) = 3 Nir(4)) (1.68)
=1
1 .
T(h4..4) (A) = 7(4) = NIrA, N=%n
where A; is the i*» central component of A and 7 is the standard faithfull tracial

state. We have seen before that the most general state p may be described in
terms of a density matrix p :

P(A) = 7(pA) (1.69)
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This formula is just a concrete realization of the GNS construction via the trace
formalism (in which case the Nullspace vanishes and the the correspondence
between matrices and vectors in the representation space is one to one):

7(A*B) = (Q,, 7. (A%)x(B)Qy)
P(A4) = (Q,, To(A)Q,) = "(P*AP*) (1.70)
Q. =p39,, Q= 1 in space of matricesH,

Note the analogy of this construction with the regular representation of CG: in
both cases the algebra in its role as a space together with the trace served as
the the arena for GNS faithful representations. Such a Hilbertspace 7, may be
written in a more suggestive notation:

Hy = L (Maty,7), Q, =1 (1.71)

In addition to the "left” GNS Fepresentation #; = ¥, = 7, we introduce a right
representation:

7(B)a = ¥ ap. = m(A)lny(B") (1.72)

In the group case, the right action unravels the multiplicity structure of the
irreducible representations (the irreducible representations occur according to

representation as a result of the complete symmetry between left and right in
the case CG ). In our present more general setting, the existence of the two
commuting left-right actions furnish the germ of a deep and general theory:
the Tomita-Takesaki modular theory. One first defines the antiunitary "flip”
operator J:

JYA = Yae, j(7(A)) := Ix(A) = x.(A) (1.73)

In this case the J not only implements the flip, but it also transforms the vector
AQ, into A*Q,. In the more general p-representation one has two different
involutive operators:

Sx(A)Q, := 7(A°)Q, Q,=p1

Ix(A)J = x,(A) (1.74)
Fom this one reads off the new operator S:
S=Ja}, A= *(p)x.(p™1) (1.75)

since the identity: Sx(A)pd1=17 p*r(A)pi 3= x(A*)p}1 follows from the
definitions. The formula for S agrees with the polar decomposition formuja into
an "angular” part J and positive radial part A% . The above formulas require p
to be invertible i.e. the ¥—representation to be faithful (or Q,tobea separating
vector in ,) Remembering the notation of the von Neumann commutant 4’ s
the algebraic role of these operators, the following important properties are an
easy consequence;

HA)= A, oy(4):= A%4A- ¢ 4 (1.76)
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j(-) is the modular conjugation and o1(-) is called the modular group. Since
every p may be written as a Gibbs formula in terms of a (ad hoc) hamiltonijan
H:

p= %e"’” y Z=TrePH (1.77)

In this case A% = /(e~i0tH )y, (ci81H ) and the modular automorphism on A
is apart from a stretching factor —g equal to the hamiltonian automorphism.
Note that the infinitesimal generator H of the time translations is not simply
H but rather: H = nH)® 161 ®nr(—H). This fact becomes important in

the realistic (infinite dimensional) case, since the heat bath fluctuations of the
hamiltonian H become infinitly large in the thermodynamical limit.

It is therefore not surprising that the modular theory was discovered in-
dependently (and at the same time) by physicists in the study of temperature
states on bosonic or fermionic algebras. In our toy case, instead of writing down
Gibbs formula, one may also characterize the faithful state ¢ by the so-called
KMS condition:

F;(A; B) analytic in strip: 0< Imz< 8
with F. =] P(A0e(B)) forImz =0ie z = ¢ +140 (1.79)
o #(0¢4ip(B)A) for Imz = ¢ + if

constitute part of the definition of the KMS property of . This characteri-
zation of thermal equilibrium states is more general than the Gibbs formula,
since the latter looses its meaning as a result of the volum divergencies in the

thermodynamic limit V— oo with particle densities kept fix. In addition, even

son why Kubo, Martin and Schwinger introduced this condition, whereas the
mathematical physics connection was made much later by Haag,Hugenholtz and
Winnink).

Besides the notion of states and representation, the concepts of inclusions
of von Neumann algebras will play an important role in later sections. Here
we will only present a "cartoon” version. Suppose that A at3(C) acts not on
its natural irreducible space C? but by left action on the 4-dim Hilbertspace
H(Maty(C), 1Tr). In that space the commutant is of equal size and consists
of Maty(C) acting in the opposite order from the right which will be shortly
denoted as Maty(C)err, Explicitely the realization of % as C* may be defined

as
€ ¢ &
n S ) _ | &n

€21 &2 ) $12 (1.80)

22
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and the action of 4 = M at3(C) takes the following form:

a) a3 0 0
_ | 621 a2 0 0 ~ [ a1 a3 1 1.81
a= 0 0 a1y a3 | T ( 821 G2 )®- (1.81)
0 0 az1 az;

The most general matrix in the commutant a’ € A’ has evidently the form:

aj; 0 aj;, 0
7

' ' '
] 0 a, 0 812 | o 1 a;; a),
a = ’ 0 ’ 0 ~1l® / /
ay; a2 G2; 43

’ ']
0 021 0 azz

The norm ||¢|| = (%Tr{‘f)* is invariant under the involution £ — £* which in
the C* representation is given by the isometry:

K o0 0 o
0 0 K o T
J= 0 K 0 o » K : natural conjugation in C (1.82)
0 0 0 K
We have:
i(A):=JAJ = A, antilin. map A — A’ (1.83)
which may be rewritten in terms of a linear anti-isomorphism:
a—Ja'J, AL (1.84)

Consider now the trivial algebra B=C-1; as a subalgebra of 4 = M aty(C).
In the C* representation the B-algebra corresponds to the subspace:

§ 001
0 0 000

HB = 0 16 €C ) HB = CBH, eg = 0 0 0 0 (1.85)
§ 001}

The projector ep commutes clearly with B ie.e5 € B’ . We now define a
measure for the relative size of B C A4 the Jones index:

[A:B]=r1pi(ep)™, = normalized trace in B’
In our example r(ep) = %(% +0+0+3)= $ie. the satisfying result that the

Jones index is 4. The same method applied to the inclusion:

Mat4(C) 5 Maty(C) @ 1, = { T % .xe Matg(C)} (1.86)

also gives the expected result:

dim Mat,(C)

[4:B]= dim Maty(C) =

(1.87)
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If, as in the previous cases B is a finite dimensional subfactor (i.e.a full matrix
algebra) of A, the Jones index is the square of a natural number. For inclusions
of finite dimensional semisimple algebras the index takes on more general values
2 4. For example:

X
Matg(C) eC = ( X ) - Mdtz(C) (2] Mats(C)
z

X € Maty(C), zecCl

Here the index is 3. It is easy to see that instead of the projector formula one
may also use the incidence matrix formula:

[A: B = J]A7|?

The incidence matrix A is describable in terms if a bipartite graph. From a
sequence of ascending graphs one obtains important infinite graphs (Bratelli
diagrams) which are very useful in the "subfactor theory” which will appear in
the later chapter on algebraic QFT.

Some more remarks on sinclusions should be helpful,

1.4 Measurement and Superselection Rules

the observer a ”cut” is needed. As already pointed out by Heisenberg, this cut
may be somewhat shifted, but it must be there somewhere.
According to von Neumann the observed system is described by a selfadjoint

Waster(O) =Wiesore(POP) +Wiesore((1- P)O(1 - P)),

O € A, algebra of observables (1.88)

H wieporewas a pure state described by a state vector ¥ ,wasrer corresponds to
the density matrix:

Paster = |PY} (Pl + (1~ P)y)((1 - P)y| = (1.89)
P1l¥1) (¥1] + p2 I9,) (¥l
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Py 2
p—4 ———— = .9
- (1-P)y = (1 = P) oll?

The last formula represents the mixed state associated with Pafter 35 & sum
of two orthogonal minimal projectors. However, as stressed before, an impure
state permits myriads of decompositions into minimal projectors. If we could
find a physical argument in favor of an orthogonal decomposition (as the one
above in terms of ¥1,¥3) then uniqueness follows. But no such principle is
known. In addition, to have a change of states as the above reduction of wave
packet(or quantum Jump) which is outside the unitary time development of the
Schrédinger equation is somewhat mysterious (the paradoxon of Schrédinger’s
cat). Any hamiltonian dynamics leading to unitary Propagation in time neces-
sarily preserves the purity of states. -

A satisfactory way out of these mysterious aspects has been indicated by
Hepp and strengthened by Bell. The essential idea is that the macroscopic
measuring apparatus has superselection sectors which, as we have learned, is a
generic phenomenon for systems with infinitely many degrees of freedom. Hepp’s
idea is that although the complete system including the apparatus is governed
by a unitary time development :

ar(A) =i ge—iBt 4 4 (1.91)

the limit for t— oo may well be only a positive map instead of an automorphism
of the observable algebra. In terms of Hilbertspace concepts the limit of e #* may
only be an isometry mapping the total Hilbertspace on a subspace. Therefore
the initial state which may be a pure state implemented by a vector in one
superselection sector leaves the coherent subspace in the limit and acquires
components to other superselection sectors. Although it remains formally a
vector in the total space, it describes physically a mixture since it has projections
to several coherent subspaces.

Wiefore — Wafter = ZAt’wijur (1‘92)
i

Note that this central decomposition is completely intrinsic. It is a special
case of a partial orthogonal decomposition. Whereas the latter is only unique
within one superselection sector, the former is unique in general and in this
sense behaves like a classical decomposition.

It is easy to provide mathematical illustrations of Hepp’s ideas, but for real-
istic physical use one needs models of an apparatus with natural superselection
sectors i.e.one with infinite degrees of freedom. Systems with phase transitions
as infinite spin systemns have been uged in this context.

In Hepp’s approach the "reduction of the wave packet” is achieved in the
limit t— oco.There are also attempts (even experimentally) to investigate the
loss of coherence in time by constructing "Schrodinger cat” states with the help
of a few photons in a cavity.
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Chapter 2

The Construction of
Fock-Space.

2.1 The Bosonic Fock-Space

There are several reasons for combining N-particle spaces together with a one-
dimensional ”no-particle” space (vacuum) into a big ”Master” space, the so
called Fock-space:

H=HodH:dH 0 ..... (2.1)

One obvious reason is that relativistic local interactions do not conserve the
particle number but only total charges (i.e. particle-antiparticle creation is al-
lowed as long as it obeys the energy-momentum conservation). This is also
valid in the infinite volume limit (the so called thermodynamic limit) in nonrel-
ativistic systems for which the ground state (which has generally a finite density
of particles) becomes the reference state for nonconserved ”quasiparticle” exci-
tations. The Fock-space is also the natural framework for the formulation of
cluster-properties.

. The bosonic Fock-space H® is obtained by projecting the full n-particle
spaces onto their symmetrized subspaces ‘H,'}. In the following we will introduce
the creation and annihilation operator formalism in x-space having in mind wave
functions in Schrodinger theory. If we interprete the formulas in momentum

Hg 3¥= ('pg’ ¥1(2), ¥2(Z1,22), ..... )
(‘I” ‘I,) = "ﬁo' + E:‘;l ('/'n, ¢n) <o

The creation operator depends linearly on the wave function f and the n-particle

(2.2)
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component after its application on ¥ is defined as:

(@ (N (@1, Ea) = T2 0, H(Eiu— (5.
(@*()¥) =0

Here the "roof” * indicates deletion of the i-th coordinate. The formula for the
hermitian adjoint annihilation operator a(f) follows from the defining property:

)

i-Zp), n>1, (2.3)

(\Il,a‘(f)\ll') = (a(f)\Il,W'), namely

@(f)¥), (Z1...8,) = V¥ 1 / Cf(Dni(F,81..5)  (2.4)

The annihilation operator depends antilinear on the f. In particular for the
vacuum © = (1,0,0...)

(a(H)R), =0 Vn (2.5)
i.e. a(f) annihilates Q.

The multiple application of these operators leads to lengthy formulas, how-
ever the commutators are very simple:

[a(9),0* () = (9,11, with (g, 7) = [ 3(z) (2P 26
[a(£), a(9)] = 0 = [a*(g), a*(f)]
This simplicity was the reason for the choice of normalization in the definition
of a®,
The number operator N is defined to be that positive semidefinite operator
which multiplies each N-particle vector with N. Its commutation rules with a#

18
N.a(f)] = -a(f), [N,a*(f)] =a"(f) (2.7)

In terms of an orthonormal basis it looks as N = Y. a*( fi)a(f).
It is convenient to liberate the formalism from the wave functions by intro-
ducing operator-valued distributions a#(%) :

a*(f) = [ a*(D)f(Z)d®z, a(f) = [ a(2)f()d®2 (2.8)
with [a(Z),a*(§)]) = 6(z - §) etc. ’

One can then introduce the improper basis (vector-valued distributions) in Fock-
space:

|1, ....Ex) = \/—lﬁw(s,)....a'(f”) ), 10):=0 (2.9)
1) = ¥o10) + 37 / UN(E1.eEN) |51 EN) 2y B2 (2.10)
N

The action of the a# on the basis vectors is (as always) contragredient to that
on the wave functions. It is more common to use the former. Of frequent use
( especially in the application of Fock-space in statistical mechanics) is the so
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called occupation number representation. One chooses an orthonormal set of
wave functions f; i=1,2,...00 and defines a basis in Fock-space by:

1 ~
Insy,niy, comg,) = T (fi)™....a®(£:,) [0}, gn.._zv

n,-, .
(2.11)
Often (in particular in particular in Stat. Mach.) one encloses the system
in a box and uses the discrete set of plane waves as the orthonormal system for
the occupation number representation.
The creation and annihilation operators in x-space are useful for rewriting
the Schrodinger theory into the Fockspace formalism. One easily verifies the
validity of the following formulas:

H= [H(z)dz , H(z) = Ho(z) + V(z)
Ho(z) = fgaa‘(z) - 8a(z) (2.12)
V(z) = %a‘(z)fd w(z - y)a* (v)a(y)a(z) )

applied to the previously introduced N-particle state |¥) give the N-particle
Schrédinger-operator:

H|¥)=9), «

(TR, skt + Ty, Vizi - 2))) Un(E1.Bn) = pp(Frzy)  21D)

The verification only uses the commutation relations of the a#(z) and the an-
nihilation property of a(z) applied to the vacuum. The various terms in the
N-body Schrédinger operator result from the following commutators which arise
in the process of moving H through the N a*(z)’s onto the no-particle state:

- 1 L] - » g L J .
[H,,a*(2)) = “am e (@), V.6 (@' (D] = V(Z - o’ (Da*() (2.14)
The hamiltonian H in Fockspace is used to define time-dependent operators:
a(Z,t) = eBq(z)e~Ht (2.15)

Only in the case H = Hy and for "external interactions”
H = H, + / V(2)a*(z)a(z)dz (2.16)

is the time dependent a(x,t) linear in a(x).

Before we consider an application some remarks on the mathematical status
of the a*’s and related operators are helpful. Since the N-particle states for
arbitrary N form a dense set of states, the a# are densely defined. Using the
number operator it is easy to compute:

”a(f)N-%”m =(f,f), HE = subspace of HpL1Q (2.17)
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We remind the reader that the norm of an operator A is related to the vector
norm in the Hilbertspace:

1Al = sup llAvy (2.18)

v ¥l

The technique for computing such norms is always the same: first one uses the
defining formula for a(f) in order to prove the inequality and then one exhibits
a particular vector for which the equality sign holds. In our case [ f(®)a* (H0
is such a vector. The norm of the adjoint is the same ||4|| = l1A°]].

The relative boundedness with respect to N e.g. |la*(f)¥(| < |[Ny|| 4 may

be used to show that these unbounded operators are closable and hence admit
e.g. a polar decomposition.
Most physicist’s calculations do not touch these fine points. They only check
equations for densely defined bilinear forms . In case of the above formulas
for H this means that one checks this formula for (¥, |H| ®) with the vectors
running through e.g.the dense set of smooth states of finite particle number.
The extension to a relation between densely defined closable or selfadjoint oper-
ators is in most physically relevant cases possible and follows a standard scheme
(Reed-Simon). In those cases we will be satisfied with the check for matrix
elements which is easily done with the commutation relations for a*and the
above "pulling through onto the vacuum” rule. All perturbative calculation in
Fock space are done with these rules and this applies also to the derivation of
Feynman rules in relativistic QFT.

In order to illustrate the application of bosonic (symmetrized) Fockspace
techniques to coherent states, we first convince ourself that the a#. formalism
for an oscillator is a special case of the present formalism (specialization to one
degree of freedom). For a one-dimensional space H; = C, all the tensor product
spaces are also one dimensional and the "single degree of freedom” operator a#
does not require any additional label. An arbitrary vector may be written as:

a.ﬂ

%) = %o 10) + ¥ 1) + %3 2) + ..., [n) = 750, a=0  (219)

Writing instead of the a#'s standard dynamical variables of QM p and q (with

2 2“

The a#- commutation relations g0 over into the Heisenberg ¢.r. and the stan-
dard oscillator hamiltonian takes the form:

1 .1 |
Hope = 59 + “’7.-,’ =u(a"a- ;) (2.21)

The x-space wave functions (z | n) of the eigenstates [n) turn out to be the
well-known Hermite functions. Coherent states are obtained by asking for the
eigenstates of the perturbed hamiltonian:

H=H, .+ Aa+a*)= H,,. + \WW 2%z (2.22)
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The linear perturbation can be obtained (modulo an uninteresting c-number
term) by applying a spatial translation by a = 752: to Ho,e. In terms of a# this

translation U(a) is:

NE IR QY VAR
U( \/2‘_‘).) =e (2.23)
Different from the previous use of Fockspace formalism, the number operator
for the oscillator quanta N = g¢*q does not commute with the perturbation.
Hence the eigenstates of H do not have a well defined number such quanta. In
order to obtain explicit formulas for U |n) we use the Campbell-Baker-Hausdorff

formulas:
ehe = A+B+H(AB+.... (2.24)

where the.... stands for higher commutator terms. This is easily established
for matrices and (modulo domain problems) by perturbative arguments in the
general case. Due to the absence of higher commutators we get:

e~0’ede _ m3(a"-a)+42] (2.25)

Therefore the ground state of H is an “eigenstate” of the annihilation operator:
2 . A

W) =U0) = e~437e-24" 1) q|w) = ~Z ') (2.26)

Here in the first step we used the BCH formula to separate the annihilation part
of U to the right (where an ¢ factor on |0) becomes the identity). For the
eigenvalue equation use the translation property. On the higher eigenstates I In)
the application of a leads to an additive modification of the eigenvalue relation
by Uln—1). The probability distribution of the oscillator quanta follows the

Poisson distribution:
-.L;. A n
€ w
o 1wl = 2 (2) (2.27)

Physically the perturbed oscillator may be thought of as resulting from a con-
stant electric field:

H=H,,. —c¢Ez (2.28)
" "'This field causes the expectation values of the a#’s to be nonvanishing:
(¥n |a* | ¥,)~ E (2.29)

The free time development on the the state vectors leads to the classical oscil-
latory behaviour of expectation values:
(¥n () |2] Wa(1)) ~ E cos(wt — p)
(¥n () |p] ¥ (t)) ~ Esin(wt - o)

This oscillatory behaviour would be the result of a sudden switching on of the
field:

(2.30)

H fort<0

H(t):{ Huve for 130 (2.31)
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by which the coherent states are created. The following classical behaviour of
expectation values of functions in a¥ is characteristic for coherent states:

(Vo |f(a*)| Wo) = £ ((¥o [a*| Wo)) (2.32)
In case of a time dependent source:
H(t) = Hope + Hint(t), Hint(t) = —-eE'(t):c (233)

we are dealing with time dependent unitary transformations which implement
the time dependent canonical transformations:

U(t)a*U*(t) = a* ~ VoI E (2.34)
which lead from H,,. to H (t). In this simple case the U(t) bas the same form
as in the stationary case except that the constant in front of the a-a* term in
the exponential is now time dependent. It is usefull to have a more systematic
method which also works for cases for which the U(t) is less simple. Such a
method probably goes back to Dirac (and flourished in QFT thanks to Dyson)
and treats the time-dependent problems in the ”interaction picture” which is
between the Heisenberg picture and the Schradinger picture. All these pictures
agree on the level of physical states i.e. in their expectation values, but they
differ in how the total time development is distributed between operators and
state vectors. Whereas in the Heisenberg - and Schrodinger-picture the full time
development is on the operators respectively on the state vectors, the interaction
picture is characterized by the property that the operators only suffer the free
time development and the rest (the interaction picture time development V(t))
is dumped on the vectors. According to this definition the interaction operator
H;ni(t) becomes:

Hy(t) = e ot Hyp (t)e=Hot (2.35)

The time development operator V(ta,t1) which propagates the vector state (or
wave function) from one time to a later time is:

V(ta, 1)) = Te™* « Hw(nat (2.36)

It is a solution of the Schrédinger equation in the interaction picture:
i%V(t,t’) = Hw()V(L,¥) (2.37)

The time- (or path-) ordering is defined as:

TAl(tl)Az(tz)....A(in) = A;, (t,'l )A.‘,(i,',)....A.‘.(i.‘_)

for i, >t,>..>¢, (2.38)

and the above time ordered exponential is defined by the power series with time
ordered integrands or as the limit of subsequent products with decreasing length
of the time intervalls as :

Te—l' :l’ Hw(t)dl -

;. HW(‘)J'"“TC--' o3 Bw(t)dtp,~i /2 Hy(1)dt

» 2.39
limAt_.oTc Y ( )
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The proof consists in rewriting the Heisenberg time development opera-
tor U(t,s) (which in the case of time independent interactions just reduces
to e~ H(1-4) a5 e=Ho(1-4) {imes & remaining operator V (this is the split into
the the free motion on the operators and the remainind interaction picture time
development V on the state vector) :

U(t,s) = e U=y (1,5) iev(t,s) = eHol=9y (1 ) (2.40)

The Schrédinger equation for U(t, s) is then equivalent to the following differ-
ential equation for V(¢,5):

.d
'd—tv(t,O)

efot (H — Hp) e!Ht = ¢iHot (Hint) e_iH°'¢iH°‘°—iH‘(2-41)

Hy(t)V(t,0)

The rest of the proof consists in deriving the time-ordered representation from
the formal integration of this differential equation. On first convers this into an
integral equation (using V(0,0) = 1 as an initial condition):

‘4 Ho()V(t', s) (2.42)

V(t,s):l—: A d—t'

Clearly the perturbative solution is the geometric series:
t t 13
V(t,8) = 1+(~i) / Hy(t')dt' +(=i)? / dty [ dtsHo(ta)Hy (t2)+.... (243)
) L] s

where the n'® term is integrated over the simplex s Sh<<t;<..<t, <t
The use of the the (nonlocal!) time-ordering prescription allows to convert the
integration over a simplex into one over the n-dim. hypercube s St <t i=
l..n :

V(t,8) =1+ (=) J H.,(t'zdt' + ,Lf L J THo(t)Hy () dtydty + ...
=3 BETTTRN O

n!

(2.44)

which has the desired exponential time-ordered form. These somewhat formal
manipulations may be mathematically justified in two different ways. Either
one finds a bound for the nt? term, or one shows the equivalence of the time-
orderd expression with an exact unitary transformation which, like the one at
the beginning of this section is a ”dressing transformation” i.e. applied to the
free hamiltonian it generates the interaction. Let us briefly explain this for the
infinite degrees of freedom analog of the perturbed oscillator: a bosonic field
system under the influence of an external source described by the hamiltonian:

H(t) = Ho + a(ji) + a*(j;), Ho= /(% + p#)a* (P)a(p)d®p, (2.45)

where ji(£) = j(Z,t) and we have added a chemical potential term in order to
avoid infrared divergencies of the p-integrals in subsequent calculations, The
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dressing transformation is:

- 1 %/ - i’ﬂ - 3
= e0(s1)=3"(g0) £ 1) = L 1eiPz g3 .
U= 16 = o [iEa ey (2
The connection with the time development U(t,s) is evidently (since it dresses
the free operator):

U(t,s) = U(t)e=Ho=Dy2(t) or v(1,5) = et Holt=0)y (1)e=iHolt=0)y(4)
(2.47)
The direct calculation of the time-ordered representation for V uses the previ-
ously mentioned infinite product representation:

.t ’ +
V(t,6) = Jim J]e™ o Huttar (2.48)
ord

where the product is ordered with ascending times going to the left, but the time
ordering within each factor is omitted. This formula is similar to the famous
Trotter formula; in integrals over shrinking intervalls the difference between the
time ordered and the unordered expression disappears. To this product form
we may apply the BCH-formula in order to collect all operators within one
unordered exponential:

V(t,8) = limeoexp(—i T023 [1¥U+De g gy

stje
o+ s ra+(k (249)
=3 T Sl T at [ el (), o (e
Since the commutators are c-numbers, the result is of the form:
V(t,s) = exp(~ia(ji,) - ia* (i) - i5) (2:50)

where a is a numerical phase (resulting from the commutator) and j; ,(Z) is the
result of time propagating the original source function in H;,;. We obtain agree-
ment between the two methods. Furthermore we learn that the time ordered
exponential leads to a phase factor which is not present in dressing approach.
Specializing now to the limit ¢t — 00,8 — —0o (assuming that the interaction
only extends over a finite time or that the integrals over time in V converge) we
define the S-operator as the full interaction picture transition operator V which
relates the free system before and after the interaction:

§=, Jlim V(s (2.51)

Clearly the application of S = ezp(—ia(g) — ia*(g) — i3) with g = lim,, Jts
onto the vacuum Q gives a coherent state vector:

5(9)0 = e4Q(ig), (2.52)
The successive action of sources leads to the composition law:

S()ig) = c(f,9)ig +if), |e|=1 (2.53)
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Therefore even if we eliminate the phase factor in the definition of SQ, it will
reappear in form of a so called 2-cocycle in the composition law. as in the case
of the oscillator, the source generates a coherent distribution of say photons
with a poisson probability distribution. On a coherent state vector Q(ig) the
action of S(f) will change the mean particle number to:

AN = (Q(if + i9), NQ(if + iy))2 = ((ig), NQ(ig))
= f + 91l ~ lIgl® = IfIf + 2Re(f, g)
The interference term 2Re(f,g) describes induced absorption or emission de-

pending on the sign. Many important results of laser physics may be developed
in this formalism.

(2.54)

2.2 The Fermion Fockspace

The antisymmetric N-particle space was obtained by acting with the antisym-

metric projector P,on the full N-fold tensor product Hy of one-particle spaces:

- 1 .

H)(v ) = x(P,)Hy, P, = i sign(P)P (2.55)
PeSn

Here x(P) P € Sy stands for the natural representation of Sy on the full

tensor space Hy. The Fermionic Fockspace is simply the direct sum of all an-

tisymmetrized N-particle Spaces augmented by the one dimensional no-particle
state.

o0
H®O =g+ H + S HP (2.56)
N=2

The only difference to the Bosonic case (besides the antisymmetry of the wave
functions) is the sign appearing in the formula for the creation operator:

@ (1)), (1, ....50) = —\/%Z:(—l)"'“ SEWnr(Er, .5 50)  (257)

Here the roof on the Z; indicates omission of this variable. In a completely
analogous fashion we obtain the anticommutation relations:

{a(0).a* ()} = (£,9), {a(f),a(e)} =0, (e @)=0 (258
and removing the wave packets:
{a(@)a* @) = 6(-5), {.,.}=0in all other cases (2.59)

There is no change in the formulas which carry the Schrédinger theory on anti-
symmetric N-particle wave functions to the Fockspace (at least if one writes H
exactly in the same order in the a#’s )- A significant difference to the bosonic
case begins to show up, if one realizes that as a consequence of:

{a(fa(f)} =2a(f)* =0 (2.60)
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and the hermitian adjoint relation, we obtain the Pauli exclusion principle: in an
occupation number representation any quantum level can maximally be singly
occupied:

N2y ) = — = e f0), ni=0,1 2.61
Inl n2 ) \/;l-[m lO) i ( )
This principle holds only if all quantum numbers of a particle (including spin
and possible internal charges) have been taken into account. Closely related is
the ability of fermion-systems to form a new reference state by simply occupying
a given set of levels ( orthonormal one-particle vectors f; i=1...N):

|¥o) = a}....ax [0), o] =a"(fi) (2.62)
This vector is annihilated by the new annihilation operators:

=] () if feH(h,..In)
0 ={ sy oS (263)

Here H(f)...fn) is the subspace of the one-particle space spanned by the system
of vectors f;. Note that the b#s obey the same commutation relations as the
a¥s. The annihilation property b|W) = 0 is an easy consequence. Note that
that the hermitian adjoint 4*(f;) creates holes in [Wo) . This ability to create
states which are annihilated by transformed Fermion variables b# through occu-
pying levels is typical for CAR. On the other hand for coherent states (relevant
in e.g.laser physics) and Poisson-distributions one needs Bosons. Mathemati-
cally the CAR- structure (canonical anticommutation relations) is well behaved
since the a¥#(f) are bounded operators:

(. {a(),a* (1)} @) = (. 1) (2, ®)
ie. [la(NPI* < (f, ) (®,9)

By taking ¢ = a*(f)QQ we establish saturation (=) and therefore {Ja(£)|| = (f, f)
for the operator norm. The counterpart of the one-dimensional oscillator is:

(2.64)

0:=a+a* o,=i(—a+a") o0, =aa’~a"a (2.65)

With o being the Pauli-matrices i.e. the smallest irreducible representation of
the Clifford algebra structure defined by a# is in terms of Pauli matrices. This
observation can be generalized:

Theorem 2 Alg(a¥,i=1...N)=Cliff(CN) = ®" Mat3(C) = Matyn(c)

The proof consists in starting with a generating system of matrix units for
the N-fold tensor product of Mat,(C):

¢ =1@.1@e;01.1 (2.66)



CBPF-NF-026/97

k k
= [T - o) = [[1 - 20%0) (2.67)

=1 i=1

we define q; = p,-_legg) - and its hermitean adjoint. In commuting one of such
objects through one of the €12 meets one of the (e11 - €22) factors which leads
to the -sign. The relation between the matrix units and the a#5 can be inverted
and the generatel algebras are identical.

In the " Paulion” formalism, the filling operation is described by the unitary:

1
U=01®al®....®¢71, 01=(? 0) (2.68)

From this one reads off the filling operator in the a# representation.

Clearly the filling mechanism s as typical for Fermions as the coherent state
properties are for Bosons. Without the former there would be no periodic table
(nor we) and without the latter no laser.

2.3 The CCR and CAR Algebras.

Wereas in the case of the Fermion Fock Space an abstraction to a C*-algebra
is straightforward (ust take the C*-algebra generated by the a#s subject to
the anticommutation relations, uniqueness wil] be shown later), a construction
of a C*-algebra from unbounded operators generally poses serious obstacles.
Following Weyl, one formally converts the a* into unitary operators:

W=D, 001 = S-atg)+ () (2.69)
The application of the BCH-formula leads to:
W(NW(g) = ety (s 4 9) = e~ UDw(gyw(y) (2.70)

the Boson algebra. This algebra is clearly an infinite degree of freedom gener-
alization of the well-known Heisenberg-Weyl algebra which underljes standard

U@) : =e%, v(g).= bt (2.71)
W) =¥y ), F=&+i8
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One easily checks with BCH that the W fullfil] the above Weyl relation with
f=v€CV and the symplectic form being the standard symplectic form being
of the standard type known from 2N dim. phase space of classical mechanics.
The following theorem collects the important structural properties of the CAR

and CCR(Weyl) algebras.

Theorem 3 The CAR and CCR algebras are simple (no tdeals) C*-algebras
generated by the CAR resp.CCR commutation relations.

We only indicate the proof and refer to Bratteli-Robinson Vol 2 for details.

In the CAR case we know from the previous consideration that for finjte
degrees of freedom Fermions a¥ i=1...N can be replaced by ”Paulions”. For
infinite degrees of freedom we take a basis fi i=1...00 in the one particle space
H. The uniqueness of the limiting algebra follows from the continuity resulting
from ||a(£)|] = |If]|. The full algebra is in fact an inductive limit of finite degree
of freedom algebras. The separability is inherited from the Maty-algebras.

H with the multiplier ezp. — i0(f, 9) being a character. In this way the problem
is reduced to that of uniqueness of C*-group algebras. The triviality of the
ideal is established by showing that the kernel of every representation is trjv-

strongly continuous in ¢,
Theorem (Stone-von Neumann uniqueness theorem). Every regular irre-
ducible representation of the Heisenberg-Wey] algebra for a finite number of

The proof uses the infinitesimal generators ®, which thanks to the regularity
Property turn out to have a densely defined domain which allows to construct
the a(f)* and the number operator N = Y a?a,. The Positivity of the latter
requires the existence of of a "lowest” vector which is the required reference
state for the annihilation operators. If on the other hand we are dealing with
infinite degrees of freedom (i.e.dimH:oo), the sum in N need not to converge.
In such representations the number operator does not exist. Examples are easily
given. .

Bosonic illustration If the shift function c(x) in a(x)—ob(x):a(x)-l-c(x) is
not square integrable (physically because of short distance [ultraviolet] or long
distance [inf rared] divergencies) then N does not exist and the formal expression
for the unitary implementer U(c) cannot be given a meaning.

Fermionic illustration If the "occupied” Hibertspace is infinite dimen-
sional no unitary implementer can exist. The reason is that such a vector
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® =], a;Q is orthogonal on each basis vector of the particle number represen-

tation:
(%, ¥(ny,na....ny)) =0,

¥(n1,na...nn) = a*™a*™, 0*"WQ,  n; =0 or 1 (2.72)

This is because for any arbitrary large N the & contains infinitly many creation
operators which remain uncompensated. The formal expression for  cannot
be given meaning in Fockspace. '

There is another way of looking at this illustration. The infinite sequence of 0
and 11in (ny,n,y...... ) may be considered as a binary fraction. Whereas the Fock-
basis consists of binary fractions with n; = 0 for sufficiently large i (which may
become arbitrarily large), the binary fraction for the above @ is the constant
sequence (1,1,1,..1....). This sequence is not in the vacuum class (0,0,.0...)
where ”class” here means the set of sequences which deviate from each other
only in an arbitrary large but finite number of places. Each class belongs to
a basis in one Hilbertspace and the the different basis elements ¥(ny,ny,....)
are obtainable from one reference element in the class by the application of a
finite (but arbitrarily large) number of a#'s . The various irreducible repre-
sentation spaces obtained from the different classes are orthogonal subspaces of
an inseperable unwieldy (and unphysical) Hilbertspace generated by all binary
fractions (which form a continuous set )- The same idea of classes of sequences
works for bosons. In that case the n; run through all natural numbers including
zero. One obtains myriads of inequivalent irreducible representations and this

We close this section by commenting on automorphisms of the CCR and
CAR C*-algebras which are linear maps of the .algebra onto itself which pre-

the Bogoliubov automorphisms. They are induced by (anti-)linear invertible
transformations of the underlying linear wave function space H. In the CCR
case they are required to leave the symplectic form o on H invariant and map
the Weyl generators as follows:

o(Tf,T9) = o(f,9), o(W(f)) = W(Tf) (2.73)

In the CAR case we must use (anti-)unitary operators in order to preserve
the anti-commutator:

(Uf,Ug) = { (%)-f’) vl (2.74)

A slightly more general automorphism is obtained by combining these two pos-
sibilities:

o(a(f)) = a(Uf) + a*(V ) 275
UU‘+VV‘=1=U‘U+V‘V, VU UV =0=UV* 4+ VU* )
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tion V=0 resp. U=0. Clearly the earlier occupation transformation corresponds
to the automorphism a(a(f)) = a*(Vf). The crucial question is now whether
the automorphism is really a bona fide symmetry i.e. implementable by a uni-
tary transformation.Take as an example the shift a*(Z) — a*(£) + ¢(£) which
is formally implemented by the unitary:

Ua"(D)U* = a*(2) + ¢(2), U = ex(c)-a"(c) (2.76)

to the identity in order to have an implementation in Fockspace. This is indeed
the case, the deviation from 1 should be in the Hilbert-Schmidt class. Since Bo-
goliubov transformations leave the property of ”quasi-freeness” invariant, the
natural place for presenting the relevant implementation formulas is the next

The most convenijent Way to obtain representations of the CCR and CAR C».

classified completely. They are defined by their two-point functions together
with a combinatorial formula which expresses their n-point functions in terms
of the given two-point functions. On the generators a¥ we specify the state w
by giving first its two-point functions:

@(a(f)a(9)), w(a(f)a*(g)),
or w(a(z)a(y)), w(a(z)e*(y)) (2.77)

The remaining two-point functions w(a*(g)a*(f)) is (according to the reality
properties of states following from their positivity) just the complex conjugate
and w(a*(g)a(f)) may be obtained by (anti-)commutation. The higher correla-
tion functions of w are given in terms of the two-point function by the following
combinatorical formula:

w(a*(f1)a*(fy)....a*(fon)) = > signP ] w(@*(£i,)a*(£,,.))

pairings P x<ings
(2.78)

w(a*(f1)a*(£3)...a*(fon41)) = 0

We have to prove that w is Positive on the polynomial algebra generatet by the
#)g.
a¥’s;

Ww(A*4)>0 A= polyn(a*) (2.79)
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For the CAR-algebra the bound from the anticommutation relations:

w(a(fa*(f) < IfII? (2.80)

gives immediatly :
w(a(f)a*(9)) = (£, Tg) 0<T<1 (2.81)

The positivity on monomials 4 = a#(fl)....a#(f,,) is a result of the basic two-
point positivity:

a(f) +a*(9)) QI =
w (a*(f)a(f) + a(g)a"(g) + a*(f)a*(g) + a(gla(f)) > 0

(The latter holds as the result of the positivity of T and the Cauchy-Schwartz
inequality) and the combinatorical definition of the n-point function.

A particular subclass of quasifree states are the gauge invariant quasifree
states. By definition only those correlation functions are nonvanishing which
contain the same number of a and q*. Instead of working with unbounded
operatorsone prefers to define the quasifree gauge invariant states directly in
the Weyl algebra:

(2.82)

() = exp(=5 A1 - § [ 1|} (2.83)

W(f)=aVI-TfH @1+ y@a*(KVTf), T<1

a"(f) = " (VI=TS) ® 1+ 70 a(KyTS) (284
For CCR we obtain the analogous formula:
%(f) = a(VI+Tf)® 1+1@a*(KVTS) (2.85)

a,(f)=a(VI+Tf)®1+1 ® a(KVTf)

Here K is the standard conjugation (Kf,Kg)=(g,f) and 7 (only defined in the
CAR case) is the unitary operator which implements the Z, gauge transfor-
mation (distiguishes even from odd numbers of Fermions) in Fockspace. The
proof consists in a simple calculation of the two-point function in the vector
Qdousie = NS Q.

The irreducibility condition for gauge invariant quasifree representations is
that T is a projector T=P. The equivalence criterion for two gauge invariant
quasifree representations is:

Theorem 4 Two irreducible represeniations given in ferms of P and Q are
equivalent sff || P — Q”f,_s. < 0. here the H-S norm of K is defined as TrK*K <
0.



CBPF-NF-026/97

—43-

2.5 Temperature States and KMS condition

For a finite quantization box (i.e. a discrete energy spectrum), finite temper-
ature states on the CCR or CAR-algebra are described in terms of the Gibbs
formula: ]
~BH
= —e ,
=z
since e =P s then a trace class operator. Here Hy includes the chemical poten-
tial u:

Z=TreP", H = Ho(u)+ Hin, (2.86)

~2
Ho(u) = / w(Pa Pa@e’p, w(p) = L (2.87)

The box-enclosed version is of course a sum over discrete momenta where the
latter result by extending the Laplace operator on smooth functions with sup-
port in the volum V in a selfadjoint manner to square integrable functions in V
(the various ways of doing this correspond to the various boundary conditions).
The physical role of the chemical potential is that the ground state energies
for different particle numbers can be adjusted in such a way that the averaged
particle n(x) and energy h(x) density:

fi =Trpn(Z) &= Trph(Z) (2.88)

remain finite in the thermodynamical limit V — oo and hence can be expressed
in terms of the two parameters B and p. For the ideal Fermi or Bose gas (Hips =
0) the approach of the (quasifree ) Gibbs state to the limit KMS state is obvious
by explicite calculation:

limy ., wy (a*(f)a(g)) = w(a*(f)a(g))
wv(a*(f)a(9)) = 3Tre=PH va*(f)a(g) = (9, Tv f) (2.89)
Tv = (exp —BHov)(1 + exp —fHoy)~?

Here the (non-bold) Hy are the one-particle operators acting on wave functions
whereas Hy acts in Fock-space. The w in the thermodynamic limit is also of
the quasifree form with H, replacing Hoy. The simplest way of proving these
relations is to use the KMS property:

wv(9:(a”(f))a(9)) = wv(a(9)oe4ip(a*(£))) (2.90)
which for t=0 together with the (anti)commutation relation leads to:
wv(a*(f)a(g)  a* (7Y f)a(g)) = (g,e=#Hov f) (2.91)

We used that the hamiltonian automorphism o is of the Bogoliubov type. We
rewrite this equation as

wv(a*((1£ ePHov) f)a(g)) = (g, e#Hov f) (2.92)
Clearly this relation is solved by:
o4(a”(f)) = a*(e7PHov(1 £ e~PHov)-15) (2.93)
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After Fourier-transformation, ¢=# Hovhecomes a multiplication operator ezxp —
2
B({: — p) and hence

n(P) = exp ~Pw(F)(1 + exp —fuw()) - )
wy(a*(£)a(y)) = ﬁfe‘f(”‘*’)n(p), w@) = £ —p

Since the + case belongs to the Fermions, one obtains for B — oo the expected
occupation for the finite density ground state:

(2.94)

)
Jim n(7) = { 5: :;’;,,;Z (2.95)
The main difference between the finite volum expression and the thermodynamic
limit is that in the former case the p-values are discrete and that in the latter
case the trace class property of exp — SH is lost and therefore the numerator and
denominator in the Gibbs formula (and hence the Gibbs formula itself) become
meaningless. It is not difficult to establish the thermodynamic limijt for large
classes of H,,,.

With the help of the KMS condition one may avoid the finite quantization
box and study statistical mechanics directly in the infinite system. It is inter-
esting to note that the KMS condition is equivalent to the stability of the state

annihilates Q must itself be zero. In fact the hamiltonian, or more generally
the KMS automorphism, is the Tomita automorphism of the associated modu-
lar theory and vice versa, the Tomita modular automorphism is characterized
by its KMS property. Let us illustrate this for quasilocal states on the CAR-
algebra. Writing:

(Rla(f)a*(9)IQ) = (£,59), 0<S <1 (2.96)

the separability of  is garantied if S has no eigenvalues and 1 and the repre-
sentation of the CAR algebra is even factorial if the multiplicity of the eigenvalue
-;- is finite. The previous considerations suggest that the modular operator is

related to S by: A
- s

T 1+ Ag

and the GNS representation may be most naturally be described by "doubling”
i.e. in a Fockspace MHaouste = Hr @ Hp associated with the doubled one particle
space Agoupte = h @ h :

(2.97)

ws(d) = ug e (4)

_ S st1-s)t (2.98)
P= sta-st  1-s )
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The quasifree states in the doubled description are pure on the tensor product
algebra (and its representation is irreducible) since P is a projector. But its
restriction S to the first factor (which is the image of the original CAR algebra
under the doubling ) is impure and reducible. For this reason the doubling
is also called ”purification”. In the application to KMS states of statistical
mechanics, the second factor in the doubling is a "shadow world” i.e. a copy of
the original one ( corresponding to the algebra of the previously discussed right
action ) which has no spatial localization. Later we will also meet examples
of the modular theory for which the commutant algebra has a complementary
space-time localization. In those cases the modular theory has a deep relation to
TCP symmetry (the particle-antiparticle issue) and the Hawking temperature.

2.6 The CCR- and CAR-Functors

In section 3 we introduced the CCR and CAR C*-algebras as maps of Hilbertspaces
of functions into C*-algebras. In particular the Fock-representation of these C*-
algebras define functors from the category of Hilbertspaces into von Neumann
algebras.

Let us first look at the CCR-functor. Starting from a Hilbert space (always
complex unless stated otherwise) with a scalar product f,g—(f,g), we first de-
scribe the associated bosonic Fockspace in the following way. Let e/ be the
suggestive notation for the vector in the the Fockspace HP¥™ = e associated
to H with the following n-particle components and inner product:

e/ =1.0 +y # [®..®f, (e ef) =t (2.99)

In this notation the vacuum is Q = ®. These special vectors are linear inde-
pendent as well as "total” (i.e. they form a dense set) in e . The Weyl operator
W(f) is defined on this dense set as:

W(f)e! = e~ 42 -0 ot 4s (2.100)

The unitarity of W and hence the extension to the whole space follows from this
formula. The isomorphic map H — e¥ carries subspaces of H into subspaces of
e¥ and direct sum decompositions into tensor products decompositions. Fur-

thermore linear densely defined maps A between one particle spaces H 4 i £o
A
over into e &, oK with the computational rules:

eAeh eth (eA) = oA° (2-101)
et = Vel A=U|A|

the latter describing the fate of the polar decomposition under the map.
In order to use the Weyl-operators W as a functor from the category of linear
spaces to von Neumann algebras, we need to understand a particular family of
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real subspaces of H. Let M be a set of vectors in H. Define the symplectic
complement M’:
M'={f € H|Im(f,9) = 0vg € M} (2.102)

Then M’ is a closed real subspace ( the use of the symplectic form Im(f, 9)
requires the restriction to real linear combinations). The following list of prop-
erties follows directly from the definition:

M ¢ NANCM (2.103)
Mdense inH ~ M' = {0}
(M+iMY = MM

As for von Neumann algebras, the two-fold application of the "-operation i.e. M —
M" gives the (in this case symplectic) completion i.e. the smallest closed real
space generated by the set M. The following definition strengthens the analogy
with von Neumann algebras.

Definition 1 A real closed subspace M is called "standard” if M +iM is dense
and M NiM = {0}. Every standard M defines a "canonical involution” s vig
s(f +ig) = f —ig where f,g € M.

In other words, standard M’s are +1 eigenspaces of an (unbounded) involu-
tion s. We need its polar decomposition:

s = job, 2=, jsd g4y (2.104)
sh = j* on dense set Dy = M + iM

with * referring to the reality concept defined by M. The important relations:
IMy=M', *M=M (2.105)

are a rather direct consequence of the definitions.
We now define a von Neumann algebra R(M) associated with the real sub-
space M:
R(M) =alg{W(f) | f € M}" (2.106)

" Note that although M is real, the von Neumann Algebras R are always complex.
The map:
M — R(M) (2.107)

turns out to be an ”orthocomplementary functor” from the category of Hilbertspaces
H and their standard real subspaces into the B(H F) operator algebra and von
Neumann subalgebras in standard position. Orthocomplementa.ry means that
the complement M’ corresponds to the commutant R(M)i.e. the validity of the
following ” duality”:
R(M') = R(MY (2.108)
The importance of this functor in QFT in quantum physics results from the
fact that the R(M)’ describes all observables which are compatible (simulta-
neously measurable) with an observable from R(M), where in important QFT
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cases M describes a space of real (classical) functions localized in some region ©
in Minkowskispace and M (O) = M(0O') where ©' denotes the causal disjoint
region to O. So the functor relates classical localization regions with the quan-
tum notion of simultaneous measurability. The process of passing from classical
functions with a symplectic structure to operator algebras is often referred to as
”quantization”. Since this word creates the misleading impression that quantum
physics is founded on a parallelism to classical physics and in particular that
localization needs a classical function space, we prefer to avoid it alltogether
(Bohr’s ”correspondence principle” is the Teverse, namely to recover classical
physics in some special limiting situations). In some way algebraic QFT is the
investigation of those structures which cannot be obtained by ”quantization
methods as Lagrangian canonical- and pathintegral-methods.

The most interesting remaining problem is the connection between the prop-
erties of s,; and § and their Fockspace counterparts § = e'.J = ¢ and
A% = e, As a result of:

SW(NQ=W(-fQ = W) (2.109)
S is Tomita’s (unbounded) involution:
SAQ=AQ, Ac R(M) (2.110)

Here the star is the universal M-independent star of subalgebras of B(H ), and
the M-dependence of S is solely encoded in its dense domain (whereas for s
the star changes depends on M )- It is the simple part of the Tomita-Takesaki
theory that S and the operators J and A which result from polar decomposition
thereof always exist for general von Neumann algebras R in standard position
ie. pairs {R,Q} with R € B(H) and Q € H cyclic and separating. Tomita’s
deep theorem tells how these operators act on the algebra:

JR) : =JRI=R' (2.111)
o(A) : =adA"AcRifAcR

J is the modular conjugation and ¢y the modular automorphism group imple-
mented by the modular operator A%, It is not difficult to see that R(M)n
R(MY = C1 (ie. R(M)is a factor) iff M N M’ = {0}. This suggests the
definition:

Definition 2 A real subspace M is called factorial fMNM ={0}.

The family of standard von Neumann algebras which are in the range of this
functor are a subset of all standard von Neumann algebras in B(Hp).

There exists another functor which maps H into H3"** and the standard
real subspaces M of H into von Neumann algebras generated by CAR operators:

{a(9),0*(£)} (9. (2.112)
{a*(9)a*(1)} = o
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CAR(M) = alg {A(f) = *(f) +a(f) | f € M} (2.113)

where a(f) is the Fockspace annihilation operator: a(f)Q2 = 0.

The functorial constructions of the CAR appear somewhat simpler (and
more natural) if one follows Araki and interprets the complex Hilbertspace H
as a "doubled” real Hilbertspace. This is achieved by taking two copies Hy and
introducing an antiunitary involution I':

r(ﬁ) = (;;) f=(£)eK=H+®H-, PK =(#]114)

f+ — fi conjugation in He, (£,9)=(f1.94)+ (f-,9-)

The selfconjugate subspace
RzK:{feKlI‘f:f} (2.115)

inherits on the one hand a real inner product and on the other hand this real
subspace is is isomorphic with K, considered as a real space with the isomor-
phism being:

f—V2Pf, feRek

Re K admits the following complex structure (P as above):
if =iPf-i(1-P)f, feRek (2.116)

This description of one particle spaces K is the same for both functors. The only
difference is in the interpretation: instead of the symplectic complement M’ one
uses the ”i-symplectic” complement: M’ = iM’. This could also be called the
real orthogonal complement. The relation with the vanishing anticommutator
is:

{A(f), Al9)} =0,Y9 e M,~ f € M1’ (2.117)

An important distinction between the CCR and the CAR functor shows up if
one looks at the Tomita-Takesaki theory. In the CAR case one finds:

S=JAY, J=Ted A=¢ (2.118)

T is the so-called Klein twist, a transformation which is only defined in Hgnris
and not in H :
_ 1+ ieirN

T=—5

The general setting does not tell which of the two functors one must take in
concrete situations. In QFT this additional physical information is supplied by
localization properties.

Lit. to Chapter 1 and 2 :

Rudolf Haag : "Local Quantum Physics”, Fields, particles, Algebras. Springer-
Verlag 1992

N : number op. in HZr* (2.119)
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Ola Bratteli and Derek W.Robinson : ”Operator Algebras and Quantum
Statistical Mechanics” Vol.1 and 2 Springer-Verlag 1979

J.H.Roberts in "The Algebraic Theory of Superselection Sectors, Introduc-
tion and Recent Results” Ed. D.Kastler, World Scientific 1990.

The detailed presentation of the Weyl functor is taken from some unpub-
lished notes of P. Leylands, J.Roberts and D.Testard, ”Duality for Quantum
Free Fields” CNRS, Marseille preprint 1978.
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Chapter 3

Poincaré Symmetry and
Quantum Theory

3.1 The Symmetry Concept of General Quan-
tum Theory.

In quantum mechanics a symmetry operation is implemented by an hermitian
operator (”charge”in case of inner symmetry) which commutes with the hamil-
tonian. Usually this operator has a geometric origin in terms of the quantization
of a Noether ”current”.

In relativistic QFT one prefers a definition which does not use objects which
depend on the reference frame as H and is more intrinsic to quantum theory
than those symmetry concepts obtained through that parallelism to classical
theory usually referred to as "quantization”.

Let ¢ a vector in a coherent subspace of a Hilbertspace of a quantum theory
(example: an irreducible representation space of a CCR- or CAR-algebra.).
The corresponding physical state (in the sense of expectation values as defined
previously) corresponds to the unit ray:

v={"y|ac(0,21],(v,9) = 1) (3.1)
The probability for a "source” state ¥ containing a "measured” state pis:
w(g, ¥) = l(e, ¥)1? (3.2)

and does not depend on the representing vectors. A symmetry transformation
$ is defined to be a transformation of unit rays:

Y—¥  with  w(g, )= u(py) (33)

The physical significance of such S only becomes evident via its action on
local observables, an issue which we will take up in a later section.
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It is comforting to know, that this projective definition may be reduced to
the standard situation of (anti-)unitary operators in Hilbertspace:

Theorem 5 (Wigner): Any ray representation S may be rewritten in terms of
a (anti- Junitary vector representation S:

P ' ¥ unitar

¥ =S¢ with (¢, )={ g:’vg amiunitir y (3.4)
In the antiunitary case, S may be written in terms of any conjugation K (an
antilinear operator which flips the bras and ket of a inner product) as S=UK
with U unitary. Antiunitary operators appear in quantum theory exclusively
in symmetry transformations which contain the operation of time reversal. For
physical reasons one does not want a symmetric spectrum since the energy
of systems at zero temperature should be bounded below in order to avoid
instabilities due to transitions into arbitrarily negative energy eigenstates ( the
same reason why Dirac filled the negative energy Dirac sea).

The time reversal T flips the direction of time and therefore:

Te'Hty = ¢~ $HiTy, (3.5)

Taking T unitary and ¢ an energy eigenvector (the use of the spectral repre-
sentation for H would be more rigorous), one would obtain a symmetric energy
spectrum which is in conflict with the existence of a ground state (but not with
the structure of finite temperature states).

If the symmetry S is part of a symmetry group whose group manifold is con-
nected (i.e.every element is continuously deformable into the identity), evidently
only unitary representers can occur.

Strictly speaking, the presence of superselection rules limits the previous
consideration to coherent subspaces. In the total space

LEDIN 7 (3.6)
[::1)

the phases between the S’s in the subspaces are arbitrary and without physi-
cal significance. Symmetries not related continuously with the identity, as the
various reflections: P,T and PT as well as dicrete symmetries not related to
space-time, as charge conjugation C, can in principle transform one subspace
into another.

If we apply the above consideration to symmetriy groups, the two operators
U(g2)U(g:1) and U(g2g;) need only to be identical up to a phase factor :

U(g201) = 10297 (gpg,) (3.7)

The associativity of the threefold composition yields a consistency condition
for the phase which depends on two group elements. It is called a 2-cocycle
condition. It is important to know under what circumstances this phase may
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be absorbed into a redefinition of the U’s, i.e.under what circumstances the
"cocycle is a coboundary”. A physicist is familiar with two "obstructions”:
phase factors coming from the topology of groups (as the phase factor -1 in haif-
integer spin representations which becomes a projective representation if one
considers SO(3) and not SU(2) the represented group.) and central extensions of
Lie-algebras which after exponentiation also lead to unremovable phase factors
in the associated groups. A famous physical illustration of the physical relevance
of central extensions is the Galilei-group in Schrédinger theory.

Although there are other global mechanisms for cocycles, as far as I know,
these two possibilities cover all known physical situations. In particular for
semisimple groups (the Galilei- and the Poincaré- groups are not semisimple)
as well as for the Poincaré-group the transition to the universal leads back to
vector representation. for the latter group we have :

Theorem 6 (Wigner, Bargmann) The projective unitary representations of the
Poincare-group P are equivalently described by vector representations of its uni-
versal covering P .

From a topological point of view the two-fold covering of P happens already
inside the rotation subgroup SO(3) whose covering is SU(2) i.e. the phenomenon
of halfinteger spin.

As usual in Lie-group theory, one describes representations in terms of in-
finitesimal generators fulfilling Lie-algebra relations. The ll;w\t’known case in
physics is the unitary Tepresentation theory of the SU(2)=5S0(3) . If we char-
acterize the rotation by an angle © and axis 7, we have:

U(R,0) = ™7 (3.8)
where J is the quantum mechanical rotation operator with the Lie-algebra:
Vs, Jj] = ieijadi (3.9)

The unitary irreducible representations are all finite dimensional and are
explicitely given by the following well-known matrices . ForJ? = s(s+1):

(s,mlJals,m) =m
(s,m+1|J,]s, m) = (s,m|J_|s,m + )=[(s—m)(s+m+ 1)]; (3.10)

Here —s < m < 3, J+ = J1 4+ J;, and we have listed only the nonvanishing
matrix elements in the 2541 dimensional representation space.

The distinction between a group and its covering does not show up in the
Lie-algebra, but it can be seen in e.g. irreducible representations by looking at
the values of the Casimirs (in the present case the distiction between halfinteger
and integer spin in the eigenvalues of j?). The finite dimensional irreducible
representations of the Lorentz group are constructed in complete analogy to the
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rotation group. The following construction shows that the knowledge of the
above formalism suffices. Choosing generators :

A = ediMu 0 _ e:‘ﬂ'ﬁ‘ﬁ.iﬁ? with

—_ 3.11
Mand N related to M#* as B and to F#¥ (3.11)

and the Lie-algebra relations are :

[M‘*,Mj*] = e ME, [M'*,M'] =0 with Mji = %(M, $iN;)
(3.12)
Our previous SL(2,C) representation in the space of undotted two-component
spinors is:
a(A) = 47T Ty (3.13)

Using the notation J and K for the representers of M and N in the
Tespective representations we find for this spinor representation :

—_— — —

7- w__7 FeZ Foo win Bl
=g K=-ig o - 777 =0 with 7= 2 (T 10R)
(3.14)
The standard notation for this fundamental SL(2,C) spinor representation
is :
Dl¥ol(A) = gom-ixe) 4 - (3.15)
Similarly for the dotted spinors :
DAy = gt axe® o _ -t (3.16)

Note that in these representations (as well as in al] finite dimensional rep-
resentatios of the Lorentz-group) the generators K are not hermitean i.e, the
associated D’s are not unitary. The general irreducible finite dimensional repre-
Sentation are characterized in terms of two (half)integers % which denote the
formal J;angular momenta.

D[:F-:s'-](A) = 0T -ixTVF io 7 +ixe) 7" (3.17)

Here J% are the previously defined matrices of size (2% +1) x (2% +1).
In the spirit of the spinor calculus, one should envisage these operators to act
on tensor products of (un-)dotted spinors. The J4 act as Pauli matrices on
®ny Maty(C) :

Ti=Y1e..¢ % ®..01 (3.18)
=1

symm.

The symmetrization in the Dy spinorial indices assures the irreducibility.
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3.2 One Particle Representations of the Poincaré
Group.

- D i
We are now ready to study unitary representations of Pand its subgroup SO(3, 1).
The infinitesimal generators for noncompact groups are necessarily unbounded
operators. The domain problems for unbounded Lie-generators (common dese
domain etc.) have been studied and we will ignore them unless they are of di-
rect physical significance (as e.g. in the relation between the Tomita-Takesaki
modular theory and symmetries described in a later section).

The commutation relations of the Poincaré generators follow from the com-
position property. for 13(a2, az) - (a1, 0) = (az + agala;l,agag) (3.19)
The second translational term is simply the Lorentz-transformed vector Azay.
From the special case

(0,07") (a,0)(0,2) = (A~%a,1) (3.20)
one abstracts for infinitesimal translations:
U='a)P*U(a) = A*P*  with U(a) = e'sP (3.21)

Analogously the transformation of the operator U(a) = e'™""%+ by another
Lorentz transformation yields the tensor transformation property of M#»¥

U~ a)M* U(a) = ABAY M= (3.22)

In order to avoid clumsy notation, it is convenient to surpress the unimodulars a
inside unitaries and write simply U(A) with the understanding that A denotes
an element of P . Only for matrices (i.e.finite dimensional representations)
the notational distinction matters. The Lie-algebra relations are otained from
the above transformation laws by expanding U(e) = U A) retaining only linear
terms in 4, .:

M°P, P¥] = i(geu Pt _ (g . g
o, Mo s o e 7 oy O

The last relation is the tensor form of the previous J* commutation relations.

Approaching the Wigner theory via the infinitesimal generators P# M#» |
one first looks for the Casimir (invariant) operators which take on characteristic
values in irreducible representations :

PP,  the mass operator

W¥“W, the Pauli-Lubanski invariant (3.29)

The Pauli-Lubanski invariant is formed with the P.L vector Wi = ~1euapy MP P
whose commutation properties follow from those of the Poincare generators M#Y
and P* and read :

[Wn- P)=0 [Wvan] = i(gy Wy - IxuWa) [Wm LA iy W" P
(3.25)
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3.2 One Particle Representations of the Poincaré
Group.

We are now ready to study unitary representations of Pand its subgroup SO(3, 1).
The infinitesimal generators for noncompact groups are necessarily unbounded
operators. The domain problems for unbounded Lie-generators (common dese
domain etc.) have been studied and we will ignore them unless they are of di-
rect physical significance (as e.g. in the relation between the Tomita-Takesaki
modular theory and symmetries described in a later section).

The commutation relations of the Poincaré generators follow from the com-
position property. for 13(03, a3) - (a1,01) = (a2 + aza1a;, azaz) (3.19)
The second translational term is simply the Lorentz-transformed vector Azay.
From the special case

(0,67') (a,0)(0,a) = (A~1a, 1) (3.20)
one abstracts for infinitesimal translations:
U= (a)P*U(a) = A*P*  with U(a) = e'oP (3.21)

Analogously the transformation of the operator U(a) = ¢'M"*ss by another
Lorentz transformation yields the tensor transformation property of M#¥

U=Ha)M* U(a) = APAY M*> (3.22)

In order to avoid clumsy notation, it is convenient to surpress the unimodulars a
inside unitaries and write simply U(A) with the understanding that A denotes
an element of P . Only for matrices (i.e.finite dimensional representations)
the notational distinction matters, The Lie-algebra relations are otained from
the above transformation laws by expanding U(a) = U/ A) retaining only linear
terms in 6, .:

M, P¥] = i(g°» P — (0 —, §
[M‘"', A[l”] = "{]guaiggpp - gupb({ayo - (“)‘)_. II)} (323)

The last relation is the tensor form of the previous J* commutation relations.

Approaching the Wigner theory via the infinitesimal generators P#, M#¥ |
one first looks for the Casimir (invariant) operators which take on characteristic
values in irreducible representations :

PtP,  the mass operator

WHW, the Pauli-Lubanski invariant (3.29)

The Pauli-Lubanski invariant is formed with the P.L vector Wy, = —1e,a9, MP P7

whose commutation properties follow from those of the Poincare generators M#¥
and P* and read :

[W:n Pu] =0 [Wp, Mw:] = i(gvas - gnyWA) [Wm Wv] = ifpvnAW‘P"
(3.25)
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Since P,W* = 0, there is no nontrivial third invariant. The interpretation
of Wy, and W? in terms of intrinsic angular momentum becomes visible, if we
specialize to so called positive energy representations.

Wigner classified the irreducible representations according to their transitive
P- space orbits (submanifolds of momentum space traced out by the action of
L to a given vector):

(1) P'ra=m?>0 po>0

(i) p"pu=0 pp>0

(i) pu=0

and the correponding orbits with negative energies Py < 0, as well as the
spacelike orbit p*p, < 0 . The first two exhaust the positive energy represen-
tations . In order to construct them explicitly, we look at the stability group
("little group”) of a point on the orbit . Without loss of generality we may
specialize to the stability group of a selected reference momentum, since the
stability group for other momenta are equivalent (by Lorentz-boosts) In the
case (i) we choose pg = (m, §) which yields the SO(3) resp.its covering SU(2) as
the quantum theoretically relevant little group. The little group of the the light-
like reference vector which is chosen to be turns out to be the euclidean group
E(2) in two dimensions. Only the rotation around the 3-axis is geometrically
obvious , the interpretation of the two euclidean ”translations” is somewhat hid-
den and will be presented later. Let us now look in detail at the massive case
(). We start with a 2s+1 dimensional representation of the little group. This
irreducible representation induces a unitary irreducible positive energy repre-
sentation of the Poincaré group P as follows.We first chose the momentum in
rest pr = (m,0) as the reference vector on the orbit p? > 0,po > 0. The action
on (improper, like plane waves) reference basis vectors is:

P*|pr, s3;7) = pk |pR, 83;7) ,
WO IPR, 83, 7) =0 ) (326)
Wi |pr, 33;7) = BeruoM*™ lppg, s3;7)

The last relation connects the spatial components of W with the Wigner spin
Le. with the angular momentum in the rest frame:

Wi PR, s3;7) = %"fkijMij Ipr, 83;7) = mJy g, s3; ) (3.27)

Since an invariant operator can be evaluated on any vector, we have W? =
—m?J%and therefore in an irreducible representation: W? = —m?s(s + 1). In
this approach irreducibility Jjust means the absence of an additional degenery
label say v (such labels, which go beyond spacetime caracteristics as momentum
and spin, are related to internal symmetries and called charges.). One now uses
a distinguished family of Lorentz-transformations which link pr with a general
point p on the p? = m? orbit. One chooses the family of rotational free Lorentz-
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transformations (” boosts”) to relate the p-eigenstates :

0 -
P, s3) = U(L(p)) Ipr,ss),  L(p) = L ( ;ﬂ’wu :fri% ) = A(E, x)

m
(3.28)
= 0
. ~_ P b4
with: €= = chy = = 3.29
Z A (3:29)

We now are able to describe the [m+, s] Wigner representation in global terms
as follows. The one- particle Hilbertspace is:

H[(,:.),.] = {/;@(ﬁ, 83) |p, s3) % I/E,J’lz % < 00} (3.30)

U(A)lp, s3) = U(L(p))U(R(A, p))lpr,ss)  with R(A,p) = L‘I(Ap)A(Ls(%)l)

and U(R(A,p))lpn,s3) = 3 ,p,,, 53)D,:, (R(A,p)) we obtain: (3.32)

U(A)lp, s3) = Z,; ,Ap, 83) D,; +s(R(A,p)) and for translations :
U(a) Ip, s3) = e'72 |p, s5)

The sucsessive transformations by a boost A and inverse boost on the trans-
formed momentum yields a transformation R(A,p) which leaves PR invariant
and therefore is called the Wigner rotation. The appearance of p-dependent

(3.33)

minded transition to X-space covariant localizable functions via fouriertransfor-
mation. As well known, one can rewrite the transformations from the basis
vectors in Hf,ln) 5] to the wave functions on which one finds the contragredient

action :

(V) G = X b, (RA A priA-15, (3.34)

’
H

quantum number with respect to this direction )\ wedefine :

P, ) =3 [p,53) D1, (R, 5) with Ryp = Rot(p,6) : (3.35)

being the ”minimal” rotation which changes the z-direction into 77 = iea
g g 5

rotation around the y-axis latitude 6 followed by a p-rotation around the z-axis,
In the helicity basis the Wigner rotation is modified -

R(A,p) = R;:'A‘,R(A,p)R,_, leaves p = (v/p? ¥+ m?,0, 0,[p]) invariant.
(3.36)
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The evaluation of Wy on the helicity reference state gives:

i5 ] )
E L hB,a) = A5 )

rE
(3.37)
The column vectors of DUX(R, ;) furnish a complete set of eigenstates of the
helicity operator h,e.g. for s=] we have.

wt= DRt xt= (0 )(9) s
+

w+ wa -
o001~ (2 31 e

Wolp,A) = J-51p,A) = [ A]5,A) or with & =

(3.38)

The advantage of the helicity basis is the_;t one may take the limit m — 0.As
expected,the helicity rotation matrix D(R) approaches a diagonal limit e.g.for
1
8=§ :
. . et de(Ap) 0
limm—o D(})(R) = ( 0 eibethe) ) ,

e =\ [k (W (Ap) Ja(A)] w (p)

In the massless limit, the (2s+1)- component representation decomposes into
25+1 one-component representations. A direct approach ala Wigner to the m =
0 case would start with the representation theory of the stability group of a light-
like vector. In this situation there is no such natural choice as before. Chosing
a light-like vector in the z-direction Pr = (1,0,0,1) oneobtains the following
matrix realization of the 3-parametric euclidean group E(2) in 2 dimensions :

(3.39)

1+30 a B -1p 10 0 0
a 1 0 -a 0 cosf sinf ¢
G(e,p) = B 01 -8 » R(6) = 0 —sinfd cosf 0
3p a B 1- i 0 0 0 1
(3.40)

The first matrixis a Lorentz-transformation which leaves pp invariant and trans.
forms the time axis into Gp = (1+ 30,08, 30), PP =a?+p2. Any other trans-
formation having this property can only deviate from G(a, B) by a transforma-
tion which leaves the two vectors Pr and the time axis invariant i.e.a x-y rotation
R(6). Therefore they generate the stability group which is easily checked to be
isomorphic to E(2), the euclidean translations corresponding to G(a, 8). To be
more precise, since the euclidean group has to be considered as a subgroup of
the covering the Poincaré group, only the two fold covering E(2) is relevant.
The unitary representation theory of such a noncompact group is somewhat
more complicated than that of SU(2). But it is obvious that the representaton
fall into two classes; the neutrino- photon class with U(G(a, B)) = 1i.e. trivial
representation of the euclidean translations, and the remaining " continous spin”
representations. The difference also shows up in the spectrum of the operator
W2. Wheras in the first case W2 = 0 (in fact W# = hP#), the value of W?2 in
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the second case can be any negative number which is responsible for the name
.These representations of E(2) are infinite dimensional. They are usually dis-
carded as a result of the apparent absence of such particles in nature. We will
later on pay some attention to these representations since a theoretician should
use theoretical arguments. It is also inleresting to note that inventions like e.g.
supersymmelry, which are certainly not as intimately related 1o the principles
of QFT as the Wigner theory, are often not dismissed in this easy way.

It is comforting to know that the [m, 5] representations admit an extension
of the Poicaré group which includes the reflections, without enlarging the rep-
resentation space. One obtains the well-known formulas for the parity P and
the time reversal T:

Plpos) =&plpo~Pes)  Tlpss)=r 3D, o) [po, - 5.63) (3.41)

Here the £&’s are undetermined phase factors.This result follows by first writing
down the action of P and T on the reference vectors [PR, 53) (the antiunitarity of
T brings in the spin-flip matrix D(ic3)) .The rest follows from the commutation
relation of the reflections with the boost :

R\L(p)R3' = L(po,—§), Rr=P, T or PT (3.42)
The corresponding operator relation may contain phase factors D, i.e.
RAU(AYR;'=DA(A)U(RrARSY) (3.43)

These phase factors must form a representation of the Lorentz group. But since
there are no 1-dimensional representations and hence we have D(A) = 1. The
above phases can be fixed. For unitary reflections we can achieve R? = 1,
whereas for antiunitaries R2 = 1. In the above special case we find:

T2=(-1)* (3.44)

The formulae for the [0, 5] representations are different as a result of the differnt
Pr and its stability group which contain the ad hoc z-direction :

Plos) = pet™ Ip,~f,—s)  Tlp,e) =re™ Ip,—fs)  (3.45)

The +sign depends on the sign of Py (see Weinberg), and this phase factor is only
relevant if the states of opposite helicity are not separeted by a superselection
rule.

The original motivation of Wigner was to classify relativistic wave equations
up to physical equivalence. Disregarding the continous spin class, the classifica-
tion of wave equations associated with finite energy epresentations is as follows.
We first present the three special cases s=0,§-, 1m>0

s=0

The Fourier transformation leads to covariant x-space wave function :
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@)= [ UnTE W W@ = v (o4

The x-space function is a positive frequency solution of the Klein-Gordon
equation:
(8#8, + mY) 9 (z) =0 (3.47)

1

8=z
Here one has to convert the Wigner representation into a covariant one.
This is achieve by:

Bulp) i= Ty aans (LA 00) with allp) = vPPT, o

a positive matrix (in the operator sense), in short:$ = o(L(p))y

As the notation suggests, ¢ transforms like a (undotted) spinor, a fact which
follows by transforming the ¢ with the Wigner transformation and using its
representation in terms of boosts :

«(L(p))e (R(A, L~'p)) = a(L(p))a (L~} (p ) a(A)a (L(A~'p))
= a(A)a(L(A~1p)) (3.49)
ie. (U(A)@) (P) = a(A)B(A~1p)

For later purpose it is helpful to rewrite the action of a(L(p)) on ¥ in terms of
the column vectors of the boost matrix:

®(p) = ) u(p,s3)b(p,53) s Ualp,83) = g 0y (L(p)) (3.50)

Both a(L(p)) and u have the intertwining property between the Wigner and the
covariant representation :

a(L(p))D()(R(A, L~1p)) = DI} )(A)a(L(A~1p) (3.51)

A similar intertwining relation is valid between the conjugate complex of
the Wigner representation D* and the covariant D. In this case the intertwining
matrix is a(L~!(p)) and its columns are called v-spinors.

Fourier transformation gives the x-space wave function:

¥(z) = [3(p)e P LE | (U(A)B)(2) = a(A) B(A12),

(040, + m?) ®(z) = 0 (3.52)

In order to make contact with the Dirac theory one defines another spinor

X0) = —p'5,8(5) = a(L - p)i(p) (353)
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As indicated in the notation, ¥ transforms as an upper dotted spinor i.e.with
a matrix a(A~!)!. This is a result of the relation:

P'oua(d) = a(A~)p*s, (3.54)

Defining a 4-component Dirac spinor, we immediatly read off its properties :

@(p):ﬁ( 3() )' with (p*y, - m) ¥ =0 and 7,,:(0_2‘ ‘B“)

X (p)
(3.55)
The first two components of the Dirac equation are identical to the definition
of X' in terms of ® and the remaining equation is the Klein Gordon identity
ford : . . _
P'ou® =my, p*o,(p"5,)d = m?d (3.56)
Rewriting the the inner product in terms of ¥ we obtain:

(¥2,9)) = %/W;W,% = -2-1;/\1170\11% with ¥ := ¥*9, the Dirac adjoint
(3.57)

Since the gamma matrices transform as a 4-vector, the Dirac formalism permits

to form tensors. In x-space we have:

¥(z) = [e=P* U (p)$2 , (i7,0% — m) ¥(z) =0,

W(-"3)‘1’(3’) = scalar, W(z)-y”\ll(z) = vector elc. (3.58)

There are alltogether 16 independent tensorial densities which one can form in
this way from products of 1's.

Dirac’s inner product is conveniently expressed in terms of the conserved
current :

In=Tr, ¥, 85,20, (@)= [iude=2muyvy)  (359)

The 4-component description allows a local matrix realization of the parity
symmetry:

(P¥) (2) = 70%(20,~2), Y0175 = -7, (3.60)

It is helpful to define a fifth y-matrix as the product of all four: 4 := Yo71727-

This matrix is block- diagonal and behaves like a pseudoscalar under parity.

Therefore densities involving 75 pseudo-scalars, -vectors ete. Finally we mention
the u- and v-intertwiners:

u(p, s3) = S(L(p))u(pr,53), wu(pr,x1)=
(3.61)

O st O e
—_0 O

_ o, 0
saen = (VR o
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v(p,83) = Cu*(p,s3), C = 17, (3.62)

It is easy to check that u and v intertwine the s=% wigner representations D(é)(R)

resp. D(§)°(R) with D[4.9] @ D4 which is implemented by the matrices S(A)
. The so-defined v fulfills :

(—p"'y” -m)v=0; Tu= 2m, v=-2m, Gv=0 (3.63)

It is an interesting historical side remark that Dirac found his equation in
a more formalistic way. In order to overcome what he considered as a serious
shortcoming of the scalar Klein Gordon equation, Dirac searched for a first order
matrix differential operator which is a kind of square root of the K.G. operator,
ie (8%, —m) (=i8¥7, —m) = 848, + m?. The nessessary and sufficient
condition are the Clifford algebra conditions:

{7,4: 7u} = 2gpu (3.64)

There is only one finite-dimensional irreducible representation, it has dimension
equal to 4 (the Clifford algebra for a 2n-dim. space has a 2"-dim irr.representation).
Our group-theoretical approach has provided us with the so called chiral rep-
resentation in which v is diagonal and which for m— 0 decomposes naturally
into the two Weyl equations:

P’e,8 =0, plo,x =0 (3.65)

There are many equivalent representations which are useful for other purposes.
We will mention two of them. There is the representation used first by Dirac:

w=(o % )m=( 2, ©) (3.66)

This representation is useful in calculations involving the nonrelativistic limit
as in the hydrogen-problem. On the other hand for the field theoretec application
to selfconjugate s=% particles and fields the following Majorana representation
is useful (with purely real iy, i.e.a real Dirac operator).

- 0 (-] — ida 0
Yo = o 0 )2 M= 0 —ios J°

=( 0 -0 _ [ —io: 0
T2 = a3 0 y V3= 0 l'0'1

s=1 In this case there are several low dimensional covariant intertwining
possibilities:

(3.67)

D19

DV(R) — ! ploal 3.68
(R) { o (3.68)

the first two have three components and the last is the 4-component vector
description which, if restricted to the rotation group decomposes as follows:

pl¥3)(r) = pi) Ry DO)(R) (3.69)
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For an explicit description we apply the boost to the three spatial coordinate
vectors e), ey, €3 :

eu(p, i) := Li(p)es(0,i) &(0,5) := ¢ (3.70)

Remembering the definition of the Wigner rotation, the transformation law is
(surpressing the vector indices):

Aei(p) = L(AP)R(A, p)ei = 3" L(Ap)ey Ryy(A, p) = > e (Ap)Ryi(A, p)

(3.71)
The covariant vector like wave functions are then:

B = Do Dole 0, o) = L [ e 5, 0,050,052

(2m)}
(3.72)
As always ,they fulfill the Klein-Gordon equation but, as a result of the transver.
sality p¥e, (p, i) = 0 which ex presses the absence of the scalar component D)
they also are divergenceless:

(6%, + m?)V, =0, o* Vu=0 (3.73)
Both equations can be combined into a so called Proca-Wentzel equation:
(076, + m’) Vi =08,8V, =0 (3.79)

This covarinance of this equation incorporates the transformation properties of
the field (just like for the Dirac equation) and is the Euler-Lagrange equation
of the Proca-Wentzel Lagrangian. Although Euler-Lagrange fields exist for any
spin (e.g. for s=% the Rarita-Schwinger equations), the Wigner approach, in

preferential status to Lagrangian fields.
From the definition one reads off the completeness relation:

3
2_eulpide(p,i) = —g,, + By (3.75)

=1

A limit m— 0 does not exist i.e. there is no possibility to intertwine the
[m=0,s= 1) Wigner representation with D44 . The Maxwell description in
terms of field strength Fyy corresponds to D19 o plo.1). This restriction to-
gether with the demand that vector potentials are indispensable for desccribing
the long-range electromagnetic interaction in the context of quantum theory
(in classical physics vector potentials can be avoided) forces one to look for a
compromise slightly outside the Wigner scheme which will be presented in the
sequel.
=1 m=0
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In order to obtain a formalismsimilar to the previous case of vector mesons,one
extends the two ”polarization vectors” €; i=1,2 in x-and y-direction by two or-
thogonal light-like vectors:

et =ef tef =(1,0,0,+1) (3.76)

We choose e, as the reference vector kg from which to start the boost L(k,kg).

The latter consists of a rotation of the z-axis into the momentum direction 7 = £

(fixed uniquely by the standard prescription in terms of two Euler angles) and
a subsequent L-boost along this direction :

(é)-»k:«.;(}‘) (3.77)

The decomposition of a general Lorentz transformation A in terms of its little
group component H(A, k) :

A = L(Ak,kr)H(A, k)L~ (k,k), H(A,k) € E(2) (3.78)

the twofold covering of the euclidean group in two dimensions which, as ex-
plained before, is generated by two translations @, and one rotation 6 , where
all euclidean parameters are functions of A and k which can be computed from
the previous formula. One defines two transversal polarisation vectors:

c(k,x)=L(k,k,){ ypleatia), A=+ (3.79)

(a1 +iez), A=—

They are used as intertwiners in the attempt to define a vectorial wave function:

Au(k) = k,&(k) + 37 eulk, A)p(k, ) (3.80)
A=+

Here the logitudonal first component is not determined by the Wigner theory.
We cannot consistently set it equal to zero, since the intertwiners generate such
an additive term under the action of the E(2) translations:

Ale, B)e(kr, \) = e(kr, A) + { ;j oo noazt p=a+if
(3.81)

whereas the behaviour under x-y rotations the ¢ picks up the standard Wigner
phase factor. The polarization vectors are not invariant under the euclidean
translations in E(2), as one would have expected for a bona fide intertwiner

from the [0, s = 1] Wigner representation to the Dl4:] covariant representation.
Rather the intertwiner only has L-covariance up to additive gauge transforma-
tions i.e.up to longitudinal terms.This peculiar manifestation of the [0,s=1]
little group E(2) is the cause for the appearance of the local gauge issue in loecal
quantum physics. Unfortunatly this quantum origin remains somewhat hidden
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in the quantization approach, where it remains invisible behind the geometrical
interpretation in terms of fibre bundles,

In the covariant quantization approach, contrary to the Wigner theory the
gauge aspect becomes completely decoupled from the L-transformations. This
close relation to classical fibre bundles is only obtained at the expense of leav-
ing the realm of quantum physics by entering the world of "ghosts”. If the
reader wonders about the conceptual sense of a (quantization) formalism which
overrides the quantum physical reason d’etre for the appearance of the additive
boost gauge term, he is not alone. In fact it is our contention that this is one of
the potential points of possible fruitful contradictions between the requirements
of (classical) geometry and local quantum physics. Of course this observation
must be pursued in the presence of electromagnetic interactions. Although we
will try to sharpen this to the level of a paradoxon, time is not ripe to solve the
associated problem.

Whereas the covariantization of the canonical Wigner (m = 0,h = 1) repre-
sentation can be done in terms of covariant field strength, the requirement that
the scalar product be expressible in terms of a local tensorial formula necessi-
tates the introduction of the above vector potential A,. The Lorentz (gauge)
invariant inner product for the j,, is now only positive semidefinite on individual
A, (but positive definite on gauge classes):

(A,A') =— / j;jﬂ% = ; / I3 ;‘%’ (3.82)

As we will show later, the Jormal (i.e. the words loose their physical meaning)
local covariant formulation in Fock-space requires the already mentioned more
radical introduction of indefinite metric and the use of a special perturbative
procedure (e.g.the Gupta-Bleuler method) for the recovery of the perturbative
quantum theoretical positivity for the gauge invariant physical quantities.

As pointed out by Weinber , this gauge aspect is common to all [0,s = n]
representations for n> 1. There are no intertwiners from this Wigner repre-
sentation to DI4Alsymmetric tensors, rather the possibility of intertwining is

restricted to DI4.B] with |A—~B|=h(h the Wigner helicity). The vector po-
* tentials for s=1 and the symmetric tensor 9uv for 8=2 of the classical general
relativity can at the quantum level only be introduced at the prize of a formal
gauge principle.

The case of general [m, s] intertwiners u is a routine exercise in Clebsch-
Gordan gymnastics. One uses the intertwining relation for u:

u(p)DUX(R(A, p) = DIA-B)(A)u(A-1p) (3.83)

for the caculation of the u’s. Here we found it convenient to interprete the inter-
twiner u as a rectangular matrix with 25+1 columns and (24 + 1) (2B + Drows.
The first step consists in analyzing this equation for P = pr (Weinberg) with
the result that the u(0) is proportional to the Clebsch-Gordan coefficents:

u(0) ~ CaB(s,53;a,b) (3.84)
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The second step consists in an application of a boost:
u(p) = DI*-B)(L(p))u(0) (3.85)

For details we refer to Weinberg’s first volume.

3.3 Wigner Theory and Free Fields

We now use the Wigner representation theory in order to construct fields in
bosonic or fermionic Fock spaces. The creation operators in momentum space
should transform in the same way as the one particle states since their applica-
tion to the vacuum vector creates the the latter.

UA)a*(p,m)U*(A) = 3" a"(Ap, m’ )D& (R(A,p) (3.86)

For computational convenience we identify the Wigner rotation with its uni-
modular matrix representation:

1
R(A,p) — /= (Ap)* 0, a(A) ~pua, (3.87)

The corresponding relation for the annihilation operator contains the complex
conjugate matrix D* which is equivalent to D:

D(io3) D*(R)D(~ic3) = D(R) (3.88)

If the particles are charged, there are also operators b*(p, m) which describe
annihilation and creation of particles with the same mass and spin and hence
the same transformation property as a#*(p,m). In order to obtain covariant
operators one uses the intertwiners u and v introduced in the previous sec-
tion. Interpreting these intertwiners as p-dependent rectangular matrices of
size N x (25 + 1) with N= dimension of the representation space on which the
matices DI4-BI(A) act, we have :

D[A,B](A) u(A'lp) = u(p)D(‘)(R-l(Avp))
DIU-EYA)o(A~2p) = o(p)D()*(R-Y(A, ), v(p) = u(p) D> (ig)

3.89
Therefore we find the following covariant creation and annihilation oper(atorz
A®)(p) = 2m v(p,m)a*(p, m)
B)(p,) = 3, v(p, m)b* (p, m) 3.90
A) = 3% u(p, ma(p,m) 90
B(p) = 3\n ulp, m)b(p, m)

We have added a bracket to the * in order to indicate that the covariant creation
operator is not exactly the hermitian adjoint of the covariant annihilator, The
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Fouriertransform preserves covariance :

) = gy [ an S W) = iy [ ap)g

-) Y | -ipz 1’.2 (+) PR ipt e 4
173 (3)-—6'—);-f¢ B(p)32, vp'(z): er B*(p)52
(3.91)
obey the covariant transformation law:

U(A)¥(2)U"(A) = DIA-BY(A)~1y(Az) (3.92)

We want to construct "local” covariant fields i.e. covariant fields which (anti)commute
for spacelike distances. The physical motivation is Einstein causality for local
observables. Prominent local observables associated with charged fields are e.g.
currents. Since they are typically second or higher even degree polynomials

in the fields, the (anti)commutation of the fields is sufficient for the Einstein
causality (spacelike commutativity) of the local observables. Fields which are
themselves observables like the Maxwell field, must obey spacelike commutation
relations.

It is well known that support properties in momentum space as the restric-
tion to the forward light cone in the above formulas » Prevents support properties
of (anti)commutators in x-space. The former give rise to analytic properties of
the latter. The standard example is the Fouriertransform of a function with
support in the positive halfaxis which is the boundary value of a function an-
alytic in the upper half plane. According to the Schwartz reflection principle
such function cannot vanish in a dense real subset without vanishing identi-
cally. The above Fouriertransforms are multidimensional counterparts in which
the halfline is replaced by the forward light cone and the upper half plane by
a tube z, = z, + iy, with y in the dual cone i.e.the backward light cone. We
therefore make the following Ansatz for local fields:

¥a(@) =90(2)+¥7(2), ¥s(2) = ¥5)(2) + ¥ (e)
¥(z) = v (=) + v (2)

Complex coefficients in this linear combination bring no gain in generality since
they can be absorbed into redefinitions. The following calculations show that all
these combinations between different frequency parts are local covariant fields.
The first two combinations are only physically useful if A and B would be
(accidentally equal mass and spin) selfdual particles. If on the other hand there
is a charge superselection rule between A and B i.e. B is the antiparticle of
A then we are forced to take the % combination because otherwise we would
not be able to form local (Einstein-causal) neutral observables. In this sense
causality and the superselection principle require the existence of anticharged
particles of the same (m,s).

Returning to our notation for indicees of irreducible fite dimensional repre-
sentations for the Lorentz-group, we find the following relation between the spin
and the spacelike (anti)commutativity:

(3.93)
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Theorem 7 ( Spin-statistics for free fields) :
5@ W), =0 for (z-y2<o (3.94)

where the +sign i.e. the anticommutator is to be taken for A+B=halfinteger.
It is helpful to consider first free fields for s=0,%, 1.

s=0

With  ¢(z) = ﬁ;—f (e77< A(p) + ¢7* B* (p)) ‘%2 we obtain :

1

[¢(z)’¢(y)]t = (2‘”

I / (c—ip(z-v) + cip(s—v)) % = :'A(*)(z—y):t:‘A(‘)(z—-y)

(3.95)
Here iA(-)(¢) := iA()(—€) and the momentum space integrals may be ex-
pressed in terms of Hankel functions. One first uses the fact that iA("')({) is
analytic in the tube £ — ¢ =§—in with n € V*, the closed forward light cone
as a result of the spectrum property PE V*. This means that the euclidean
vector (£, = i£,,€) is in the analyticity region at least if §o > 0. This analytic
continuation is part of the so called Wick-rotation. In this euclidean domain one
now rewrites the integral for iA(+) in terms of an euclidean conture integral :

: 1 ipz d4
iAM)(z) = o /c ¢i? I»u# (3.96)

The conture C in the complex po—plane is the imaginary £,-axis or the new
(Wick-rotated) ¢, = o + ¢ axis. The proof of this claim follows simply by
closing the conture by an infinitely large half-circle in the upper half plane on
which the integrand vanishes sufficiently and the subsequent application of the
residuum theorem to the pole at P4 =i\/p? + m? . Since the Minkowski metric
has disappeared and there is no restriction on the Wick-rotated €4(the euclidean
representation achieved an analytic continuation to all real {,), the remaining
task is to perform a euclidean Fourier-integral with a rotational invariant ratio-
nal integrand. The d-dimensional integration in polar coordinates requires the
same amount of work as d=4.

. d -1 o0 43 - .
1 /eipfpzd P 1 _2(/7) P dp/ sin 9-29dgeiPr cos?
0

(27)? +m " T&Y) Sy P
o (3.97)
x -1
=2 f 2 1 Jy_1(prp®=1dp (3.98)

(2")‘ (rp)*-1 P’ +m?

or the Bessel functions J as well as a formula linking the Hankel function of the
first type to an integral over a Bessel function. The Hankel function H,(2)is
analytic in the cut z-plane with a cut running from —oo to zero i.e.K(z) has a
cut for 22 < 0. Specialyzing to d =4, we obtain the following representation of
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the free field two-point function as a boundary value of an analytic function:

IADE) = lim L ——Ki(mV - (€~ i + & (399)

€— 2 =
=i +7

As expected,the space-like Points are (together with the euclidean points)in
the analytic domain. The distributional boundary value prescription becomes
important only in the time-and light-like region where the transcription of the
Hankel (Kelvin K) function in terms of J- and N-functions and the subsequent
performance of the ¢ ~ lim it gives the distribution:

IAG)(g) = %‘(‘50)6(52”%58% (Jl(m\/f—’)c(fo) +iN; (m\/?)) , €20

(3.100)
The strength of singularity on the light cone (determined by the singularities
of Ky or Ny) is independent of the mass and given by the zero mass two-paint
correlation function:

iDW(E) = lim L. . 3.101
Ol (3.101)

It is even independent of the state, e.g.the two-point function in the ground
state and that in any other vector or density matrix state (e.g.a temperature
state) in Fock space have the same leading light cone behaviour. The next-to
leading behaviour (the log-term) in K, does however depend on the mass, The
fact that correlation functions have analyticity properties in space-like regions
is however very specific for the vacuum state; other states in the same "folium”
of states (explained in a later section) have only smoothness but no analytic
behaviour in their correlation functions. The dependence of the singularities
on the space-time dimension follows from the properties of the K, functions.
It is conveniently encoded into the notion of "operator dimensions”of the fields
i.e.one says e.g. that dimA=1 (in mass units) for d=3+1 and dimA=1 for
d=2+1 if the two-point function has the singularity (—¢2)~ ™4

It turns out that the correlation functions of the higher spin free fields can
all be expressed in terms of iA(+) and its zero mass limit i D(+) We again look
at the the important special cases 8=1,1 before we scetch the calculations for
the general free fields.

s=

The ansatz for the positive and negative frequency parts for the local spinor
field (in analogy to the previous scalar field) is (using the condensed notation
from the beginning of this section for A(p) and B(p)):

— 1 ~ipz ipT e dsp
)=y [ a4 v ) SE (3.102)
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For the (anti)commutators of the covariant creation and annihilation operators
one needs to know the completeness relations for the u-and v-spinors:

Zu(p1 53)'-‘(1): 33) = pu7p+m = 2mA+ ) ZU(P, 83)6(17) 83) = P“‘Tp—m =-2mA_

$ s
’ (3.103)
where Ay are projectors Ay + A_ = 1 on the + frequency subspaces in the
4-dim Dirac spinor space. With:
V(1)) = —y [eire-w) i P (3.104
(Ya(2)¥p(v)) = or)° e gﬂo(l’, s3)ips(p, 53) 5~ (3.104)
= (-idty, + m) 45 i8H )z - y) (3.105)
) 1 Pe-y) N 5 dp
(pW¥a(2)) = —3 [ "D 550, 53)0a(p, 53) T2 (3.106)
(2x) ™ 2w
=~ (i)v, +m), 5 1AMy —z) (3.107)

we obtain with ¢* =gory

{#F@v*m} =0 @-wP<o (v, Fw) = (~i027, +m) iA(z—y)

(3.108)
whereas the commutator is nonvanishing for spacelike distances. We get the first
glimpse at the spin-statistics connection.

A more general complex linear combination of the two A and B* pieces
would not lead to a more general situation since the constants can be absorbed
into a redefinition of these operators (see Weinberg’s book) and the same com-
ment applies to the construction of the general local fields for arbitrary spin.
The present construction of local ¥'s also sheds some light on the physical inter-
pretation of the v-spinors in connection with the charge conjugation syminetry.
The latter transformation is defined in Fock-space by :

CA(p,83)C" = B(p, 3) (3.109)

Its action on the local fields is local and the transformation law involves a matrix
C in Dirac space:
¥C = CyC* = Cy* (3.110)

In the helicity representation used here, the matrixis C = %3 , Whereas in the
Majorana representation one finds C=1. This matrix transforms the u-spinors
into the v’s and vice versa and therefore is the image of D(*)(io;) under the
intertwining map into the Dirac spinor space. It is an additional fringe benefit
that via the Dirac doubling all global Fock-space symmetries as P, T and C have
local representations on Dirac spinors. Furthermore the Dirac description goes
into the Weyl equation in the zero mass limit.
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s=1,m# 0
The massive (vector meson) case is straightforward. The local field is :

Vu(z) = ﬁ / 'Ee,.(p, i) (e™*%a(p, i) + €< b* (p, i) ‘;%’f (3.111)

Its 2-point function results from the completeness relation of the polarization
vectors :

(Va(z)Vo(v)) = (—yw - 0,‘:3”) iA)(z — y) (3.112)

It is obvious that only the commutator can vanish for spacelike distances. Dif-
ferent from the previous case,vector meson fields does not permit a zero mass
limit. Therefore we should not be surprized to meet some pecularities in the
vectorial description of photons.

s=1m=0

For a formally local! description in terms of vector fields, the longitudinal
Part which the stability group transformation behaviour of wave functions de-
mands (see previous section) is not enough; one also needs ”scalar photons”:

A (k) = M (R)ey (k) + el (ke (k) + D eul(k, Na(k, 2) (3.113)
A=%
= 1 —~iks 4 k iks fe ﬂ
A(2) T / (e Au(k) + A,,(k))2 i (3.114)

Here the e(*) are obtained by boosting the light-like vectors (1,0,0,41) i.e.e;
is the old longitudinal part. We obtain the covariant two point function :

— . 3
(u(z) 40 @) = 25 [ cmireos 2“,: (3.115)

from the completeness relation of the four vectors:
. 1 - -
2 ulb, NS (4,2) + 5 (DRI E) + o (D)) = —g,  (3.116)
A==

This is the case iff the a#'s behave in the standard way but the ¢’s have a
nondiogonal inner product which corresponds to a genuine indefinite (not just
semnidefinite) metric :

(ca(k)e (k) = 2 ,El §(E ~ ) (3.117)

The a’s mix with the ¢’s under L-transformations viz.the comments on gauge
transformations in the wave function discussion of the Jast section. But whereas
1Local here means pointlike, i.e. fields which can be smeared with unrestricted Schwarty

test functions. Without the unphysical components, we would have to restrict vector-valued
test functions f,, by demanding transversality.
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in the wave function treatment of photons in terms of vectors only an extension
by scalar ”photons” was necessary, in our present Fock space description of for-
mally local point like vector potentials we need in addition the negative metric
scalar contribution. Only in the weak sense of matrix elements the condition of
absence of scalar "photons”can be enforced in terms of a local condition:

(¥10"Aulp) =0 (3.118)

The alternative is to use a nonlocal condition in terms of the annihilation part
of A: auf,” l¢) = 0 In the interacting case one then must show that 0% A,
fulfills the wave equation.

As we mentioned already in the previous section, all these problems are
absent if we describe the photons in terms of field strength instead of vector
potentials. In that case we only deal with physical photons:

- 1 ~ikz a
Fu(z) = o / hzt (e 5w, (k, Na(k, ) + ha)),  (3.119)
uu(k,A) = ikye, — {p o v} (3.120)

But in order to formulate interacting QED with its specific long range inter-
action? throgh the local coupling of free fields, the vector potential has been
indispensible. This fact is the origin for certain complications in local gauge
theories. In the standard indefinite metric method, the descend from the un-
physical vectorial description defined by a free field with the two-point function
[?] to the physical photons in the sense of Wigner is done with the help of the
Gupta-Bleuler method. By the above transversality constraint one eliminates
the scalar ¢ ”photons”. This step leads from the indefinite metric ”Fock”-space
to a positive semidefinite subspace 7 which still contains the zero norm longitu-
dinal "photons”. The elimination of the latter can only be accomplished through
descend to a factor space (defined by equivalence classes):

R
HO

The Gupta-Bleuler method (as well as its BRST generalization) has a certain
geometrical elegance in renormalized perturbation theory but its conceptual
physical aspects leave a lot to be desired. Of course the mathematical trou-
bles start only with interations. I do not know any controllable mathematics
for indefinite metric algebras which could be used for structural investigations
i.e. spindstatistics, localization etc. The Gupta-Bleuler method or the BRST
formalism is no match or substitute for the powerful theory of von Neumann
algebras. The alternative namely to stay in physical space and introduce non-
local potentials has not been seriously considered because it requires a more
profound and difficult conceptional investment. In the net approach this prob-
lem seems to be related to finding a natural algebraic analogon of semi-infinite

Hohys. = RO = nullspace of zero norm vectors (3.121)

3j.e. the quantum counterpart of the minimal external electromagnetic coupling.
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"axial gauges” 7?7. More remarks on such ideas will appear in a later section
3.5.

The higher spin cases are treated analogously.We only give a brief scetch,
the details may be found in Weinberg’s book. Using the completeness relations
of the general [m, s intertwiners one finds a two point function of the form:

(Yas(2)ba (V) = Pas,an (i10)ia¥)(z — ) (3.122)

Here P is a covariant polynomial in the derivatives. Again one finds the possi-
bility of a matrix realization of P;T and C if one uses the ”doubling” DI4.B] g
DIB.A] The requirement of locality leads to the spin-statistics connection which
generalizes the previous special observations.

The zero mass case leads to a severe restriction between A, B and the helicity
h=s namely |A — B|=h. For h=2 the analogy with classical general relativity
and the long range nature ot the graviton interaction again demands to side
step this rule by using a gauge theoretic description in terms of a symmetric
tensor g,,. in analogy (but more complicated) with the vector potential for
h=1.The massive s=0, s=% and s=1 fields as well as their massless helicity
counterparts are "Eulerian” i.e. the transformation property is a consequence
of the matrix form of the differential operator which is the 4 x 4 Dirac or
the 4 x 4 s=1 Proca-Wentzel operator. Also for higher spins there are such
Eulerian operators e.g the Rarita-Schwinger operator for s:%. But most of the
”covariantizations of the Wigner representations are not Eulerian and can not
be used for Lagrangians and canonical quantization procedures (in particular
all minimal i.e. 2s+1 component descriptions for s> 0). But this does not make
them less physical ore useful.

Finally we make the following important observation. Despite the fact that
the Wigner theory gives a unique description for each mass and spin, we com-
Pletely loose this uniqueness on the level of local fields. We obtain a countable
covariant local family of fields which all share the same Fock-space operators
but differ in their u and v intertwiners. This is true for any spin; even in case of
s=0 we may use vectors or tensors which of course turn out to be Just derivatives
of the standard scalar field. In the next section we will show that these different
fields generate the same local algebras. With respect to those algebras they be-
have like different coordinates in geometry. The intrinsic physical information
is in the "net” of local algebras. As in geometry it is of course not wrong to use
coordinates.

3.4 The Equivalence Class of a Free Field

We have seen that the Wigner representation theory together with the locality
principle leads to a multitude of (m,s) fields. Actually the set of physically
equivalent desccriptions is even much larger. Let us understand this first in the
case of a neutral scalar field:

1 / (e="*%a(p) + ¢*%a* (p)) % = A)z) + A*(z)  (3.123)

A(z) = 3
®)= 7
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Such operator-valued distributions cannot be pointwise multiplied as classical
functions can. In order to find a substitute for classical pointwise multiplication,
one studies first the matrix elements of products of A at different points e.g.

(Q1A(21)A(z2).... A(za)| D) (3.124)

Clearly the terms which become singular for coalescent points (more generally
if one of the difference vectors z; — z; becomes light like) results from ” Wick-
contractions” :

AP (2) A)(2;) = iAF) (2, - 2;) + A (2,)40)(z,) (3.125)

iA+) which are generated by commuting the annihilation components A(-)
through the A(+Vs to the right vacuum. The resulting terms in which the
annihilators are on the right of creators i.e. operator products of the form:

AN (2. A (g, JAC)(z4,,,)... AN (2, ) (3.126)

have vanishing vacuum expectation values and finite matrix elements between
finite (but arbitrarily large) particle number vectors in Fockspace. In those
”Wick-ordered” products the limit z; — z of colliding points can be taken
without peril. Therefore one defines local functions of the local field A(x) in the
sense of Wick-ordering as:

: A%(z) := E A("')(z)....A(+)(z)A(')(z)....A(')(z) (3.127)

k—partitions

i.e. the terms which result by simply ignoring the contractions. These are the
equal point limits of ”split-point” Wick-products: )

AR AZa) = YT AW (2 AW (o, YA 24, ). AN (2;,)
k—partitions
(3.128)
The usefulness of the Wick-ordering results from the fact that despite their
nonlocal origin in terms of frequency separation, the resulting operators are
local resp. multilocal. This is because the above definition is equivalent to the
following obviously local inductive definition:

(3]
A(z1)....A(20) =: A(z,)....A(zn) : + Z E :A(zl)..\..’._,.\..;. A(zn) -

m=1m contr.

(3.129)
where the lower brackets represent the Wick- ”contracted” pairs and the sum
goes over all m-pairings and finally over all m. Clearly this formula provides
an inductive definition of :....: ordering (the right hand sum only involves or-
dered products with a lower number of operators). The proof that the previous
frequency-ordering definition leads to this inductive formula is elementary and
left to the reader. The multi-localized (at 2y....z,) product obviously approaches
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the one-fold localized Wick power of the free field. Here the word ”loca]” has a
classical as well as a quantum meaning. Classically it means that one only has
to know the A’s around the spacetime point x in order to compute : A%(z) ..
whereas the operational quantum meaning is that this pointlike composite com-
mutes with all the A’s whose localization is spacelike with respect to x (locality
in the sense of Einstein causality, which in local Quantum Theory means simul-
taneous measurability). In order to get a feeling for the properties of these local
composites, let us look at their two point functions.

Here the calculation of spectral representations for Wick-powers is missing.

The family of pointlike Wick-ordered composites is bigger than the above
illustrations; also derivatives as : 04 A(2)3,A(z) : are included. It is very grati-
fying that also the inverse is true: the set of fields in Fockspace which commute
for spacelike distances with the free field A(x):

BC(A) = {B [[B(=), A =0 for (z-y)*< o} (3.130)

is called the Borchers equivalence class BC(A) and consists precisely if the local
composites. The equivalence class aspects will be discussed in a later chapter in
the context of interacting fields. At the end of this section we will give a proof
of this theorem. It is important (e.g. for the derivation of the Feynman rules)
to be able to Wick-order products of local composites of free fields. Let us look
at examples:

: AY(z) = AY(y) = Al(2)AY(y) : +4%A0) (2 - ) 1 A3(z)A3(y) : +
+23 (IAW)(z - ) : A2(2)A%(y) : + (a1 (1A)(z - ))*: 43%(2)4%y) : +
+(4)? (1AW - y))*

FP(2)7,8(2) = By}, B(y) = ¥(2)1,8(2)%(y)r, v(y) :
+: 9(2)7,iSH) (2 - )y, ¥(y) :
+Tr (iSO y — 2)v,, : w(2)9(y) 1, } + Tr {iS)(y - 2)7,i54)(z - s(l)'r..} )
3.132
For a good understanding of the Wick-formalism of local functions a knowledge
of the following statements is indispensible.

Statement 1: Powers of the two-point functions are well-defined distriby-
tions (singular functions) e.g. F(z) = A () is again a distribution with
momentum space support properties. This is a multidimensional generalization
of the well-known statement that singular functions F in one variable, whose
Fouriertransform F have support on the half line, can be freely multiplied. The
reason is that (as a result of the support property) F is the boundary value
of on the real axis of an analytic function holomorphic in the upper half plane
and therefore this Property is inherited by F=. Equivalently the convolutions
of F only extend over over a compact region. In the multidimensional version
the half lines are to be replaced by conic regions. In standard QFT momentum
space correlation functions are well behaved functions, which at most have sin-
gularities at small momenta (infrared problems). Their asymptotic increase is
responsible for the x-space singularities on the light cone.

(3.131)
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Statement 2:The Noether conservation laws of classical field theory also
hold for the corresponding Wick-orderd objects in the free field Borchers class.
We provide two typical illustrations:

ju(z) =0, ju(z)=: 17)(:)7“1/;(1:) ! ¢ = Dirac-field
Ty (2) = 0, T, (2) = 9, A(z)d, A(z) : K (0 A(z)dc A(z) - m2A4%(z)):
(3.133)
As in the classical case the covariant divergence hits both of the fields and lead
to operations on the u-and v-intertwiners which thanks to certain identitjes (e.g.

the desired conservation law. In Do stage of the argument does one need the
canonical formalism or the Euler-Lagrange form of equation of motions, on only
Deeds identities on intertwiners u and v which are an immediate consequence of
their definition.

Statement 3: In the relation between local *currents” and global "charges®:

Q=" / Ezjo(z)y”, P, =" / 2T o(z)” (3.134)

the phenomenon of vacuum polarization enforces a nonclassic subtlety which is
explained in the following.

A composite of a free field is more singular than the free field. In par-
ticular for d>2+1 it does not fit into the framework of canonical equal time
(anti)commutation relation, but rather has to be smeared with test functions
in d dimensions (in our case =3+1). This can already be seen by using the
previously calculated two-point function of the composite current operator i,
e.g.

(u(2)jv(v)) = / (96 0? ~ 8,8, )iaAH)(z — o, x?)p(r?)dx? (3.135)

Since [ p(x?)dx? = 0o, the smearing with test functions supported on a spacelike
hypersurface i.e. of the form f(z) = f(é’)&(t) does not give a finite answer, one
rather needs smoothness in time as well. As in the classical case, one tries to
obtain the global charge Q = [ (a*(p)a(p) - b* (p)b(p))% as a limit of "partial”
charges referring to a finite region:

Qeh):= Lio()o(@ht)ds, supp g C V45V, supp b C (] < o)
9=1in3volumV, fhdt=1
(3.136)
In words: g is a characteristic function of the 3-dim. volum region which has
been smoothened outside, whereas h(t) is a smoothened é-function. It is easy
to see that:

[Q(g,h),B] = [Q, B], forloc. Bin compl.V (3.137)

Le. for operators B localized in the causal completion of V (smearing functions
with support in compl.V) the commutator is already independent of g,h (and
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identical to the global charge). However on the vacuum vector the partial
charge has such strong vacuum fluctuations (resulting from the presence of a® —
b* terms) that:

Jim 1QGe, ) = co, but Jim (v,Q(s,h)) = 0 (3.138)

Here 4 is from the dense domain on which the local functions of the free field are
defined i.e. the polynomial domain. The vacuum fluctuations were discovered
in the early days of QFT by Heisenberg and their physical significance was stud-
ied by Weisskopf. One such manifestation is a contribution to the Lamb-shift
(see next chapter). This quantum phenomenon has no counterpart in quantum
mechanics and it has far going structural consequences, e.g. it makes the local
algebras of QFT essentially different from the quantum mechanical Heisenberg-
Wey] algebras (the former admit no pure state pure states or minimal projectors.

Here the calculation of the Jree Borchers class based on the mulli-variable
Cauchy propagation problem is still missing.

3.5 A First Look at Modular Localization

Recently it turned out that the Wigner representation theory contains informa-
tion on localization which allows a direct access to the local algebras avoiding
the use uf nonunique field coordinates 3. The starting point is the abelian
subgroup of Lorentz boosts belonging to a wedge, say the standard t-x wedge
z > |t|. The Wigner theory also Provides an anti-unitary operator which reflects
the standard wedge into its opposite wedge. In the simplest case of irreducible
representation for scalar neutral particles, this reflection j differs from the TCP
operation by a x-rotation around the x-axis:

(e¢)(p) = ¢(p) (j¢)(p) = ¢(p0:p1: —P2, '-p3)) (3.139)

Define now an unbounded positive closed operator § by functional calculus from
the selfadjoint standard (x-t )boost generator K:

b=eK  §j= 7671, since e Kxj = jeiKx (3.140)

With the help of the Tomita-like unbounded involutive operator s := jﬁ we
define a closed ”real” subspace Hg of the Wigner representation space H:

Hr={e(P) € H |sp=p)}, s=js} (3.141)

The + eigenspaces (since s is antilinear, only real lineat combinations are pos-
sible) of the closed operator s can easily be shown to form a dense set in H and
the above definition is also the unique polar decomposition of 5. To be more
specific, s acts as:

s: h+ik—h—ik, hkeHp (3.142)

3B.Schroer "Notes on the Wigner Representation Theory of the Poincaré Group, Localiza-
tion and Statistics”.
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A more explicite description of Hy is obtained by introducing the wedge-affiliated
"rapidity” 6 :

p = m(qcoshd,gsinh6, ny,n3), ¢ = V14 n3+nd (3.143)

The domain of the operator A} in terms of rapidity-dependent wave functions
consists of boundary values of analytic functions which are holomorphic in the
6-strip 0 < < ix and Hp is the closed real space of wave functions fulfilling
the boundary condition:

(0 + ix) = p(6) (3.144)

where we surpressed the dependence on n;. Let us call this the ”s—reality prop-
erty”. It is somewhat surprizing that this concept did not seem to have appeared
in mathematical physics, e.g. it is absent in the various books including those
by Reed and Simon. For massive spin s representations the s— reality property
reads:

D) (ig2)limy i D)(R(p, A" (x))p(8  7) = 0(9) (3.145)

If particles are not selfconjugate, the 2s+1 component ¢ must be doubled and
the action of J on the direct sum involves a flip-operation on the two Hilbert
spaces. For zero mass, the rapidity parametrization for the standard wedge is
defined by & = A**(6)ko with ko = (1,7) and the Wigner rotation R(k,A) is to
be replaced by the helicity representation in terms of the Wigner phase factor
of the euclidean group E(2).

Looking at the geometric interpretation of this construction, one conjectures
that the subspace Hp of these momentum space wave functions has something
to do with localization in the standard wedge (or in the opposite wedge in case
of the -subspace). This idea can be confirmed by studying coherence properties
of the net of real wedge spaces generated via Poincaré transformations g on the
standard wedge :

Hr(W) : =U(g9)Hr, W =gW*'e (3.146)
HR = Ha(W'“)

For localization in the quantum sense, one needs a a concept of ”outside-
ness”. In Schrodinger theory as well as in the relativistc work of Newton and
Wigner, one uses the orthogonality in wave function space: one calls f localized
in a 3-dim. region R if a spatial translation which carries R into its geomet-
ric complement transforms the wave function into the orthogonal complement.
For relativistic wave functions this idea unfortunately (much to the dismay of
Wigner) cannot be extended from equal time localizaton to spacelike localiza-
tion (apart from localization in an ”effective” sense i.e. modulo Compton tails).
For our purposes we need a precise localization in the following symplectic sense:

Hg = {n| Im(k',h) =0}, Hp(W) = U(9)Hp (3.147)
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It then follows that:
Hp(W) = Hr(W)’, and Hp(W) = Hp(W'), W'= worr (3.148)
where the last nontrivial equality is a consequence of:
S =Sw —  jw =gy, 63t =6y, (3.149)

which in turn follows from the commutation relation of the standard (x-t) re-
flection j (which sends the wedge W into W°PP) and the Lorentz-boost & .
Again one ends up with real Hilbert spaces which are standard and factorial in
the sense of 2.6.

Thus we arrive at a covariant net of wedge spaces and now we want to show
that this net is isotonous i.e. that if a wedge is contained in another one, the
same is true for the associated spaces. But in such a situation the second wedge
is obtained from the first by two lightlike translations which carry it inside.so we
have to show isotony for lightlike translations. For such translations we have:

swCsw, W=gA)WCW, 1>0 (3.150)

where g(Al) is a translation along the lightlike vector I. In order to show that
Sw extends sy, we rewrite this relation as :

U)jw 3 UM ¢ jwéd, (3.151)

For the bounded antilinear operator jw this gives the covariance law, whereas
for unbounded § the required relation results from the commutation relation of
the lightlike translation with the standard Lorentz-boost U(x):

U (x) = U(x)U(eXAl) (3.152)

One can show that the isotony is quite generally equivalent to the positivity of
the energy.

Wedge localization is too weak for a physical interpretation of the theory
" (e.g. for the derivation of statistics and scattering theory). The localization
underlying standard (e.g. Lagrangian) theory is compact localization which in
our context means (K stands for double cone):

Hr(K)= () Ha(W) (3.153)
WOK

HR(K) +iHR(K) densein H, Ha(K)NiHp(R) = {0} (3.154)
Hp(K) 0 Hy(K) = {0}

This property which previously was called standard and factorial 2.6 can be
shown for all Wigner (m, 8) representations and even for m = 0 (with the
exception of the continuous spin representations which do not permit such a
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localization, since in this case the R(K) spaces turn out to be trivial). As a
consequence the spaces fulfill the following duality property:

Hp(W) = HR(W'), Hp(K)= Hp(K') (3.155)

In case of (m, 5)-representations one can prove this even for disconnected and
non simply connected regions in Minkowski-space. This is not so for the zero
mass representations. For example in the case of photons (m = 0,h = 1) one
finds a violation for the toroidal ”corona” region T . Let T be the causal
completion of a spatial torus which we call the ”corona”. The size of the corona
is chosen in such a way that the causal complement 7’ of T consists of a double
cone of diameter r and a "double cone at infinity”: ] > R + |t causally
separated from the former by the T with width: R — r 2 0 region in between .
Then one obtains the following proper corona- inclusion:

HR(T) cHR(T'Y (3.156)
~A(T) C A(T'Y

where HR(.) denotes the Previously defined symplectic complement and the A’s
denote the corresponding von N eumann-algebras as obtained from the & R(.) by
the Wey! construction.

This " classical” obstruction, formally related to the appearance of ¢ in the
E-H canonical commutation relation, can be physically understood in terms of
a (suitably regularized) magnetic flux through a surface which stretches from
a circle inside the torus into the space-like separated region inside. Such a
flux does not change if one passes through another surface subtended from
the same circle. Hence such a flux, also not being localizable within the 4-
dim toroidal region nevertheless belongs to the symplectic complement of the
spacelike complement of the corona consisting of two spacelike seperated pieces.
This entails the above violation of Haag duality for the corresponding algebras.

A more systematic approach in the spirit of Wigner consists in rewriting the
inner product in terms of a would be vectorial object. This time, unlike the
massive case, there are no covariant intertwiners which lead to a nondegenerate
inner product which is expressible in terms of a momentum space integral over
an invariant momentum space integrand. The best one can do is to introduce
a partially covariant inner product (invariant after integration) associated (by
polarization) to the norm:

/ (k, +)|? -‘%" / Z,(k,n,d:)A“(k,n,:h)%, w= |E| (3.157)

n"f‘,,,(k, )

Au(k,n,x) e

v Fou(k,2) = Akoeu(k, £))p(k, £)

where A denotes the antisymmetrization in B,v and ¢,(k, ) the polarization
vectors. The singularity in k-space corresponds to the semiinfinite line integral
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along n in x-space.
o -~
Ay(z,n) = / n"Fou(z + ns)ds (3.158)
]

) - d3k
— —skz .
= /(c 2_2 A“(k,n,z)+h.c.)w

This vector potential has the following obvious properties:

auAv - ayAp = Fuv (3159)
(U(A)A)u(z,n) ALA (A" z,n")
= AJA(AT'2,0) 4 8,G(z)

- I iks 1 (A=Y . /ﬁ
6() = tim [e (e DR L

ie. the Lorentz transformation which acts on the Wigner wave function resp.
on the F,, tensor, transforms the potential covariantly except an additive gauge
term. The nonlocality of the vectorpotential is made manifest by this nonco-
variant transformation law. This peculiar "gauge” behaviour is a consequence
of the nonfaithful helicity representation of the Doncompact "little group” E(2).
In particular as we already emphasized in section 2 and 3 of this chapter the

an intrinsic quantum-based approach. The chance to use it for the conceptual
advancement of QFT should not be lost by enshrouding it with a barrage of dif-
ferential geometry or topology. The quantization method (from the viewpoint

indefinite metric (Gupta-Bleuler). In this way the additive term would loose jts
significance related to Lorents transformations and become the gauge concept
of the mathematicians and of classical Maxwell theory. This is the method in

perturbative Bogoliubov-Shirkov S(g)-approach (see next chapter in particular
section 5) has the form (suppg Cdouble cone):

W(g) = [ wros 9(z)A*(z) : 17:(::)7“1/»(2) diz (3.160)

Here ¢ and A, are free feelds in Fock space. But whereas in the indefinite metric
description A, contains ghosts and the locality properties are not the physical
ones, the A, in [?]lives in the physical Hilbert space. If ope now performs a
Lorenta-transformation on W(g) or S(g) one realizes that the additive gauge
contribution in[?] produces via partial integration with the conserved current a
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nonlocal surface term which spoils an important structural property of thr per-
turbative S(g) approach. Whereas usually W(g) is partially L-invariant (inside
the suppyg) this is not so in this case. The difficulty propagates into the time
ordered products. On the other hand if the standard Gupta-Bleuler approach is
correct than there should be a local way of expressing positivity. For anybody
who has not totally succumbed to (in this case unmathematical) formalism, this
must appear as an interesting conceptual clash. Its resolution could lje in the
realization that A, is a string-like (spacelike cone) semiinfinitly localized object.
In that case it would be unwise to use a g with a double cone support and a
honcompact support suppg C spacelike cone C wedge. For such noncompact
regions the field algebras are still unitarily equivalent to the free field algebras

quantum physics.
The obstruction against equality in 3.156contains the following interesting
conceptional message. Whereas violations of Haag duality for simply connected

”charge split” into causally disjoint regions. In this case the commutant is bigger
than the geometric complement suggests because the charge split mechanism on

dim [HR;(T'Y HR(T)) =1

The obstruction is caused by the presence of just one object:
f AL (z,n)dz*
ccT

Ao(zm) = / P(Z - ) Au(F, 2o, n)dy

The integration is over a closed path C inside 7 and we regularized the vec-
tor potential with a smooth function of small support suppp € B, so0 that one
maintains normalizability 3.157and remains inside 7. The line integral repre-
sents the class of expressions of this kind, any two such elements differ only by
field strength localized in 7. The line integral is a L-invariant and may be ex-
pressed in terms of a magnetic flux through any surface S with the C boundary.
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It is precisely this floating surface stretching beyond C, which in the quantum
setting of commutativity (or symplectic orthogonality) prevents the affiliation
with HR(T) and makes it a member of the nongeometric H R(T'Y. This is of
course an intrinsic property of the theory which cannot be removed by the
indefinite metric formalism.

It is a much more difficult question as to what becomes of this topological
obstruction in the presence of interactions. The reader can find some remarks
in the last section. It js tempting to interpret this obstruction as indicating
the necessity of an interaction 4 i.e.of the presence of non-vanishing electric or
magnetic (or both) currents.

0" Fu(2) = ju(2), 0*Fp(z) =], (z) (3.161)

The idea is that interactions are Decessary to restore perfect Haag duality which
is violated in the free theory. Such a point of view would attribute a very dis-

originate from the quantum version of the Maxwell structure and may well be
the physical concept behind the semi-classical ”gauge principle”. This issue of
problematizing the notion of "magnetic field” on the same level of depth as the
notion of ”charge” in the DAR superselection theory is presently ill-understood
in QFT.

In low dimensional QFT the analogous issue of order-disorder duality and
the connection with Haag duality is much better understood. There, even in
free theories (see last section of this chapter), it is not possible to have no
charge sectors with both order and disorder the realization of both charges be-
ing related in d=1+1 to the zero mass limit. The previous idea of maintaining

standard wedge W*' with the opposite wedge W2y, leads to x-t double cone
which is cylindrically extended in the y-2 direction. Since the modular local-
ization in W25, corresponds to a s—reality conditon in the negative §-strip, the
intersection of both gives rise to a new "edge of the wedge” problem je. a
Hilbert space H rR(W2N Wapp) of analytic functions which are meromorphic in

4This a speculative remark is taken from the book of R.Haag "Local Quantum Physics”
page 147,
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both strips and fulfil a matching condition on the real —axis in which the trans-
lation enters. Again Hr(W?*Nn W,;,) is standard in the sense of the definition
given in the section on CCR and CAR functors.

The analytic situation for intersections of non coplanar wedges as one needs
them for double cones in ?? becomes very rich and is essentially unexplored.
In d=3+1 theories with halfinteger spin QFT of free fields indirectly yield the
information that the corresponding real subspaces are standard and factorial
2.6.

If we apply this localization concepts to halfinteger spin, we find a very
interesting discrepancy by a factor i between the action of J and that of the
m—rotation of the wedge caused by the SU(2) transformation law of the spin.
Through this obstruction the Wigner theory takes notice of the Fermi statistics.

We now explain the direct conversion of the net of Wigner subspaces into a
net of CCR- and CAR-algebras 2.6.

Consider first the case of integral spin. The application of the Weyl-functor
to the subspace Hg(W) gives the von Neumann-algebra:

FH—AH), f— W) (3.162)
A(W) = v.Neumann Alg. {W()If € Hg) (3.163)
= F(Hr(W))
which inherits the following properties from the Hilbert spaces:
isotony :  AW)CAW), faWcw (3.164)
Haag duality :  A(W')= A(W), W' = worr
covatiance :  U(g)A(W)U*(g) = A(gW), g€ P

In the halfinteger spin case we take the CAR functor ¢#( n:
F:H—-AH), f-v¥(f)e B(HFf) = A(H) (3.165)

A(W) = v.Neumann Alg, {.p#(f) Ife Hn(W)} (3.166)

F(Hr(W))

Different from the bosonic case, the operators J and S of this algebra are not
given by the application of the previous functor F but the J contains the famous
Klein twist K which changes geometrically causally disjoint localized operators
into commuting ones which one needs in the T.T. theory:

J=KF(j), A%=F(@E"), S=Jad (3.167)
This is the T-T modular theory for wedge subalgebras of the CAR-algebra.
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The same modular formalism can be used in order to construct relativistic
KMS states on free field algebras. In complete analogy to chapter2 section5 the
thermal two-point functions have the form (z=ePH):

Y] 1 —ip(z- _ 1 a3

1 ; ze=PPe 3
ip(z~y) E 7 e a4
+(2ﬂ’)i /C -~ v(P» 53)1)(}7, 33)1 ;cm—ﬁp-e 9

Here e is a time-like vector which characterizes the rest frame of the heat bath
and the Fsign corresponds to Boson/Fermion statistics. Mistakes in the combi-
nations of signs in front of the integrals can be easily corrected by remembering
that the thermal correlation functions must have the same (anti)commutator
functions as the standard free field correlation functions (in addition to the
KMS property). These relativistic correlation functions have rather interesting
analytic properties; they are analyticinz—y=:6 — z, z ¢ Tpe where T3, is
the tube 75, = {z € C?: Imz e V. N (Be + V_)} . The boundary values at the
two edges fulfill as expected the KMS condition:

3F(2) analytic in 75, s.t.
W) = mFG), (BwE) =, i F)

where the boundary values are taken from inside the analytic tube region. All
the statements are easily checked by explicite computations. Although the
boundary KMS conditions is the standard one which relates the boundary val-
ues on the two sides of the temperature strip, the relativistic aspect generates a
larger analytic tube in x-space which contains the strip in the e-direction. The
temperature can be directly introduced as an extension of the Wigner theory. It
should be interesting to combine the modular localization aspect with the heat
bath temperature within the Wigner setting.
Lit. The first presentation of the (m = 0,h = 1)~ obstruction against Haag
- duality for the corona region was given in the unpublished work of Leyland et al,
mentioned at the end of the previous chapter.

3.6 Rindler Wedges and Hawking Temperature

QFT of a uniform electric field in a half space or of a family of uniformly
accelerated observers. in both cases a wedbe form part of space time becomes
seperaled by a horizon.The ensuing loss of information converts the original
vacuum siate into ¢ Hawking-Unruh temperature state. This situation supplies
the nicest physical illustration of the modular concepls with deep relations o
antiparticles, the TCP-theorem and crossing symmetry as a consequence of the
KMS temperature cyclicity property (treated in a later section).
Lack of time prevented the writing of this section.
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3.7 Fields associated with Free Fields

In the following we will give an example for a field whose Borchers class is
associated with but not equal to that of a free field. This construction is part
of the d=0 duality (order- disorder) construction.

Let us start from a complex free complex Dirac field in d=1+1:

W) = [ e ulplale) + P u(pb () (3.168)
m [ % m [ —ef

u(pp) = \/—‘;(c_e-g), ”(P)=\/‘;(_:_§)

v(p) = uC(p)= Cu(p)ive, p = m(cosh,sinh )

Here we took the following realization of the Dirac equation:
0 3 0 —i

. 0 1
TMEL -1 o0

This field is U(1) covariant and the local generator is the conserved current
Ju =t ¥Y7,¢ ;. This d=1+1 current has (relatively to ) nonlocal pseudo-
potential:

(i7ﬂa“ -m)¢

c

Ju(z) Ewd ¢(z) ¢(z) =: Fy(a*,b#) = / ) e*jvd, =  (3.170)

-00
= / db,dé, { sinh ;l('_'i"“tiz:io)-'), [a;a, ’(; b;)b(]
L ¥ ] -3
to Fép—tg) [eilrte apby + e~ PHg b ]

As naively expected, the ¢ is a local field which although relatively local with
- respect to the observables (generated by the current) fails to be local relative
to the field ¢ but instead fulfills:

#(2), ¥(v) (0 — wo)¥(v)4(2) (3.171)

$z) = V7Q, Q:charge

m
23 ~—00,21=00

Formally:

L4

1
Uqc(27)) = exp —2xi / Jo(zo, 11)dyr = exp —2Vxird(z) (3.172)
-0

is the representation for "halfspace” rotation i.e. U< implements:

¥(z) — { -cb_(:;"i(g R (3.173)
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Such halfspace transformations may be viewed as the point limit of Bogoliubov
transformations. The correct normal product which is necessary in order to
convert U into a well defined expression is the triple ordering. This is also
recursively defined but different from the ¢-Wickproduct on subtracts all con-
nected correlation functions and not just the two-point function. Formally we
have the following simple exponential formula:

e109(2): — ele9()

= Ly (3.174)

Reexpressed in terms of the original $-Wickproduct we obtain a nonlocal looking
expression, which is best written in terms of rapidities:

p(z) = lexp —2iv/TAd(z)’ =: exp Lx(z) : (3.175)

e~20p-04)

o R () )[e'(”"")‘a;b;-i-h.c.]
sinx =2(0p -0 i(p—a)e—ixA o
1ate) = 5522 | e i el B

-A(0gy—0 o .
il Kt
Although L, is represented in terms of nonlocal kernels in rapidity space and is
itself nonlocal, g is a bosonic local field in the quantum sense which is however
nonlocal relative to ¢ i.e. outside the y-Borchersclass. It is easy to see that our
special solution p of the halfspace commutation relation with ¢ belongs to a
whole family of solutions. We may modify the u by any bosonic local function
of the y* without change in the relative commutation relations. Within our
construction method this is made manifest by the ”quasi-periodicity” in A mod
1With the help of 4 one can now construct another field o(z) which carries

the same charge as v, but has quite different spacelike commutation relations.
Through the definition:

o(z)

N [1¥](2) = lim p(2)(y) (3-177)
= % :/(e“"”a, + ei”b;)p(z)d0, :

one obtains the same soliton like relative commutation relations with 4 as those
between ¢ and u:

ueets) = { SooE) <>y (3.178)

However the o carries a fractional spin and ”statistics” (see later comments). In-
stead of dual commutation relations one finds symmetric commutation relations
associated with abelian representations of the braid group i.e.

o(z)o(y) = e (y)o(2) (3.179)
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These commutation relations appear as a interpolating continuous generaliza-
tion of Fermions and Bosons and are called ”anyonic”. Their relation to particle
statistics will be discussed later. The bosonic field as well as the anyonic field
are living in the same Fockspace generated by the free field ¥, but they are not
members of the y-Borchersclass. As a local field u generates its own Borcher-
sclass (it is an irreducible field in its own Hilbertspace cyclically generated from
the vacuum). The question of whether the notion of equivalence classes of fields
can be generalized to anyonic fields will not be persued here.

A physically more relevant illustration of duality and non-free Borchers
classes is obtained by starting from a Majorana (selfconjugate) spinor field
(a=b). In this case the symmetry is the discrete Z, and the previous method
based on a conserved Noether current not applicable. There are however several
alternative methods which lead to the following result:

p(z) = e o(z) =: tz;(z)p(z) : (3.180)
i 2coth 3(8p — 6, + ic) - €PN,
A=) = & / dfpdd { +tanh 1(8, - 6,) - (0407 eser ~ h.a)

We) = 5 [d(ee, 4 e7g) # v(a)

Whereas u and o fulfill the relative Zy-duality relation, now both fields are
bosonic. Hence o generates a new Borchersclass in HF which is inequivalent to
the Fermion Borchersclass. It is quite straightforward to show that the Ising
lattice model can be described in terms of lattice Fermions which in the scaling
limit (for fixed correlation length) become Majorana Fermions. In addition the
lattice (dis)order goes over into (u)o if one takes that limit from the disorder
side (T—T, + €). So we are justified to call our o-fields the (order) "Ising
fields”. Let us compare the free Majorana field with the Ising field Borchers
class. Consider the modular objects for the wedge algebras of the two classes.
The modular operators A are identical and equal to the wedge-based Lorentz
transformations. However the modular reflections J are different. For the free
Fermion algebra the Wigner theory gave Jp = KF (4) with j being the antiu-
nitary wedge reflection, F the CAR-functor and K the Klein transformation in
Fockspace. The Boson algebra generated by o on the other hand has Jg = KJ F
because its commuting structure for space-like distances requires the absence of
the twist. This can also be read off directly from the TCP transformation prop-
erty of o under the TCP in Fockspace. Note that the Klein factor is a global
operator whose halfspace version is the the disorder field # (the Jordan-Wigner
transformation in lattice theory). In our Ising example (NVF: fermion#):

144U
13U’
Since the TCP symmetry 8 of o is related to the free field 0o TCP of the
Majorana Fermion ¢ in the same way as the above J ’s, namely by:

6 = K6, (3.182)

K= U =¢"Nr (3.181)
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and since (as will be shown in the section on scattering theory) the unitary
S-matrix is related to the antiunitary §'s by S = 06, we conclude K = S. this

means that the S of ¢ is energy independent and S = —1 for two particles.
On a somewhat formal level we can understand this through:
. _Ju . _J Uy
fmuar={ | im o)={ Y @189

Writing Uy = KyK*, we read off: S = K i.e. the Jordan-Wigner transforma-
tion approaches the global symmetry whose square root is the Klein transfor-
mation (which in this model coalesces with the S-matrix).

Returning for a moment to the A-halfspace rotation in the previous complex
free Dirac field, we find by the same method in case of rational A = ;}, (Zn
symmetry):

U = Ze—h'i%:-E"
n
K = Ee—iﬂ'n-'s-En

The quadratic n-dependence of the spin-statistic phase on the charge eigenvalues
~n? is characteristic for anyonic commutation relations. The "exotic” nature of
the o commutation relation shows up in the deviation of the ¢ modular reflection
J Since this case is outside standard scattering theory, it is not so clear if K could
be interpreted as a scattering operator. An alternative interpretation (which
turns out to be the appropriate one) is to say that the fields are free in the sense
of S,cat = 1, and that the deviation from the J, (or @) of the free Dirac field is
due to a change in statistics: Sitat = K. However statistics in d=141 massive
QFT is a somewhat ambiguous notion. Consider the a*(p) of a free Dirac field
and write:

e(p) T (3.184)
n(p) = a*(p)a(p)

" The commutation relation of the ¢’s is now ”anyonic”:

c(p)c*(g) ~¢""3e (9)e(p) + wb(p - g) (3-185)
c(p)e(a) = —eAe(g)e(p), etc.

The ¢’s live in the same Fockspace, are covariant with respect to the same repre-
sentation of the Poicaré-group and (as it should be) create the same one particle
states, even though the c’s have "anyonic”( for A = 1 bosonic) commutation re-
lations. This is a special instance of a general phenomenon: particles in massive

=1+1 theories are statistical *schizons”i.e. the nature of their charges (fusion
laws etc.) does not determine their statistics (i.e. a Mendeleev table in a d=1+1
world allows for a bosonic description in terms of long range interactions). This
is very different from all other situations, including chiral conformal QFT for
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which the field commutation relations (the "exchange algebra”) is uniquely de-
termined by the charges carried by the fields. Warning: the statistical schizon
phenomenon should not be confused with "bosonization” in chiral conformal
QFT (see next section). The schizon phenomenon is related to the fact that the
natural framework for massive d=1+1 theories is the "soliton” framework in
which the concept of braid-group statistics is replaced by the more general "ex-
otic”(or solitonic) commutation relations which can be changed at will (within
certain limitations) without effecting the superselection structure. The most in-
teresting new phenomenon in the Algebraic QFT of solitons is that the problem
of multiple vacuum states, even in situations where this cannot be blamed on
spontaneous symmetry-breaking, becomes related in a profound way with the
superselection structure. We will return to these problems in the sections on
algebraic QFT (the net approach).

We conclude this section by some comments on the algebraic description
(independent of fields) of (dis)order. If one assumes that the theory is given
in terms of a field net F (0),0 € K (family of double cones). As usual the
observable algebra is related to the field algebra by the invariance principle
with respect to a symmetry group G:

F(O)° |n,..= AO) (3.186)

Whereas for d# 1 + 1 the so defined A(O) generically (apart from sponte-
neous symmetry breaking presented in a later section) is Haag dual if F had
this property (for fermionic F the duality must be twisted):

F(O) = F(O') n A(0) = AO') (3.187)

However in massive d=1+41 theories this conclusion is incorrect for double cones
but remains correct for wedges O = W. The alternative definition in terms of
AW) .
AYO)= ) AW), ock (3.188)
wo0
gives a bigger algebra (equal to the dual net) which is Haag dual. It comes as
a bit of a pleasant surprise that the issue of A versus A9 is inexorably linked
with the (dis)order structure. In any massive two-dimensional QFT with an
internal group symmetry G (i.e. not just for free fields) there is a canonical
way to introduce halfspace transformations UP(g) which implement the full g-
transformation on the spacelike left of the double cone O and is equal to the
identity on its right. This construction uses the ”split-property” (equivalent
to the "nuclearity” i.e.a good phase-space behaviour of QFT) and will be ex-
plained in the chapter on the algebraic net framework. Assume for the moment
that G=Zp i.e. an abelian group which leads to one halfspace generator UP,
((ﬁo )¥ ~ 1. We then extend the field algebra F(O) by the disorder operators
Uyg:
A0) = F(O)vUP (3.189)
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The map O — H(0) is still an isotonous net but it lost locality. The application
of the invariance principle yields:

0)% = 4%(0) = AO)VUP =4 (0)

and we may arrage our result in form of the following ”commuting square” of
inclusions:

AY0) c #0) (3.190)
A0) c FO)

Is there an invariance principle which describes the entire commuting square,
in particular of A(0) C #(0)? In the above abelian ZNn~ illustration the
halfspace tra.nsformations‘U commute with G = Zy but they suffer a nontrivial
action of the dual group Zy (~ ZN):

ax(U(9)) = x(9)U(g), Ad(o)z“':A(o) (3.191)
9 € Zn, x€2n

Whereas on F only G acts, Kis a natural domain for the action of the ”double”
GxG:
A0) = (K(0)%%¢, F(0) = £O)¢ (3.192)

It turns out that this has an interesting counterpart for nonabelian G’s. In that
case the "double” has to be taken in the in the sense of Drinfeld which is the
cross product Hopf algebra which was introduced in the third section of the first
chapter:

D(G)=C(G) M, G (3.193)

However in contradistinction to ordinary group symmetry, the double is always
spontaneously broken and maximally only G survives as an unbroken symmetry.
This mathematical manifestation of the (dis)order structure is presently the only
case for which Hopf algebras emerge naturally from physical principles.

The expert reader will have recognized the close relation with the global
Kramers-Wannier Duality of statistical mechanics of lattice systems. In fact in
the formal scaling limit near a critical point towards a continous QFT maintains
the local (the Kadanoff-)form of the K-W symmetryS. The presentation of this
section shows the close relation of the stat. mech.duality concepts to the Haag
duality of algebraic QFT. But where the former (in its relation to charge sectors)
is limited to d=1+1, Haag duality (and its controlled breaking) does not suffer
such a limitation.

As already mentioned, all this rich structure (including the statistical ”schizon”
aspect of particles) may be subsumed into the algebraic QFT framework for sol;-
ton sectors which will be presented in a later section.

5The temperature becomes traded for the mass, but there is no "dual mass” which could
substitute for the dual K-W temperature. Rather the dual symmetry becomes a pure algebraic
concept in the sense of Kadanoff. It is always spontaneously broken, except in the conformal
scale invariant zero mass limit.
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Finally it is worthwhile to remark that all of the known d=1+1 (dis)order
models allow for a euclidean functional (Feynman-Kac)representation involving
an external Aharonov-Bohm potential or (in the case of additive symmetries
i.e. translations in field space) external "electric and magnetic” sources. Some
more details can be found in the section on functional methods.

3.8 Special Features of m=0, d=1+1 Fields

It is well-known that the zero mass limit of massive free fields enhances the
space-time symmetry to the conformal group symmetry. In addition to the
geoeral well understood peculiarities of such an extension (Einstein causality
"paradoxon” as the result of a continuous link through infinity of the space-
and time-like), there is a very surprising phenomenon which only happens for
d=1+1: there are continuously many local quantum theories in the holomorphy
region between the real and imaginary time boundary values. Let us verify this
for the massless Dirac field which results from the formula3.168:

Ye(v) = 71_2;/omdp(6'""al(P)+¢""57(P)), v=t-z (3.194)
¥i(u)

7;_; /o°° dp(e™ P ar(p) +¢P5}(p)), u=t+z

where the right and left movers a#(p), b#(p) and af (p), ¥ (p) anticommute with
each other i.e. the chiral fields ¥, define independent chiral theories. Therefore
from now on we will select one chirality and omit the r,! subseript.

As expected the two-point function can be rewritten in compact circular
coordinates:

(W) = g~ o) = —— o)
Ye(z) = z=¢'*

From this one reads off the spatial invariance group. It is the 3-parametric
Moebius-group SL(2R) in u or SU (1,1) in z. The analytic continuation of this
two-point function has a positive definite restriction onto any (Jordan) curve C
circulating around zero i. e.

L o
1.9)= § § oy O (3.196)

is a (positive) scalar product, leading to a Hilbertspace. Since the higher point
correlation functions are products of the two-point functions, we obtain positiv-
ity. The algebra is still a CAR-algebra, but the quasifree state defined through
C differs from the vacuum state. The unitary equivalence of the representations
is easily checked with the Hilbert-Schmidt criterion of the first chapter. This
means that the transformation of the circle (the "living space” of the original
real time theory) to the parametrized curve C is unitarily implemented. This
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emergence of the automorphism associated to the Dif f(S*) group and their
unitary implementation is the special property which fails in any other dimen-
sion. The infinitesimal manifestation is the well-known Lie-field structure of the
energy-momentum tensor, in our case :

T(z) = 5%2), i(z) = ¢*(2)9(2) : (3.197)
li(21),3(22)] = i8'(212) (3.198)
[T(zl)» T(Zz)] "‘.1_12'(6’”(212) + 61(‘7!2)) + i(T(Zl) + T(Zz))&’(zlg)

The generic T—algebra is obtained from this special case by replacing the factor
T15 by {5 with a positive ¢ which turns out to take on any value above ¢ = 1
and is quantized below this free value. The (nonlocal) Fourier components with
repect to the rotation group lead to Kac-Moody and Virasoro algebras. The
latter have commutation relations:

[To, Ton) = (1 = m) T ym + %n(nz = 1)bnimo (3.199)

Since all irreducible L-representations are one dimensional, the Lorentz spin s
(balfinteger) fields can all be represented in one bosonic (or fermionic) Fockspace
generated by bosonic (or fermionic) a#, 5* which are independent, of s. It is also
easy to see that it is not possible to generalize this to arbitrary L-spin s i.e. to
construct fields ¢(u) with anyonic commutation relations:

¢(u)d(v) = e(v), ¢(u), u> v’ (3.200)
$(u)d"(v') = e (u)p(u), u> o

within the setting of Fourier transforms of creation/annihilation operators. Only
anyonic momentum space operators as in 3.184 can be constructed in this way.

The rich world of general chiral QFT begins to open if one realizes the
peculiar role of the scalar free field:

e(z) = # /(e‘“’a(k) + h.a.)%— =p(t+z)+p(t-z) (3.201)

Due to the infrared divergence in this representation, the pointlike ¢(z) does
Dot exist, only ¢(f) with f(0) = 0 defines an operator in Fock space. In order
to maintain well defined local generators in Fock space, we consider the infrared
finite first derivative j(u) = 8, ¢(u), u=t+x. A simple calculation shows that
J can also be obtained as the chiral current of a free fermion field 3.194.Its
commutation relations define the abelian current algebra 3.198 We now use the
Weyl functor 2.6 :

W(f) = & IV, winw(g) = édUDw(s 4 ) (3.202)
o1,9) = 3 [1@00) - s(2)01(e)) de (3.209)

SThe triple dot denotes Wick ordering according to the frequency decomposition of J
whereas the double dot refers to Fermion Wick ordering.
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In order to make the Mébius-covariance of this algebra manifest, one uses the
angular parametrization for the compactified line:

y—2z= z.--u z=¢"
i+u
In terms of this compact description, the above symplectic form o becomes:
dz
(.0) = [32£@0) = T nfug-n (3.204)

fz) = Y faz, fi=f-n

Thanks to the aforementioned infrared property which forced us to define the
Weyl algebra in terms of currents instead of fields, the symplectic inner product3.204
is degenerate since it vanishes on constant functions ("zero modes”). These are
carried into the center of the abstract C*-algebra which is generated freely from
the W’s, subject to the Weyl relation 3.203 The center defines an abelian charge
algebra and there are continuously many superselected charge sectors obtained
by diagonalization of the center.

In order to come to a more interesting situation one must extend the Weyl
algebra by a lattice so that the extended algebra is not only characterized by
the linear space of functions, but in addition has an underlying lattice. In
mathematical terms the linear spaces are extended by "noncommutative tori”.
In order to allow for sufficient generality, we start from a multi-component
abelian current algebra:

[Vi(21), J¥(22)) = —¢"8'(2y = 23), 4,j=1..N (3.205)

where 6'(z) — z;) is the appropiate circular §—function:
' . ' )
S 8~ 2) = ~f(2)

The symplectic form which now lives in LV i.e. smooth loops in the N-dimensional
vector space V is given by:

0.9 = [ 354().0(2)

where (-, -) denotes the inner product in V given in terms of the positive definite
metric ¢*. The Moebius-group acts on LV as:

(w(9)f)(2) = f4(2) = f(g™'2), g€ PSUQ,1)

and leaves o invariant.
We are interested to classify all positive energy representations.

Theorem 8 Every covariant positive energy representation (x, Hy) of the C* algebra
U generated by the Weyl-operators W(f) associated with o is a direct sum of ir-
reducible ground state representations i.e. H = Y Hi, Hi =T, =ground
state in H;
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We may recover the current algebra fields 3.205if we restrict to regular rep-
resentations i.e. those which are related to states w fulfilling continuity of the
function A — wW(W(Af). This suggests the question whether the irreducible
components can be created by applying (smeared out) covariant fields to the
vacuum i.e. if the net point of view and the more standard field point of view
are not only based on the same physical pictures but are even mathematical
equivalent. Here we will only quote the result and leave the proof up to the last
part on algebraic QFT.

Theorem 9 Every regular ground state representation of the (abelian or non-
abelian) current- or the energy momentum tensor- algebra is generated by charge-
carrying localized fields. The currents and the energy momenium lensor com-
mute with the charge-carrying fields for noncoalescing points whereas the latter
can be chosen in such a way that they obey braid group commutation relations
(special case: permutation group) among themselves.

The representation theory of the above multicomponent Weyl-algebra is not
very interesting since it pocesses a continuous set of representations labeled
by additive (multicomponent) charges. They are generated by the following
localized automorphisms V!

L) = ADw()
o) = foze)se)

Here the N-component function p is local with support C S?! so that 7, acts
as the identity if f and p have disjoint supports. The total charge ¢ = p(1)
labels automorphism classes which are "inner equivalent” i.e. for which there
are unitaries u(o, p) € ¥ which intertwine between the two automorphisms:

70(W) = U(U,p)‘yp(W)u'(o',p) Weu
wop) = W(h,) if,,=0—p (3.206)

These equivalence classes of automorphisms are also referred to as abelian (su-
perselection)sectors of i/. They exhaust the locally generated sectors of &

The properties of the automorphism immediately translate into properties
of the associated representations To(W) := 70 - 7,(W) where 7, denotes the
vacuum representation. So the charge distribution p(z) "measures” the local
deviation from the vacuum. The representation formalism is more close to
the standard formulation of QFT. Vice versa any representation of &/ which
deviates only locally from the vacuum (suitably defined) can be shown to allow
a representation of the above form in terms of a local automorphism. This is
part of a general theory, the so-called DHR, (Doplicher, Haag, Roberts) theory,
which we will meet in the section on algebraicQFT. These representations of the
abelian current algebra was essentially known (though in a more conventional
field theoretic language which is less precise) by Swieca and collaborators(?, ?).
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The C* —Weyl algebra i/ may be used as building blocks of structurally richer
and more interesting C* —algebras. The first step in this direction is the process
of extensions by incorporating local sectors into the algebra. The naturalness
of the so-called lattice-(or noncommutative torus-)extensions is best understood
by looking first at subalgebras of *o(U) belonging to disconnected localization
regions:

ALl U L) Alg {zo(W(£)) | f € SL(I; U Is)}
St(hUl) = {feS|f=const.in I Is, f(z2) - f(z4) € 2rL}

Here Alg stands for the generated von Neumann algebra, S is the Schwartz space
of smooth test functions on the circle, 22,4 are two arbitrary points from I 4

on the vacuum Hilbert space is not, as one could expect by a naive application
of Haag duality equal to AL(I; U L), but it rather equals the bigger algebra:

AL(11U13)I = AL-(12U14)
L* = dualof L

The reason for this state of aflairs becomes clearer if, one looks at the physical
interpretation of these algebras. The I3 localized algebra contains, in addition
to the naively expected operators which are separately neutral in I and Ij(zero
values of f in I,4), also operators which are only globally neutral but locally
charged with I3 containing the compensating (anti-)charge to that in I,. The
dual charge (being described by the dual lattice L* = V/L) consists precisely
of those values which lead to relative local commutativity:

W W) = &Udwqw() fe S(hubk),geS(ul)
o(f,g) = 2x(l. A*) = 2x - integer

The existence of these dual subalgebras of the vacuum representation of & sug-
gests to look for extensions of &/ by lattices in V. For this purpose it is convenient
to introduce homogeneous charge-transfer operators Fa,a € Vina subspace
-Hp € Hyp; defined in the following. H,.,; is the (nonseperable) universal repre-
sentation space which is simply the direct sum of all charged g representations
for all real values of q. Hp € H,p; contains only those charges lying on the
L-lattice and T, creates a chage a € L. as the charge ¢ representation we
simply take for Hy a copy of the vacuum representation Hilbert space H, but
with U acting through 7o(7,(W)). Hence the universal representation is:

(%uni(W)¢)a *o(7,(W))é. ¢, € Hy
(r °¢)ﬁ = ¢ﬁ—a

and the restriction to L means that this formula is restricted to Hy = 2oer Ha
Le. all charge indices a, 8 € L. In parti cular the vacuum considered as a vector
in Hp_, is mapped into the vacuum but this time considered as a vector in
Hp. We will denote the universal representation restricted to Hy as #. In order
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to speak about the ground state in each charge sector we peed a hamiltonian.
In conformal field theory there are two: the time translation and the rigid S?
rotation generator. For the present discussion we only need the action of the
rigid rotations:

(R(T)¢)a = e*(a,a)ei}lor¢a

Then ground states are mapped into ground states and I'e commutes with
R(r) (rotational homogenuity) and the ground state energy in the sector o is
% (a,a) T, implements a nonlocalized automorphism:

rz(w)yr = *(y,(W)) 7,(W(f))=e"‘°-f°)w(f)

dz 1
o= i@ e = La

Localized charge carrying operators in the same charge class with prescribed
support properties for Pa(2z) may be obtained by modifying 'y, with a Weyl
operator:

Y5, = 1e(pa)3(W(p,)Ts (3.207)
One easily checks that the Decessary test function p, solves the first order dif-

ferential equation:
d _ . a
T = ()= %)

Pa(z) = iz:(pa)-ﬂﬂ - '/ L;L:'-pa(z)ln((z)

n#o n

Here ¢ € S? denotes the direction of the cut along the line {X]Aa> 0} which
is necessary in order to define the branches of the logarithm. Remember that

Theorem 10 If ¢ Esuppp the charged operators ¢£_ 3.207 are local with respect
to the observables U and Sulfill the Sollowing relations:

() ¢ ¥, = ety y, if suppp, N suppp, = §
(#) ,/,gx(,/,g:)- = e-oit(c;.ap)ezﬂ'(Q.a), if SVWPCSI\{CI,Cz}
(i) R(r)y$R*(r) = ¢fmp, if e =et #losnling)

The sign in (i) is coupled to the orientation of the Path going from I, to
I through ¢. The ¢ in (¥) denotes 0, +1 according to whether the path which

((Q) ﬂ) Q)(:r = (0, ﬂ) Qa
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The theorem is easily verified by explicite calculation.
Property (i) tells us that that bosonic local fields correspond precisely to
even lattices:
(a,8)=2n, n= 0,%1,+2, ...

Restricting to such lattices L, the right hand side of (iii) applied to # L is equal
to one and therefore independent of ¢ i.e. those fields live on S! (and not a
covering thereof).

Now we change our standpoint by considering the von Neumann algebra
generated by the extended operators the new (neutral) vacuum algebra A; and
the representation in H; the vacuum rfepresentation. It turns out that the
new net A, has only finitely many positive energy representations. They are
labelled by points on the dual lattice L* DO L modulo L i.e. in L* /L. Lattices
with L* = L are called selfdual. They only have one sector (the vacuum sector)
and they fulfill the ”split” Haag duality:

AL U L)=A(l,u L)

A famous illustration is the root lattice of Eg as well as the Leech lattice Aqy.
The charge sectors of A, corresponding to the abelian group L* /L can again
be described in a manner similar to the previous formula:

¢S¢ D= c"(q'"°)'/’§. |H,_- Va i= Aq + Z (’\ﬂs”a) Ap (3.208)
s

N-1
Be @ = 2 (@, @) A i=2..N, B, =0

f=1

i.e. v, is a linear combination of the dual lattice basis vectors Aj : (ay, Aj) = &;
i,j=1...N. The first factor in ¢ is a Klein factor which plays a similar role as
previously namely it adjusts certain commutation relations to standard form,
in this case relative commutation with the observables 4, for disjoint local-
ization. Again the unitary ¢'s implement localized automorphisms. It is easy
to see that these sectors exhaust the possibilities of finite energy sectors. The
* restriction to L*—charges results from the requirement that the action of L*
exhaust the possibility of leaving th set of L— charges invariant. The phe-
nomenon of charge quantization by charge extension is a special case of the
very general phenomenon of decrease in the number of superselection sectors
with increasing size of algebraic extension. Note that the generators of Ay are
in physical terms loops which close modulo 2xL (and hence lead to univalued
phase factors) instead of the ”Weyl loops” f in W(f) for which f is strictly
periodic. Mathematically they consist of ”affine Hilbert spaces” i.e. multicom-
ponent functions on the intervall [0, 27) which fulfill lattice boundary conditions
i.e. a combination of two well studied objects: Weyl algebras over vector spaces
with a (possibly degenerate) symplectic form and Weyl-like algebras over (not
necessarily even) lattices. The noncommutative tory of the mathematicians as
well as the external magnetic field problems of Hofstedter are illustration of the
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latter. Whereas the von Neumann uniqueness applies to regular representations
of over finite dimensional space with a nondegenerate o, the tory algebras are
never simple and therefore have several representations.

Having constructed all the charge sectors of the extended observable algebra
AL one may look for a field algebra . generated by all the charge carrying
fields 3.208. It is easy to establish the following theorem(?).

Theorem 11 Fro(I) = Fro(I')tv

Here the twist tw is a generalization of the fermionic twisted commutant.
As in that case one must ” twist” the von Neumann commutant with a Klein
transformation which also in this case is a "square root” of the unitary operator
which represents the 2x rotation e~*2"Le?? This deviation of quantum physics
and geometry increases with increasing amount of non-commutativity (from
Fermions to Anyons) and naturally also makes the modular theory of anyonic
field algebras for the wedge regions (in chiral conformal theories just intervals)
less geometric than that of the observable algebras.

Besides the above extensions there is one other mechanism namely that of
factorizing the observable net I/ by a subgroup of its symmetry group. In the
case of one current there is Just the charge conjugation: j — —j, whereas in the
multicomponent case there are more possibilities. One finds new representations
for the fixed point algebras. Some of these Tepresentations are not extendable
to representations of the original 4/(S') but only to the noncompact U(R).
These are called soliton representation because their charge distributions behave
differently for z — +00. If one prefers vague analogies with differential geometry
to concrete expressions from physics, one may also call them " orbifolds”.

The crucial remaining question is whether there exists a purely field theoret-
ical systematics which also leads to the more interesting representations of alge-
bras in which the charge sectors have branched fusion laws (as current algebras
associated to nonabelian groups and W-algebras). The characteristic feature of
those algebras is that have representations x with nontrivial statistica) (or quan-
tum) dimensions d; > 1 and endomorphisms instead of automorphisms. Since
both concepts are far removed from standard QFT (Lagrangians etc.), their
explanation will be postponed to the last chapter. Here we will only scetch how
by "amplification” and "reduction” one may get away from the lattice-extended
Weyl algebras.

By amplification we mean tensor products and in particular our interst is to
study nets formed by diagonal tensor products of extended observable algebras:

¥®(p) = 9(p) x ¥(p) x ... 4%p), a, €L

where the tensor factors are of the form 3.207 which we now write as ¥(p).
If we would follow the logic of loop-groups, we would chose L = root lattice
of e.g. SU(n) and ezpp €loop-group. Technically speaking one is dealing with
a tensor product of k level one loop-group representations. It is well known
that by reduction one obtains the higher level representations (with nontrivial
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branching laws) of the loop-group. There are also arguments by which W-
algebras are relate with current algebras through an invariance priniple.

On the other hand a classification of admissable statistics by methods of al-
gebraic QFT (exchange algebras with braid-group commutation relations) leads
to 4-point functions which exactly match the two families of current- and W-
algebras(?] This strongly suggests that the two families exhaust the possible
plektonic (nonabelian braid group) commutation relations with finitely many
("rational”). A direct proof that the amplification and reduction procedure
leads to a family of irreducible nets among which the nets with a finite num-
ber of plektonic charge sectors (rational theories) are exhausted by nonabelian
current algebras end W-algebras is still missing.
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Chapter 4

Elementary Approach to
Perturbative Interactions

4.1 Kinematical Decompositions

Before presenting an elementary approach to interactions and perturbation, it
is helpful to have a closer look at those observable quantities which one wants
to compute. Since among local "field coordinates” only currents have a distin-
guished physical meaning, one is naturally interested in matrix elements as:

The first quantity (where possible spin quantum numbers have been surpressed)
is called the (electromagnetic) form factor of the p-particle and its static limit
(p — p')* — 0 can be probed by external magnetic fields and is related to the
(anomalous) magnetic moment. The second (diogonal) matrix element of two
currents ( connected part means removal of the ill-defined vacuum contribution
(P’ | P) (0154js | 0) before the limit p’—~p, which however does not influence the
structure of the covariant decomposition) gives rise to the notion of structure
function” of the p-particle and appears in the description of high-energy electron
(more general: lepton) inclusive scattering on nucleons (scattering in which one
does not observe the created outgoing hadrons).

Important energy shifts as the Lamb shift cannot be expressed in an elegant
form in terms of such matrix elements (only if one defines ”off-shell” extrapola-
tions). The most important observables are the particle matrix elements of the
S-matrix (or scattering operator) from which the cross sections can be obtained:

Lu(?,9) = & liu(OIB), Wil(p,z)= (p ()50

m n
1 PP |S = 11, p2.eepn) = 639 = Y pi)T(B}, .04, P, --.pm) (4.2)
=1 k=1

where we used the fact that S is a Poincaré invariant operator in the Fockspace of
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incoming particles (the energy-momentum conserving §—function results from
translation invariance).

Kinematical properties means the decomposition of covariant into invariant
functions and the specification of the invariant variables on which the latter
depend. For the formfactor of s = % particles one finds the following decompo-
sition (with k=p’-p) :

Lu(p',p) =

-(%)sﬁ(p', s3) (7,,F(k2) - ﬁ(?’ +p)G(k%) + %’%H(kz)) ulp,s3) (43)

The fastest way to see this is to first use the free field formalism to compute the
matrix elements of the free current by ”Wick-gymnastics”:

(01 a(p', ) : $(0)y,4(0) : a*(p, s3) | 0) = #a(p', 54)7,5(p, 83)

Then one has to construct the most general vector object from the Y—matrices
and two mass shell momenta P and p’.modulo the identity YuP” —m = 0 which
is valid on the intertwiner u(p). This leaves besides 7* itself, which appears
already for a free current, only the above two momentum vectors (or linear
combinations thereof). Current conservation k,T* = 0 gives H = 0 (because H
Is a nonsingular function) and the value 1 of the total charge Q = J jo(z)d?z
between the one-particle states requires F(0) = 1.

Due to kinematical identities of the u and v intertwiners, there are many
different forms of covariant decompositions. For example the identity:

w(p")iou g u(p) = a(p')(2my, + i(p’ + P)u)u(p)

may be used to eliminate the Y4 term in favour of the (p’+p), and the Ty
terms:

UPVus(p) = 50 W5 (8 + BIu(F(e) + Ga) + 0" Flg®))

In this form the leading contribution for small spatial momenta p and p’ comes
solely from the second term. The physical interpretation of F (which as G can
only depend on k? since this is the only invariant which one can form two mass
shell vectors) becomes clear if one rewrites the canonical coupling of the current
to an external (classical) vector-potential as follows:

(#|~< [ #zierite P) = =ecomss [ 9T ale, )t ex) ey
. —cF(O)@—:)Tg / L2e0P%Ae)- [G-5) x])  (aa)

Here the last line is the static approximation of alu in first order of 55’ which
brings in the angular momentum operator J = % (just y—"gymnastics between
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u-intertwiner). The last step is to use B = v x A and to take B constant (static

limit):
(v

i.e. we obtain the magnetic moment interaction —ji - B with (4 = |A])

e - g
p> N =3 F(0)2peé(5 - ') B4,y ,, (4.5)

—e / dszf(z)A—(z)

B=35=F0)= 5= + Banom.
HBanom. ; #(F(O)i )= -2-:?0(0) (46)

In a similar fashion one decomposes the structure function:

JWH (P, 2)e = d'z= . wir(p g) = (4.7)
T W)+ B - e - By, 4

The invariant structure functions W; i=1,2 depend on two variables (q is not on
shell) ¢2 and v = EL (m=target mass). Again the number of invariants has been
reduced by using current conservation for the two currents. their experimental
significance will be discussed in a later chapter.

The S-matrix is not measured directly, but rather through the ensuing scat-
tering cross sections. The relevant formulas in most textbooks are derived by
inventing a ”box-quantization”( in order to solve the problem of ”squaring the
energy-momentum é—function”). In order to avoid the impression that concepts
which require V = oo for their formulation, as the previous temperature states

about the S-matrix.

Still missing: more comments about the S-matriz, q wave-packet derivation
of cross sections and life times without quantization boz.

Some remarks on the decomposition of the scattering amplitude T and some
ezamples of practical relevance: Compton-scattcn'ng, Moller-scattering, pair-
creation etc. are also still missing,

4.2 Elementary Notion of Interaction and Per-
turbation

In section of the first chapter we solved the simple problem of a perturbation
by an external source on a free bosonic system and found that there are two
ways, one via the method of unitary transformations (the so called ”dressing”
transformations) and the other by the use of the interaction picture in the form
of a time-ordered exponential:

SG) =T ACHEs 4z, j) = S ()T A)e AWIWIy (4.8)
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By Wick-ordering these expressions, we saw that they agree with the more rigor-
ous dressing transformation method up to a phase (Feynman’s famous ”vacuum
phase”) and that phases show up in the form of cocycle factors in the composi-
tion law of the S(j).

In nonexternal translation invariant problems, there is a famous obstruction
against the existence of such a unitary dressing operator, the Haag Theorem.
It says that in a translation invariant theory the ground state of an interacting
system cannot be described in the space of vector states of the free system.
The traditional way out is to start with a system which fullfills only ”partial
translational invariance” (similarly to the partial charges in the free field theory
of the previous chapter). We start by defining (here A4 stands generically for the
would-be Heisenberg field which corresponds to Ap) :

Sg) =Te' sWWEs gz g) = 5 ()T Ao(z)ef HOW Iy (4.9)

Here W is an invariant Wick-ordered polynomial in terms of (not necessarily
identical) free fields which implements the notion of interaction. For g we choose
a smooth function with compact support in Minkowski space which can be
thought of as a smooth version of the characteristic function of e.g. a double
cone (with support in large double cone and 9(z) =1 in a smaller cone placed
inside the bigger). Before we show some remarkable properties of these formal
operators in Fockspace, some comments are in order.

(i) Haag’s theorem is not applicable to the S(g) formalism (no translation
invariance), and we are allowed to do our calculations in Fockspace. One of the
remarkable properties is that the local observables localized within the smaller
double cone fulfill partial translation invariance in the sense explained later.

(ii) The standard derivation of the above formula for A(z) (more precisely
for the vacuum expectation values of time ordered products of A ) goes through
the canonical formalism and is known under the name of Gell-Mann-Low Jor-
mula. Such derivations suffer from two conceptual weaknesses. On the one hand
they give (physically unmotivated) preference to special field coordinates (only
”Eulerian” free fields among the class of (m, s) Wigner fields are canonical) and
on the other hand they rely on assumption that the fields A to be constructed
are not more singular for short distances than the corresponding canonical free
fields. These assumptions are only valid in certain very special low-dimensional
models.

(i) The interaction density W(x) is a local function of free fields which
(without the existence of a dressing transformation) has no direct (outside
infinitesimal deformations) physical interpretation. This means that there is
(apart from external perturbations and some very special low dimensional mod-
els) no general physical reason to believe that after a certain necessary repair
(”renormalization”), one obtains a mathematically existing theory. Contrary
to popular believes, it is not Jjust the singular short distance behaviour as such
which endangers the existence of the theory, but rather the standard framework
of the time-orderd formalism (i.e. its use in local relativistic QFT) ! which cre-

!The so called Bogoliubov axiomatics may have no solution in higher dimensions and
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ates an obstruction against an intrinsic understanding of interactions. There is
a very interesting lesson in this respect from the d=1+1 "bootstrap” construe-
tions which show that short distance singularities can be worse than any given
inverse power of the Minkowski distance without the existence of the theory
being threatened.

Let us now show that on a formal level the Fockspace operator A(z, g) fulfills
some remarkable formal properties. Suppose that we restrict the x to the double
cone K in which g = 1 i.e. we consider A(f,g)

Alf.0) = / d'z {(z)S" ()T Ao(z)S(s) (4.10)

with supp.f C K. Then as a generalization of the composition operator S(j) in
our old source model we find:

S92 + 91) = S(92)S(g1), suppg, > suppg, (4.11)
A(f,9) = A(f,¢'), if supp(g —¢’) C V(K > '

where the notation means that the points in supp g, are either spacelike or
timelike from those in supp g1 and V_(K)* is the complement of the smallest
backward light cone which contains the double cone K. Furthermore any change
of g to g’ localized in V. (K)* \ K can be implemented by a unitary (”partial
dressing”) transformation U(g) which is independent of f, i.e.the same for all
operators in the algebra A(K):

Af,9") = U(d',9)Af, 9)U (', 9) (4.12)

Formally this unitary has the same form as S(h) where the smooth function h
is compactly supported in the intersection of V_ (K)* \ K with a double cone K
which contains the support of both g’s . For the study of the net of double cone

nets by definition) i.e. it is only the relative positions of these algebras and not
the absolut position in the ambient space which counts. Hence even the limit
K— oo the net of algebras may be described within Fockspace. However this
Fockspace is purely auxilary. Physical states strictly speaking are to be obtained
as states on the net of operator algebras with suitable localization properties.
This would be the scenario for the construction of interacting theories within the
setting of time ordered exponentials of free field "interaction densitjes” W(x).
Before we look at the lowest nontrivial perturbative evaluation of these for-
mal operators, let us briefly notice that A(x,g) fulfills Einstein causality wihin
K:
[A4(2,9). A1, 9)) =0 (z~3)2<0 and z,yek (4.13)

The formal reason is that for spacelike separartions the product can be written

In terms of one (cancellations between S’s!) time-ordered free field expression:

ST (Ao(z)40(¥)S(9)) = S (9)T(Ao(2)S(g)) - 5* (9)T(A(v0)S(s0).14)
bolds for (z - y)2 < o

therefore the time-ordering method may be not appropiate for introducing interactions.
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( remember: the T only acts on all the Ay’s to the right). The (Bogoliubov-
Shirkov, Glaser-Epstein) renormalization approach allows to show that these for-
mal relations are valid at least in every order of perturbation theory(expansion
in W).

Another remark, whose importance can only be fully appreciated later, is
the statement that the local algebras of a net are all unitarily equivalent and
there is (outside of perturbation theory) no relation between the particle struc-
ture of the ambient Fockspace and the physical content of local algebras: the
interaction (generically speaking) wrecks the one to one correspondence be-
tween particles and fields which existed in the free theory. For local observables
desribed in terms of local nets of algebras, the Hilbertspace description allows
great flexibility and the chosen massive Fockspace of the above formalism is not
to be interpreted as a commitment about physical parameters. This picture
is unfortunately somewhat blurred by perturbation theory which maintains an
unrealistic rigid correspondence between fields and particles (apart from the
mentioned flexibility of chosing the Fockspace mass parameter different from
the physical mass ). This (among other things) has created the misleading im-
pression that QFT is nothing more than a relativistic made form of quantum
theory. Although it is a quantum theory and it is relativistic, it is primarily a
new physical realm whose deep and unexpected concepts (despite its 70 years of
existence) still await exploration. This will become much more evident in the
later chapter on modular localization and the bootstrap-formfactor approach
than on the leval of perturbation theory.

4.3 Second Order Perturbation and the Adia-
batic Parametrization

The naive expectation (i.e. by analogy to the external source problem in chap-
terl) about S(g) would be that the limit of the theory for K — R* exists and
describes the physical S-matrix. Even in perturbative evaluation this picture
needs two corrections. One is related to the infrared divergence problem in
certain theories involving zero mass as QED, a somewhat special phenomenon
whose physical basis will be reserved for a later discussion. The other is of a
completely general nature related to the phenomenon of selfinteraction, well-
known already from classical field theory where it leads to the famous problems
of constructing consistent particle models within a classical field theory, as stud-
ied by Poincaré and Lorentz . As a result of selfinteraction, parameters with
a physical name as mass, charge etc. which entered the construction of S(g)
and A(z,g) do not represent the true measured value. Whereas for fields A
and their correlation functions this does not matter (the true physical values
can be recovered from asymptotic properties of correlation functions, see later),
the large volume limit of S(g) for |K| = oo represents the physical S-matrix
for the scattering of A-particles only if the true physical mass is used. The
same applies to any quantity which is partially "on shell” i.e. contains particles
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states as e.g. the electromagnetic formfactor. The reason is that the adiabatic
switching on and off by multiplying W(x) with e-al*l 4p4 then lim t— oo s
physically harmless only if W includes the effect of persistent selfinteraction
”counter-terms” which maintain the mass used in the Fockspace in every order
of W at their physical value. In case of a neutral scalar W = 9 : Ao(z)* : model
the modification is:

Wadiar(z) = W(z)+%6m22:Ao(:)Ao(z):
+%(z-1)( P 0uAd(2) Ao(2) : —m : Ao(2)Ao(e) ) (4.15)

The "selfmass” §m? is chosen in every order to maintain m as the physical mass
and m} = m? — §m? is an auxilary unphysical mass (which loosely speakin

corresponds to the mass without the stablelyzing counterterm which changes in
every order of W). The second Z-counterterm has been added in order to obtain

a nicer form of the adiabatic principle which is the following requirement:
Iim (0]4(z,9)Ip) = (0]40(z)| p) (4.16)

By adjusting ém? and Z in every order such that this identity holds we took all
selfinteractions into account. A subsequent adiabatic change of W,4,; i.e.

Wadiab = ¢ I1W, 000, a— 0 at end of calculation (4.17)

will not cause any harm i.e. does not change the one particle characteristics. In
theories without selfinteraction e.g. in Schrodinger theory, this is automatically
fulfilled. Using our formal time ordered expressions we may rewrite the above
requirement in second order-

27)(2) - 1Y2(p2 _ .2
CrATA - )0 = 3 [ oraoweywens ws

since the zero order terms agree and the second order term of the above require-
ment:

Iim (014(0,9)9)® = 0 (4.19)

consists of a WW contribution and the lowest counterterm contribution (which
We wrote on the left hand side). The evaluation of the right hand side (omitting
combinatorical factors) gives:

g’ / / Ar(0— 21)A}(z; - z,)

e
(21)5' pP-m

Therefore §m?(2)-g2 J eP AL (€)d4¢ and 2(D) js the second Taylor coefficient in
the expansion of the integral around P? = m?(note that Z = 1 4 2(2) +...).
Later we will (via time dependent scattering theory) meet a formalism which
relates off- shell quantities (correlation functions of interacting fields) in a natu-
ral way with distinguished free fields which have the correct physical mass ( the

2 ] T ared (am)
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”incoming” /outgoing fields). This relation js independent of the mass of the
Fock space which we use for thejr perturbative construction. Scattering theory
may be viewed as an extension of the adiabatic principle to multiparticle states.
It is applied to off-shell correlation functions and requires the introduction of
the physical mass i.e. a Ieparametrization which relates the mass of the auxi-

them at least partially with a modest amount of mathematics and concepts
before making a large formal investment,

Even though there are no physical reasons to introduce counterterms for off-
shell quantities, the fact that the time-ordered products of W's via Wick’s the-
orem yield ill defined (formally infinite) expressions as e.g. iAd(z; - ) forces
”renormalization” for mathematical reasons. With other words our starting for-
mula in Fockspace was incorrect, but not byond redemption. The integrand in
S(g) Le.TW(zy)...W(z,), although not defined on all (Schwartz) testfunctions,
is well defined on the big class of testfunctions f(z,,_,,_z,.) which vanish of suf.
ficient high order for coalescent points. If W js a polynomial with dimw <4,
the order does not increase in n. This means that the (Hahn-Banach) extension
to all testfunctions will lead to time-ordered distributions which, although lack-
ing uniqueness, have well-controlled ambiguities whose space-time dependence

With other words, different extensions differ by finite local counterterms. These
counterterms may be used in order to achieve certain normalization conditions
(as in the case of the adiabatic principle), but there is no mathematical ne-
cessity to take the ambient Fockspace with a mass equal to the physical mass.

ization methods rather than the extension method ( which will only be used
in the later Curved Space Time problems where it is the only renormalization
method). Whereas for structural arguments we mostly use the A*model, the
explicite second order calculations will be done in Quantum Elecrodynamics.
We now specialize to the W describing QED (first without the counterterms):

W(z) = —ejou(2)A%(z), jou(z) =: YoYu%o(z) 1 Yo, Ao, free fields (4.21)
and consider S(g) in second order:
2
) =5 [ [ sestin@rin it 5 0teaty (a0
with the Wick-reordering from the Previous chapter we obtain for the formfactor:

#5.0n® = la(#', $3)S° T (G0 (0)S)a* (p, £2)] )P (4.23)
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= (0la(r', 53)T(jou(0)S)a" (p, s3)| 0)? (4.24)

”vacuum-connected” (v.c.) has the same meaning as before: leave out the S* in
front of the T and ignore the vacuum "bubble” contributions. The evaluation
of the right hand side amounts to look for the ¢ — ¥ contribution in the Wick
reordering of:

Tiou(0)jou (1)jox (22) Al (21) A% (24) (4.25)

In order to keep track of the combinatorical possibilities, it is customory to draw
graphs with vertices and connecting lines. In our case thejr are three interaction
points 0,x,and x, , one connecting photon line (one photon contraction ) and two
e-lines so that ope uncontracted y,, ;bo remain. One easily sees that there are
three combinatorical distinct contributions according to whether the remaining
pair may come from Jou(0), from the J(x)’s or if it is of mixed origin i.e. one
from j(0) and the other from a )(x). The first case only contributes in zero order
since :

(' l0u(0)I p) (015" 51 0)® = ¢ (4.26)

This cancellation is a general feature of all "vacuum bubble” contributions of S
(which only give a phase factor in S and the opposite in $*. More interesting
are the terms in which both of the y— ¢ "legs” are contracted with legs in S(2)
i i ization” contribution Tupot to the
form factor and the so called ”one particle irreducible” form factor Ty toop- The
vacuum polarization contribution contains the *fluctuation” of the zero order

My (2) = € (0T jou(z)jo,(0)| 0) (4.27)

The T, 1o0p-contribution originates from a contraction in which one leg goes to
one W-vertex and the other to the second. The remaining "electron selfenergy
contribution” arises from the mixed contraction. It contain the electron selfen-
ergy X and therefore is called Tyue.s. The three types of terms are conveniently
pictured in terms of Feynman diagrams.(Fig.)

Inserting now the Fourier Tepresentation of the time ordered electron and
photon propagators we obtain:

. (p’ |Jp(0)‘P) = ﬁ(pl! 3;))(1“#.)01 + rn,loop + rp,c.a.)u(P, 33) (428)

where the vacuum polarization-, vertex-loop- and electron-selfenergy-contributions
to the matrix-valued L, is

Pupar(p',p) = F;)IQWHM(")‘Y" (4.29)

. —ie? Trl=i b+ mlv, [~i( 4~ k) +m]y*)
with ., (k) = @) / d'q (P -m?+ie) (g =k —mi ¢ i)
ie? —i( p'— —i( p— m
(4.31)

(4.30)
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Luea = (i2(2)Sp(p')y, + TuSF(P)iZ(p)} (4.32)

i e? 1 YGb-ik+m)y,

mith iB(p) = / e g (a3
The electron selfenergy ¥ is not an observable quantity and fortunately its con-
tribution drops out by the adiabatic principle. This is because the two momen-
tum variables p’ and P are on the physical (mass m) mass shell and therefore the
adiabatic principle forces us to work with Wadia instead of W and fix the coup-
terterm in such a way that the one particle matrix element of y equals that of Yo-
This is easily seen to be identical (in second order)to: 1Z(p)adiau(p, 83) lp=m= 0
with i%,4, = iT4+ counter terms. The on shell vanishing of the selfenergy
is just the mathematical expression that the persistent selfenergy contribution
to the large time asmptotics (equivalent to the momentum space mass shel]

other hand as already mentioned if We were to compute the off shel] 3-point
function (Tt/nﬁA,,) we have the option to either use free fields with the "bare”

& more systematic treatment we refer to an appendix.

In passing we mention that the Gell-Mann Low representation for the cor-
relation function of Heisenberg fields (for a scalar neutral selfinteracting field)
has the form:

(TA(z1)... A(z,)) = 2~ (TAo(z,)....Ao(z,.)e" W<A°(=>>“=)Pm (4.34)

divergence. Invoking current conservation (or gauge invariance) only a logarith-
mic divergence remains in Tuv- A closer look at the electron selfenergy term 53
reveals that the divergence is also logarithmic and the same is obviously trye
(by power counting) for Ty toop. In the remaider of this section we Present and
explain the result of the renormalization on the second order formfactor, The
Presentation of the techniques and the actya] calculation will be deferred to the
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Dext section. We collect the results (omitting tildes in Fouriertransforms):
OL(k) = i(k,k, — uk?)x(k) with: (4.35)
2
Dy = _af.1 2m? ] Q)
(k) = e {+3 +2(1+ e )[zarccotz - 1) 2y

4m?

where z = (? - l)* for k? < 4m? apg anal.cont.,
@ _ a A?

o { (b-m)1 +1n 5)+2m%}h’xa(1 -2

(2) = — ¢ 2)? 3 2 .2 (2) - .37
7o) = o - [y (1~ £5)+ 22527 }Hm% (p-m) (4.37)

: 3a A? (2) _ a1,  A? w9 u :
with ém = 4—'m(ln m + 5), Z, = 2'—’_(2 ln; +ln§ + 1 +0(;)) (4.38)
'. 1 4
T (e®) = ToFioep0) + 50,0" G () 4+, B (4.39)

$
F,(oa(ﬁ) = g {(ln ﬁ + 1)(6 coth g ~ 1) - 2¢oth 8‘4 X tanh ydy - gtanb g}

« 8 w2
Gf:o)p(a) = 2% sinh @ with 92=—4mzslnh25 6 : "rapidity

Here Aisacutoffie. a formal device which cuts off certain divergent momentum
space integrals in a Lorentz-invariant manner. Although A carries po direct
pbysical significance (and will be removed shortly), it is important that the A —
dependent terms have at most a polynomial P-dependence j.e. they are of the

a "photon-mass” 4 into the A, propagator retaining at the end only the leading
contribution for smal] #. Note that the A-—dependent (unrenormalized) Tis
infrared-finite (B contains a compensating contribution). In T there is no such
compensation. We have separeted the A cutoff dependent §m? and B terms in
X because the adiabatic principle fixes the counter terms in Wadias to be :

Wer = 6mPgy _ By py (4.40)

This leads to a modification (renormalization) of Z. We already noted that the
resulting T, 4, is the A-independent content of the curly bracket. Insertion into
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the form formula (..) gives 4(p')T, . ,u(p) = Oi.e. the renormalized contribution
vanishes on the mass shell p=m3 Enforcing the charge normalization for

the diagonal matrix element:

ﬁ(P) 53)1-‘;“(1’, 83) = ﬁ(pa 53)7;4“(’)’ 53) (441)

we also eliminate the A—dependence in T, pot and Ly,toop. The result is:
i
I =y, F9) + T ow "G (6) (4.42)

with F and G given by the previous formulae in the regime ¢? < 0 and every-
where by analytic continuation (as 7(¢?) and X(q) they can be represented by
analytic functions with a cut on the real axis. According to the previous section
we obtain for the anomalous contribution to the magnetic moment;:

Han = 5=(F(0) + G(0)) = e (4.43)

Note that only the infrared-finite G contributes to the zero Taylor term.
The calculation of the Lamb-shift is more complicated computationally (since
atomic physics enters) as well as conceptionally. Here one is interested in the

energy part one uses the above formula. It turns out that the main modifica.
tion consists in replacing the Sp(z — y) function by Sr(z,y, AST*) as well as a
so-called "tadpole” term involving:

(0 |jou(z, A9|0) = Try,Sr(z,z, A5

The latter occurs because the charge conjugation invariance, which prohibits
any vacuum expectation with an odd number of j’s, is broken by the external
field. This new term requires a tadpole counter term. The Sp(z,y, AZ*!) only
involves Dirac theory. The high energy part is calculated in first order of Agt

SEN |h.e.= ie / / &*pd®p'a(p’)L, (p, En;p'En)u(p)At™(p - p')
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The I, is almost the previous form factor I except for the fact that the hydrogen
wave functions push it slightly off shell. One replaces this by the on shell T.
The infrared dependence of the latter causes a problem. One solution (Itzykson-
Zuber) consists in converting the unphysical photon mass u into an infrared
photon energy cutoff K via use of the soft bremsstrahlung. K is than used to
define an upper integrarion limit in §E |, whereas §E |n.e.1s calculated from
the previous formula with p in the formfactor Ty being replaced in favour of K.
The result for the s-p splitting in hydrogen is:

a’m | AFE,, E_*_l
6x a?AFE,, 30 ' 8

$E,, - 6Eg,% = (4.45)
Here the A E's are suitably avaraged energies of the hydrogen atom (only numer-
ically accessable). This result corresponds to the famous value 1052,19 MHZ.
instead of a photon energy cutoff one may also base the division on the decom-
position for the photon propagator:

L __ 1 o1 )
E24ie B2 - 24" ‘B2 i k? — p2 4 4

The first part leads to the T contribution whereas the second faster decreasing
part enters the atomic physics calculation. Again the infrared singular terms
cancel. This somewhat more attractive calculation (invariant cutoff) can be
found in the first volum of Weinberg’s book. Other physical problems related to
the formfactor are the radiative corrections to the Coulomb scattering i.e. the
second order correction to the Mott-formula and the bremsstrahlung correction
to the Mott formula. Both are seperatly infrared divergent for # — 0, but
their joint cross section (for fixed photon infrared resolution) approaches a finite
limit. This is a special case of good infrared behaviour of photon inclusive cross
sections which are the principle observables of QFT’s involving photons.

In this section we met two slightly different reasons for renormalization.
One is entirely physical: if we describe matrix elements between particle states
(i.e.on shell quantities) we must use the Wadias as our interaction, independent
of whether the counter terms have infinite coefficients or not. There is no other
operator description for such quantities then the one in a Fockspase with the
correct mass. In the next section we will study off shell quantities which do
not require W,4iq3. Any auxilary mass Fockspace may be used for their pertur-
bative evaluation. It will be shown later that scattering theory reconciles the
description of on and off shell quantities. The Hilbertspace for scattering the-
ory requires a reparametrization from the off shell auxilary mass to the physical
mass as well as a multiplicative adjustment. In momentum space the difference
between these two type of quantities looks deceivingly simple: one just sends
certain p-variables to the physical mass shell. In x-space the distinction looks
more dramatic: it is the difference between global (particles involve asymp-
totic limits) and local quantities. In algebraic QFT it corresponds to the local
equivalence of algebras which belong globally to inequivalent (different charges)
representations(see later sections).
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We end this section with some formal remarks on how to use the above time-
ordered formalism to obtain perturbative correlation functions. As a prototype
theory which is free of infrared problems, tensor-and spinor-indices etc., we take
the model with W(x)::Ao(x)‘:.Previously we have seen that the Gell-Mann Low
representation for time ordered n-point functions has the following form:

(TA(z))... A(zp)) = lim (TAo(21)....Ao(znye’ v<=>W<=>“*>”' (4.46)
9(z)—g o

The subscript 0 on the right hand side is a reminder that the free field expres-
sions are to be evaluated in the Ag Fockspace and the superscript v.c. indicates
that ”vacuum.bubbles” in the Wick-ordering must be omitted. We also men-
tioned the extension method of distributions which succeeds to give an iterative
definition of the expanded right hand side. More popular with phbysicists (but
not necessarily more physical) are the various regularization methods which we
will dicuss in the next section. Let us consider the Purely formal aspects of the
A* model. This time we introduce counterterms W. solely for the elimination of
the divergencies which arise from the removal of the unphysical regularizations:

-

W = g:48:.4+w, (4.47)
W. = sm?z. A3 +2(: 8,A00" Ay ~ m?A} ;) +9(Z, - 1): 4.

The claim (proven partially later) of renormalization theory is that 6m2.Z and
Zy can be chosen such that the correlation function stay finite in the limit of

4.4 Invariant Parametrizations, Regularization

The x-or P-space integrations of perturbation theory extend over noncompact
regions and are difficult to perform in their original form. An efficient formalism

l - -] . .
P?~m?4ie /o e“‘(P’-m’-Fu)da (4.48)
1 —_ b+m —_ *® ia(p’—m’+i¢)
b—-m+ic = iy = (b+m) o © da

where the ic provides a damping factor for the upper integration limit. Applying
this representation to the second order vacuum polarization we obtain:
2 d‘P T"‘Y”(ﬁ + m)‘Yy(b— ﬁ + m)

@ LT~ m? + i)~ B = 3 1)

(k) = —e
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_ ap [pu(p~ ) +{s & v} =g, (p? ~p- k — m?)
- '“2/ (27)1 { (P* — m? +ie)((p - £)? = m? + ie) }

dp [0 8 8 & 2}
2 —— ————— e—— — — e Se—
@n) {6:“ oy TV - gnlg - g0+ m)

x/]odmdazexp’.{ a,(p’—m’+ie)+a,((p—k)2—m2+ie) }(4'49)
0

+z-p+y-(p-k) 2=0=y

where in the last step we used the a-parametrization and eliminated the polyno-
mial in the numerator by differentiation and setting the auxilary variables zero
at the end. In this form the p-integration involves easy to do oscillatory Gaus-
sian integrals and the original divergence has been shifted into the a-integrals
as divergencies at a=0:

ia wda daja,a; 2(kuk, — g, k%)
= = faas v Y ota R ¢
Tur(k) = x /'o/ (o1 + a3)* { —9uv (kz + [rn2 - ] (a4 :2’) } (4.50)

ajt+ay ayay

oa1a

X exps
P {01+02

Here we split the polarization into a transversal and longitudinal part. Note
that the transversality property:

Fr.(k) = —e3/(£§4Tr(ﬁb_';+i€‘,’, - ‘_lm“_e) (451)
_ d'p 1 1 2
- _82/(21)4Tr7'(p-ﬁ—m+ie—ﬁ—m+i€)—o

does not follow because the translation of integration variables is not allowed.
Instead of enforcing the transversality condition by "brute force” (vanishing of
the longitudinal term) we may also use regularizations which maintain transver-
sality (gauge invariance). There are two gauge invariant methods: the Pauli-
Villars method of auxilary fields and the more recent dimensional regularization
method.” The P-V method adds fictitious spinor fields with masses m; = \im
and strength C; :

rf,v(k, my,my...) = x,,(km)+ iC;r,,(k,m.-) (4.52)

=1

The power counting of the integrand indicates convergence for:

1+ zn:c.- =0 (4.53)

=1

For sufficiently convergent integrals one can shift integration variables and ob-
tain the transversality of rfy . The tranversal 15)' has the following a-representation:

‘fy(k) = —i(guk? - kyk,)x(k) (4.54)
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- < a) 0201022 ) {3 212 g
I’(k) = - /o/m‘=o C.exp:{k 0—“]4'02 (m, 35)(01+03)}

2 7 [ -} d n
= Ta//daldazmazé(l—al-a,)/ fzc‘.expip {kzalaz—m?-f-ie}
0 =0
0

where in the last line the identity [dpé(p-a; ~ az) = 1 was used to introduce
a radial variable p. By appropriate choice of the C; one improves the small
p bebaviour. For our purpose it is sufficient that the above relation 3o Ci
=1+ 37 Ci =0 leads to the vanishing of the sum in the integrand. For this
n=1 suffices. Higher order zeros could be obtained by requiring higher moments
to vanish as well i.e. 3, m!C; = 0. The p integration gives (considering only
leading contributions for large A;):

. © dp &
rh_n(m)[ 2y

=0

n
}%;C;(‘elc ]DU ,a:r(k’alaq-ml’) (455)

+/ dacio(lh‘t)lno)
0
ayagk? A2
= —{ln(l—T)—ln F} (4.56)
L A?
with ) "C;lnA? = ~ln— (4.57)
1

This yields the Pauli-Villars regularized vacuum polarization:

a 1 2 . 2
~#V(k) = -27/0 drz(l-z) {ln(l -z(1 —z)%)—ln %} (4.58)

a 2m? 1 A?
~3 {2(1 + —3-) lvarceoty - 1] + 3 —ln ?}

52
- 4m?

with y (F - 1)}

Another more recent regularization scheme which also maintains gauge invari-
ance of x,, is the dimensional regularization. This method only works in the
euclidean formulation of perturbation theory which will be discussed in a later
section.The regularized expressions for iT and T, are also conveniently derjved
in the a-parametrization. since the integration over the loop momentum is
always a simple (oscillatory) Gaussian, we write directly:

[+ 4 daldaz a . a, 2 2 2
27//(01+02)2(2m a; +a; F)exp {,(01+a2p T ‘_o.""m'}» (4-5_9)

Z(p)

a ® dp is(a _ L 2
= —f X doydazé(1 - a; - a3)(2m - a, b)eterow’—aiu’-a;m?)
2o »p
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As in the previous case we add a PV regularization term but this time through
an auxilary "heavy photon field” of mass A2, Again only retaining the leading

term, we obtain the answer by the substitution(Cp = 1,C, = -1):
/ Qcip( above ) — / _i‘f(cip( above) _ e—l'pml\’) (460)
P

The p—integration and one of the a~integrations say a, can be done and we
are left with the following integral representation:

zA?
(1-z)m? - 2(1 - 2)p? + zpa? — i¢

E(p,A) = 2%/oldz(2m— z $)ln (4.61)

If we stay within p? < m? we may set u = 0 and obtain the explicite results

2

__g{ o 45 (2m ~ 1 )+ 2m(1 + 22522 1n(1 - £3) }
B 7= S R S )

This is a matrix-valued analytic function in the cut p?—plane which has a di-
verging derivative on the mass shell P = m? as a reminder of the infrared
problem. By keeping x finite, the mass shell limit has finite derivatives.

The regularization of the one particle irreducible second order contribution
to the vertex function 4.31 is more involved since as a result of the presence
of three propagators one has to introduce 3 a’s. The a-representation for the
three denominators reads as:

d‘q eigz
(=) (>~ p2 +ie)(g? - 29 - q + i€)(¢* - 2p- g + ic)

1 da)dasdag { 2, (§—ap - asp)’}
(47)? ///(01 +a3+ag)? CPTH A+ a1 + a3 + a3

T (4.62)

(4.63)

where the exponential was added for the same reasons as in the previous case
of x,, namly to convert the polynomial q-dependent numerator into a differ-
entiation acting on the variable x. The (PV type) regularization can be again
implemented through the photon propagator. Since there is no essential new
idea involved but (even if one passes from the off shell vertex to the on shell
formfactor) only some lengthy calculations, we skip the details in the derivation
of formula ?7The divergent A-dependent parts are evidently local (polynomial in
the external momentum variables) ant therefore can be compensated by counter
terms of the following kind:

Wes. = ~3(Zs = DF*+ (2=~ D5 B ¥ mi) + Zybmip— (22 - 1)5 g

(4.64)
Finite parts in counterterms would remain unspecified unless one imposes nor-
malization conditions. Natural normalization conditions are the conditions
which result from the adiabatic requirement (a must for on shell quantities)
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augmented by the physical charge paramertization of the formfactor. The reg-
ularized formulas of the Previous section 4.35have been written in such a way
that the natural normalization means omission of the §m and Z-terms. It is
easily seen that the remaining second order 7, and T terms have the correct
zeros required by the adiabatjc principle resp. physical charge parametrization.
The proof of n** order renormalizability, i.e. the statement that the old Jo-
cal counterterms iterated together with the original W in the S(g) expansion
lead to higher order correlation functions which in turn may be liberated from
their infinities by new higher order counterterms of the same local structure, re-
quires a significant extension of the regularization formalism. In an appendix we
will present a proof in the spirit of the Bogoliubov-Shirkov and Epstein-Glaser
method.

choice of a particular Fockspace for the definition of local operator algebras,
In some sense the infrared singularities of Maxwell like (gauge) theories can be
interpreted as a perturbative indication that the theory is not compatible with
the zero order particle content.

We have Previously shown that the description of eg (m=0,h= 1) repre-

the use of gauge fields in the form of vector potentials is a harmless and usefu]
and even natural step, which in addition gives rise to pretty mathematics (fibre
bundles, differential geometry...), the use of covariant vector potentials for the
(m=0,h= 1) representation leads outside quantum theory to unphysical de-
grees of freedom in indefinijte metric spaces (ghosts). One needs these objects
not for conceptual reasons but only in order to define the perturbatively correct
long range coupling in a scheme which requires covariance and locality for un-
physical quantities for the sake of easier calculations. The problem would not be
$0 serious if the Prescription for the elimination of these undesired companions
(the prize for using covariant vector Potentials) would be a kinematical proce-
dure independent of the interaction, but unfortunately this turned out to be
wishfull thinking. In the case of QED the Prescription of Gupta and Bleuler de-
fined a positive semidefinite subspace, but in the more complicated nonabeljan
gauge theories this did not work. The formal geometric setting of path integrals
suggested (Faddeev-Poppov 1967) that in addition to the unphysical (scalar and
longitudinal vectormesons) degree of freedoms one should introduce s=§ ghosts
with the wrong relation between spin and statistics. Whereas the Gupta-Bleuler
approach at least stays in the vicinity of the Wigner representation theory, the
relation of the Faddeev -Poppov scheme to Tepresentation theory is less clear. It
was shown later that these formal ghost objects carry a pew formal symmetry
(Becchi-Rouet-Stora 1975) which allows to organize the perturbation theory and
extract the ghost free quantum physics (modulo infrared Proplems) in an effi-
cient way. We will formulate this procedure directly within the S(g) interaction
operator approach without using differential geometric properties.

There exists a widespread misconception that a Lagrangian quantization
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viewpoint is important for the intrinsic physical understanding of interactions
in QFT. From such a point of view the ultraviolet divergencies appear as se-
rious flaw of perturbation theory. The history of renormalization (see Laurie
M. Brown: "Renormalization”, From Lorentz to Landau (and Beyond)) seems
to favour such thinking. After all, Renormalization arose from some remarks
of Kramers who suggested to use similar distinctions between bare and physi-
cal masses (and other parameters) in QED as they were used by Lorentz and
Poincaré in classical field theory at the beginning of the century. selfenergy.
Additional support came from the observation that for a few models (e.g. A4
in d=1+1) which were "well-behaving” in the perturbative treatment, it was
possile to prove their mathematical existence by extending the perturbative
method. Additional support in those cases comes from the functional integral
method (based on the euclidean Feynman-Kac representation) which furnishes
a rather direct relation between QFT and classical physics, more tight than
canonical quantization. However the recent progress in a nonperturbative un-
derstanding of interactions from a different starting point (sometimes called the
"bootstrap approach”) has cast grave doubts on the universal correctness (apart
from those few exceptions) of such quantization approach to interactions. We
will return to this important point at a more appropriate place.

It also should be stressed that renormalized perturbation theory does not
lend credibility to the idea of a physical cutoffi.e. a A which cannot be absorbed
into the renormalization constants but rather enters the physics. As we will see
more clearly in a general critical review at the end of the monography, a phys-
ically interpretable nonlocal theory with an elementary length does presently
not exist.

4.5 Specialities of Perturbative Gauge Theories

Gauge quantum field theories are (ever since their nonabelian generalization
was shown to be reconcilable with perturbative renormalization at the begin-
ning of the 70°**) mostly presented as the quantized counterparts of classical
field theories in the differential geometric setting setting of fibre bundles. This
standard approach can be criticized on two points. On the one hand, as we
learned previously, the peculiarity of quantum zero mass phenomena lies in the
special structure of the the m=0 Wigner little group (i.e. the nonfaithful rep-
resentation theory of the noncompact E(2) ). One hardly can claim that the
differential geometric gauge principle of Lagrangian field theory follows from
this quantum observation. This would not be so bad however, if the use of this
principle would have led to a conceptually clear and computationally success-
ful new theory. But (if such historical comparisons in physics are allowed) the
present state of gauge theory versus the largly nonunderstood physical reality
behind the standard model in relation to a yet unknown future theory may
turn out to be similar to the Bohr atomic model and its relation to QM. This
lack of understanding is also visible on a pure theoretical level: e.g. it is com-
pletely obscure how the physical (gauge invariant) correlation functions reveal
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that they come from the implementation of the gauge principle or whether there
is an intrinsic meaning of gauge invariance. In the words of one of my collegues:
"success (the phantastic precision of QED effects) and desaster ( the mentioned
problems) may lie close together”. Such situations in physics are usually the
germ of future progress and I have written this section with this hope in mind.

Following the line of arguments in section 5 of the preveous chapter, one
should start with S(g) = &%, W(g) = [9(z)j*(z)Au(z)d*z + ...where all the
fields are free fields in Fock space and the dots denote possible "nonabelian”
contributions containing the back-reaction of A, on the source. Hier A, is a
nonlocal potential of the form 3.158. As a result of the nonlocal gauge term
under L-transformations 3.159 there is an appearant clash of the localiy of the
supp.g interaction W (g) and partial action of Lorentz-transformation inside the
support region. In other words the surface term in W(g) resulting from the
transformatiom 3.159 seems to be nonlocal. We will not persue the problems
of this indefinite metric free formulation because it does not yet exist in an
elaborated form.

Instead we will follow the more standard approach of working in an extended
indefinite metric auxilary space. The treatment will however not be identical
to the standard geometrical functional integration quantization of " gauge theo-
ries” since we do not care about of differential geometric elegance which shovels
important physical concepts under the rug?. This is done because we believe
that the "bumpy” method is less prejudicial as far as a discovery of a future
more physical elegance is concerned (i.e. we are not blind against elegance but
we expect it at a different place from differetial geometry and fibre bundles. 1
am convinced that a different more intrinsic way of introducing s=1 long range
interaction through modular localization (which generalizes the peculiar dual-
ity structure mentioned in the section on the m=0 s=1 Wigner representation)
will be found in due time. Therefore we will emphasize the statement that in
perturbation theory the consistency of vector fields with the principles of local
quantum physics alone (and not any "gauge principle”) determines the struc-
ture of the interactions, but we will do it with all the awareness that there is
an unsolved deep nonperturbative conceptual problem hidden behind the gauge
issue.

Leaving this for the future, we remind ourselves that the use of a point-like
covariant vector potential A,(z), as one needs it to describe the characteristic
long range coupling (minimal e.m. coupling), requires to forget the positivity
principles of quantum physics (a step which is not yet necessary if one only treats
matter in external potentials) in intermediate calculations and work in an in-
definite metric (Pseudo)Fock space. An equivalent method is to use an auxilary
Hilbertspace and to work with n-adjoint fields and pseudounitary representation
theory. The fact that there is no (nonperturbative) controllable mathematical
framework for "5-star algebras” makes the connection of the perturbative pre-
scriptions with an existing QFT even more flimsy than it is already outside of
gauge theories. In addition the indefinite metric coming with the extension of

2One may think of Einsteins aphorism: "Eleganz ist etwas fuer die Scheider”.
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the (m=0,h=1) Wigner representation theory to vector potentials (via a Weyl
”pseudo—funct.or”?) and the identification of a positive semidefinite subspace
turns out to be insufficient for nonabelian gauge fields. Although historically
a cure for this last additional deficiency has first been seen in the geometric
functional setting (Faddeev-Poppov), we will Present it here in the perturbative
operator formalism. Last but not least we discard matters of esthetical beauty
as gauge theory in the spirit of classical fibre bundles because they suffer se-
vere damage from the renormalization procedure and donot reveal the physical
content. In addition from the conceptual physical point of view the really ugly
feature of the formalism which will be presented below is not the absence of
estetical gauge principles based on differential geometry, but rather the permis-
sion of indefinite metric resp. pseudo-unitarity. As the elementary interaction
we take SU(n) free fields coupled in first order as:

9 o |
W= .% D Padhgy, s A i9fit(3 : AuiAv; FY* : +Gh) (4.65)

The reason for the nonlinear term is that we would like to include the possi-
bility that not only the matter field ¥ but also the (interaction)mediating field
A, participates in the source (the equality of the coupling constants is already
anticipated). With the linear relation between A, and F,,, this is the first
order (linear part) of the Yang-Mills interaction, apart from an auxilary term
Gh which we need in a moment in order to implement a quantum gauge princi-
ple which is necessary in order to recover a positve semidefinite subspace (from
which one can form a Hilbertspace by equivalence classes) at least in the per-
turbative sense. If one uses the functional quantization approach of Faddeev
and Poppov, the Gh term would be (in the Feynman gauge):

Gh= Ay : §;8E, _ (4.66)
where §;, E,- are n-component auxilary massless free scalar field with anti-commutation

relation ( an object which violates the quantum structure even more severely
than the A4,):

6@ = oo [ raumer) e
4 = g [ BRI 4 e
{ci.ap). 6 5(0')} = 6ij60p26(p — p') (4.68)
3 S a0, (k) + dPoan(k), =123
(2 m’f 2w (e I‘( M M s
ol = { oot d el — reay(k), u=o (469)

[au(k), a3 (K)] = 6,,206(k - k'), i.e.ajo # 10,6l 0 # Ciia
At . = nA*y, A,?'” = Ai u(2),€!(z) = §:(z) with:

wion = { S0 2T = (3 1)
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The guiding idea is now to look for a "gauge principle” in the form:

n
Q Ta(zy....20)] = iZ&:Tn,g(zl....zn), Q : conserved charge (4.70)
k=1

S(g) = 1+Z;l!-/d‘:l..d‘.‘tnTn(zl~-zn)g(zl)"g(zn)

where the T, are the iteratively renormalized T-products of the interaction
density W. The candidate for Qis:

Q= / Prxi(2) Toilz), xi(z) = P Ay @1

The form of the gauge generator Q is suggested by analogy with the Gupta-
Bleuler treatment of QED in which Q(A) = [ d®zx(z)A(z) with A a c-number
solution of the wave equation generates the classical gauge transformations.
Let us first argue that the above commutation relation arise and insure the
existence of a semidefinite metric subspace The difference to the classical A(z)
gauge transformation is that ¢; is required to be a pseudo-quantum field in order
to obtain in first order:

@7n] = 17, (4.72)
Y= ={igfe,-k(Aa.pF:“E,--%6.-6,8”&)“91'.-"6.-}:

Note that equality of the coupling as well as the nessecity to add the "ghost-
term” to the interaction density is a consequence of the first order gauge princi-
ple. The necessity to add the quadratic term g24AAAA as in standard geometri-
cally motivated gauge theory would show up in the next order. In the same vein
the nilpotency of Qie. Q2 =0 is required by nonabelian consistency. In fact Q
is the Fockspace analoge of the BRST-charge. Before we go into technicalities
it may be helpful to present the physically relevant results.

¢ The perturbative gauge principle is sufficient (I believe also necessary) in
order to reconcile local couplings involving massless vector fields with the
principles of local quantum physics.

o If the vector mesons are massive, the same consistency requirements lead
to the additional perturbative presence of another (bosonic) scalar field
and one obtains the standard perturbative Schwinger-Higgs picture of bro-
ken symmetries through screened charges. As expected from the alge-
braic viewpoin, an intrinsic physical meaning to the notion of "sponta-
neously broken local gauge invariance” unlike in the spontaneous Nambu-
Goldstone breaking does no show up. There are however nonperturbative
arguments (B.Schroer ”Motivations and Physical Aims of Algebraic QFT
to appear in Ann.of Phys. March 1997) which suggest that there may be
an intrinsic understanding of the Schwinger-Higgs mechanism in terms of
screened semiinfinite string-like charges which could reappear for short
distances.
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The only exception is the case of abelian vectorpotentials (no contribution
to the source) in which case the perturbative existence of a symmetry-breaking
Higgs field is not a necessary consequence of a massive A, (Remark: in the
massive abelian theory without Higgs scalars the fermion field is nonrenormal-
izable and only the current- and the vectormeson- correlation functions only
suffer logarithmic corrections to their canonical behaviour).

Before we go on, let us give a (somewhat formal) argument why these com-
mutation relations suffice to secure the existence of a physical subspace. Besides
the gauge charge Q we may also define a » ghost-charge” (summation convention
always used):

G = /daz €006, G¥P=0 (4.73)
= [Tt

Different from the pseudo-selfadjoint Q, G is a positive definite (pseudo)particle
counting operator. Q and G commute, so formally (forgetting that Q is only
pseudo-selfadjoint) the physical subspace MHpnyscan be represented as an inter-
section of nullspaces:

Honys = {¥ | Q¥ =0AGy = 0) (4.74)
and since the G-nullspace is a subspace of the Q-nullspace:
KerQ = Hppy, ® H;;,w (4.75)

where the complement is taken inside K erQ. Using now Q2 = 0 and {Q, Q} =
G with:

= &3k
Q:= / o0 (Cia(k)ei 2 (k) + c; o (k)es 1 () (4.76)
We may now derive the following equation between projectors:
P(Hp,,) = GG'P(HA,,)=(QQ+ QQ)P(H;,,) (4.77)

~ P(H},,) < P(ranQ) ~n P(H},.,) = P(ranQ)

where the last step uses the nilpotency Q% = 0. This characterization of the
physical subspace in terms of projectors suffices in order to derive the gauge
relation 4.70Before we go into these technicalities we should explain why this
relation insures positivity. Formally this is so because the S(g) in the adia-
batic limit (if it exists !) g— 1 commutes with the gauge charge or in other
words, Sagia commutes with P(KerQ) and P(H,;Lh +)- For massive gauge the-
ories (Schwinger-Higgs theories) the adiabatic limit exists perturbatively. In
the massless case the infrared divergencies force one to shift the extraction of
a physical theory to the construction of sufficiently many local objects with
the commuting property. The gauge relation of S(g) is then expected to be an
important ingredience in a complete proof.
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Presently this formalism has not been elaborated to the same degree as
the standard gauge formalism. But the second order calculation shows that
there is no need for a gauge principle; the interactions are fixed Just by the
physical consistency of theories in which vector particles contribute to their
own source! The main purpose of this ”dirty” presentation was to counteract
the geometric mysticism which has developped around gauge theories with its
deceiving elegance..

4.6 Perturbative Thermo-QFT

Justification for "thermal” Feynman-rules, the Bros & Buchholz framework of
relativistic KMS, instability of supersymmetry against temperature,
Left out, because of lack of time.

4.7 Functional techniques

Formal perturbative Feynman-Kac representation of perturbative Schwinger func-
tions. Feynman-Kac representations in Schroedinger theory. Basic facts about
#3. Mathematical and structural limitations of F.-K. representability. A partic-
ularly useful application: the F-K representation of d=1+1 order-disorder fields
and solitons (ezample the @*~kink). Limitations of F-K representability: no
such representation for chiral conformal theories and more generally for fields
with braid group commautation relations.
Again deferred because of lack of time and beauty of Brazilean beaches.

4.8 Interactions with External Fields, CST-Problems

Interactions of quantum fields with external (classical) fields played an impor-
tant role in the development of full QFT. The simplest situation of this kind
one meets in case the quantum fields are free. In fact free Dirac or Schradinger
fields interacting with external electromagnetic fields preceeded QED, and led
(with some hindsight concerning interpretations, see the introduction in Wein-
berg’s book) to many correct formulas. If we look at these external field prob-
lems from the point of view of Poicaré-invariant QFT we notice a conceptual
problem. Since the vacuum and also the particle states are defined in terms
of P-covariance properties, it is not immediately clear how one should define
such reference states if P-covariance is broken. In an elegant formalism like
Schwinger’s, there is not much chance to ask such a question since the for-
malism itself takes care of it (see his treatment of the astrophysically relevant
pj—pair creation in e.m.fields). A closer look reveals that his reference state
is the "adiabatic vacuum” which in a more mundane formalism corresponds
to the approximation of the actual external interaction by a sequence of softly
switched on and off external interactions. Wheras this is eminently reasonable
for e.m.interactions, this is generically speaking unreasonable for problems in
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curved space time (CST) i.e. with external gravitational fields. Since the Hawk-
ing radiation effect belongs to this class of problems, these structural questions
are not without physical interest and relevance.

In the following we will briefly scetch some ideas (Radziskowski, Brunetti,
Fredenhagen,Kéhler..) which not only led to an answer for the correct refer-
ence states, but gave a framework for the renormalized perturbatjon theory
of interacting quantum matter in CST. Even if, as in the case of the present
author, one is not an actively working specialist in this area, one should take
notice for the following reason. General QFT as it stands, is not quite that
perfect quantum counterpart of the classical Faraday-Maxwell theory with its
”Nahewirkungsprinzip”. Wheras the algebraic part (the net theory) is local,
the energy positivity and the vacuum homogeneity are very nonlocal stability
requirements. This is the cause of the above mentioned difficulty. Therefore if
QFT in CST requires to think about a substitute, this may be very beneficial
for Minkowski space QFT. Since all of the renormalization schemes use ejther
euclidean space or momentum space, one also is forced to rethink the renor-
malization formalism. Looking at the literature on notices two very strange
facts: almost all the papers (before the above work) on the subject are about
euclidean QFT, and nobody ever tried to define a Wick-polynomial (needed for
the energy-momentum tensor etc.)

Since the answer to both questions requires the use of somewhat unfamiliar
(including to the Present author), let me only make some qualitative comments
on the microlocal (or Fourier integral operator) analysis (developped by the
mathematicians Hérmander and Duistermaat around 1971) which is then used
in the formulation of a ” microlocal spectrum condition” in QFT.

The basic idea is to refine the local analysis of singularity structure (the

Fu(€) = (u, emit-01g) (4.78)

where (-, -) denotes dual pairing. This is a fast decreasing function in § as long
as supp¢ does not touch the singularity points. If suppu on the other hand
does extend into the singular region of u, the singularity may be directional
dependent and in certain §—directions one may still encounter a fast decrease,
Therefore one uses the following definition (V denotes the euclidean base space)

Definition 3 The wave front set, WF(u), of u is the complement in V x
R™\ {0} of the points (20,£o) in cotangent space V x R™\ {0} s.t. for each
¢,36 nbhd. U x T with T conic (directional) nbhd. of §o and an N> 0 with:

(weOg) < Comtr+i)™, weer (4.79)
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Returning to physics, we recall that as the result of the positive energy prop-
erty, (unordered) correlation functions belong to a class of distributions which
can be freely multiplied. For example the product of two two-point functions
wi(z,y) = Wi(z - y) is again a well-defined distribution in the same class be-
cause the convolution of their Fourier transforms with the V'spectral support
amounts to an interal over a finite (phase space) region. Using the Kallén-
Lehmann spectral representation:

wie)= [ At mpi(n)de, = 1,2

the convolution of the pis extends over a finite mass region. This property does
not hold for time-ordered or retarded distributions since they do not posses a
spectral support in momentum space.

The main property of the wave front sets of distributions is that they allow
a simple criterion for the existence of the product: the conic nbhds. I'; must
add up to a resulting conic nbhd. in V x R\ {0} . The coordinate free adap-
tion to densities (distribution valued differential forms) on manifolds M is easy.
The wave front sets are now cones in 7°M and they behave additively under
multiplication in the following sense:

W F(uzuy) C WF(uz) @ WF(u;) UWF(uz) UWF(u,) (4.80)

The product exists if the zero section in T M does not intersect W F(uauy).

Let us now test this idea for free QFT in CST. We start with the structure of
the algebra generated by a Klein-Gordon field ¢ in a globally hyperbolic space
time:

(9"°0,0, —m*) d(z) = 0, [4(f),8(9)] = E(f®g) (4.81)
Vf:g € Cgo(M)i E(z) y) = Aav(z,y) - Ant(z’ y)

It is defined uniquely in terms of the manifold data i.e. the ret (av) functions are
uniquely determined by the geometry whereas the onordered and time ordered
functions are determined by the states. One now defines a wave front set for
the (yet unknown) two-point functions ws:

WF(“’Q) = {(z,k;:', —k’) € T.Mz\ {0} I (zrk) ~ (z,vkl)’ ke ‘-,4'} (482)

where the equivalence relation ~ means that there exists a light-like geodesic
from x to x’s.t. k is coparallel to the tangent vector to the geodesic and k’ is its
parallel transport from z to z’. This physically appealing local requirement for
the selection of physical states was shown by Radzikowski to be mathematically
equivalent to the more global Hadamard condition (an older recipe to obtain
physical states). Free field structure, i.e. the Wick combinatorics means that
the higher point functions are products of w, i.e. that the states w on the
algebra 4.81 are so called quasi-free states on a CCR algebra. Using a theorem
of Hormander about the product structure of distributions® with a known wave

3Distributions allow a pointwise multiplication provided the convex combination of their
wave front sets do not meet elements of the zero section.
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front one then proves the existence of the n-point functions ard a formula for
their WF set. In a similar vein one shows the existence of Wick-products as
e.g. : ¢" :. As in the Minkowski case, the time-orderd propagator:

iEF(:r y) = U2(z) y) + E"ﬁ(zl y) (483)

does not have the one-sided spectral structure in order to allow for pointwise
multiplication. Its wave front set is:

WF(Er) = {same,butz#z' ke Viifze Ti(z")} (4.84)
U{(z,k;z,—k),z € M!k € T;M\{O}}

where 7 (z') are the future/past of z’.

Actually the formula 4.82 turns out to be not general enough in order to
incorporate theories beyond free fields. The more general formula which does not
contain the restriction to light like geodesics and its stable (under multiplication
of n-point functions) generalization to w, which is most conveniently expressed
in terms of graphs with vertices z; and directed geodetic edges between them)
can be found in the work of Brunetti et.al.[?].

We still have to understand why the microlocal Spectrum Condition (uSC)
is not capable of unique selection of a state and what kind of family it selects.
A local spectral condition is naturally not able to single out states with global
symmetry. With one particular state in this family all other states in the same
folium (vector or density matrix in the same GNS Hilbert space) turn out to
share the same W F set. In fact the states with coalescing wave front sets form
exactly one folium of the set of all states on the C* —algebra A. That folium
contains of course states with different superselection charges, a situation which
is vaguely reminiscend of the "no hair” property of black holes. There are two
physical questions which enter ones mind. One is whether physical proper-
ties (corrections to electro-weak effects as anomalous moments, Lambshift etc.)
change significantly in one folium. For this one has to onderstand renormaliza-
tion theory and the implementation of physical normalization conditions (the
adiabatic separation or interaction discussed at the beginning of this chapter.
The other is whether the 4SC can perceive interactions. An affirmative answer
to this question would be extremely interesting even for Minkowski QFT (since
the global vacuum condition is not capable of such a distinction. Both questions
are presently open??.

The last issue in this section is how to do renormalization theory for in-
teracting QFT in CST (i.e. how to avoid euclidian- and momentum-space).
A framework which stays in x-space is that of Epstein and Glaser. The main
problem in its adaption to the present case is how to avoid translational in-
variance (on which EG rely heavily). Let us look at their starting formula for
the coefficients of the Bogoliubov Shirkov operator S(g) (see chapter 3) after
Wick-ordering;:

T:;....k.(zl'u“,z") - Eth....l.(zh .---,zn) X (485)
$" N (21)....64 M (2,) :
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In the EG approach it is crucial that Wick-products (i.e. operator-valued distri-
butions) can be multiplied with translational invariant numerical distributions.
The CST substitute is:

WPF(t,) €T}, to: time ordered (4.86)

where I}’ is a subset of T°M™ with a certain graphical characterization. The
construction of the time ordered operators T)¥1~*= is achieved by induction in
two steps. First one shows that T, for (z;....zn) € A, (the total diagonal) can
be patched together from all lower n T’s. Let us call this T, on M "\A, T?. the
second step (the more difficult one) is the extension the diagonal. For a detailed
presentation we refer to the recent literature.

The CST renormalization theory contains of course the proof for the renor-
malizability of the standard theory as a special case. If ones main interest is
the explicite calculation of individual Feynman diagrams in the standard the-
ory and not so much a structural inductive understanding of renormalization,
the approach in the textbooks (Itzykson-Zuber, Weinberg,..) is still the most
appropriate.

It would have been too nice if QFT in CST could furnish a gateway into
"Quantum Gravity”. After all, QFT in external e.m.fields was an essential
step towards QED. But unfortunately this does not seem to be the case and
Quantum Gravity continues te exist as only an enigmatic nice sounding word,
which presently lacks physical content.
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Chapter 5

The General Framework of
QFT

5.1 Model-independent Properties of pointlike
Fields

The conceptual situation of QFT after the discovery of renormalized perturba-
tion theory was at first somewhat confused. Despite the impressive agreement
of low order radiative corrections, the precise relations between particles and
fields as well as the mathematical consistency of QFT beyond perturbation
theory were ill understood. Most of the post renormalization progress was in
the area of structural understanding about the particle-field dichotomy and an
compilation of mathematically well posed and physically necessary properties.
These developments are often named with the names of the principle protag-
onists of those problems: Lehmann,Symanzik and Zimmermann (LSZ) in the
first case and Wightman in the second. The strong return of perturbative meth-
ods in the 70°** via the Standard Model and QCD only led to a temporary lull
" in the ongoing research on general structural properties of QFT, especially in
view of the fact that those nonabelian gauge theories after some initial success
(notably in the area of small distance behavior off mass shell) run into tough
problems which appear unsolvable in the standard approach.

We already have explained the relation between free fields and the net of local
algebras generated by them in terms of an analogy to differential geometry:
the fields are like coordinates and the pet corresponds to the coordinate-free
(intrinsic) approach to QFT. Many of the properties of fields appear in a clearer
physical light, if one thinks about them in terms of local generators. Therefore
let us list some properties (the main properties of the Haag-Kastler net theory)
of nets before we write down the (model-independent) postulates for fields.

* (i) There is a map of double cones O in Minkowskj space into von Neu-
mann operator algebras 4(0) which are subalgebras of all operators B(H)



CBPF-NF-026/97
~129~

in some Hilbertspace H:

A:0 — AO)
The C*-completion of this family yields the global C* —algebra Agya,; :

-Aqua:i= U A(O)
OeM

e (ii) The family A forms a "net” i.e. a coherent (isotonic) family of local
algebras:
if Oy C O3 then A(0,) C A(0,)

In case the local algebras represent observables one requires another physi-
cally motivated coherence property namely Einstein causality:

AO) c A0
e (iii) covariance with respect to the Poincare group. For observable nets:

a(a)(A) = A(AO + a)

The subsequent properties of fields and their physical interpretation is facil-
itated by thinking about them as coordinatizations of generators for local nets.
The main difference of the field approach versus the net approach is that prop-
erties of charge carrying fields are put in and not derived from those of neutral
fields. In the net approach charges (and their field carriers) are constructed via
the superselection theory. The latter approach is more fundamental and more
suitable in situations which are far away from quantization prescriptions and
Lagrangians (e.g. low dim.QFT with braidgroup statistics). In the following
we explain the properties of fields in the setting of Wightman. Here and in the
following we use the symbol A as a generic notation for collection of generating
fields but the standard situation underlying illustrations and proofs is mostly
that of one generating scalar field.

Properties of Fields:

¢ A HM-space and P-group

1. Unitary representation U(a,a) of P in N, P :covering of P
2. Uniqueness of the vacuum Q, U@ A)Q=0
3. Spectrum condition: specl/ € V4 ,the forward light cone.

e B Fields

1. operator-valued distributions: A(f)= J A(2)f(z)d*z, f € S(the Schwarts
space of "tempered” testfunctions) is an unbounded operator with a dense do-
main D such that the function (¢, |A(z)| ¥,) exists as a sesquilinear form.for

i CD

2. Hermiticity

With A also A* belongs to the family of fields and the affiliated sesquilinear
forms are as follows related: (¥, |A*(z)| ¥1) = (¥, |A(z)| ¥,)
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o C. P-covariance of fields: U(a,a)A(z)U*(a,a) = D(a~")A(A(a)z + a)

For observable fields only integer spin representations ( i.e.representations
of P ) occur.

¢ D. Locality: [A#(f),A#(g)]* = 0 for suppfxsuppg (supp are spacelike
separated).

¢ E. Stability of local algebras under causal completion: Alg(A,0)=Alg(A,0"),

where (for O convex) the causal complement is the smallest double cone
which contains O.

A weaker form of this requirement is the so called ”time-slice” property.

Comments:

The domain requirements on (unbounded) smeared-out fields A(f) are rem-
iniscent of properties which are required of generators of noncompact groups.
Their motivation here is entirely pragmatic; they insure that the standard cal-
culational methods of physicists are applicable. The more technical domain re-
quirements will be absent in the net approach. The latter only knows the very
fundamental (and physical) domain properties of the Tomita-Takesaki modular
theory. The existence of the sesquilinear forms for pointlike fields is the substi-
tute for the classical notion of field strength. The p—transforma.tion property
of the hermitian adjoint field is that of the comglex conjugate transformation
which is isomorphic to the antiparticle field: A(z) = CAM)* (z), C=charge
conjugation matrix.

The causality requirement strictly speaking applies to observable fields only
(example: electromagnetic field strength and currents but not to vectorpoten-
tials and charged matter fields). The restriction to local fields, which by defini-
tion obey the F commutation relations, is too strong in d < 2 4 1 (see later).
In d=3+1 all charge carrying fields are equivalent (by Klein-transformations)
to local fields. The strong causal completion property is the substitute for an
byperbolic equation of motion (which,due to ill-defined nonlinear terms is apri-
ori meaningless in QFT). Its formulation and exploration is more natural in the
algebraic setting where it simply means that A(O) = A(O") where the double
prime denotes the causal complement of a region (the causal future and past
shadows as well as the side-caps) which for convex O is a double cone.

Another physically important property which has been omitted here (but
makes its appearance in the net theory later on) is the nuclearity or compactness
property which is the QFT counterpart of the statement that a finite cell in phase
space can only accomodate a finite (in QFT a nuclear set of vectors) number of
degrees of freedom.

The most useful objects which one can form in such a Wightman setting of
fields are the vacuum expectation values or (terminology of condensed matter
physics) correlation functions:

N arzn) = (0[43(1)... A0 (zy)|0) (5.1)
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= W'SA'""'\')(G, wbnor) &=z zig

(0 |A<*x>(0)e-“’€x . AQ==1)(0)e=PEn-s 400 ) | 0

/."/Wr(»h'""\')(h----qn-l)e-i CRLALY: o PO o S

The spectrum property: spec(P)C V, evidently implies that suppW(")(ql gn-1) C

®"V, and, as a property of a Fourier-Laplace transform of a cone supported dis-

tribution the "tube analyticity”: W is boundary value of a function W(")(zl 2o

analytic in the tube 7(0-1) 5, = §; — in; with 5, € V, fulfilling the "tempered”
bound (assuring the temperedness of the singular boundary values):
k
+ 37 |z,-|’)
. )
(min; (47))

This tube analyticity together with the Lorentz-invariance of the W’s (a conse-
quence of the invariance of the vacuum and the covariant transformation prop-
erties of the fields) yields the invariance under the complex Lorentz-group L¢:

1
w,5-~>(z,....z,,_1)] < c( =Y )zl (5.2)
I

L = {A,B} A,BeSL(2C) (5.3)

£ = 0,2 = AzB*, %z, =inv.

This complex extension is a rather direct consequence of the previous analyticity
and the fact that the finite dimensional representations D(4:8) permit an ex-
tension to a transformation in which the undotted and dotted spinors transform
independently. the details can be looked up in the literature. L¢ has different
from L only two (instead of four) connected components: det=+. It takes some

additional calculations to prove that the extended tube Tf:,‘l) = LeTi(n-1),
this is a natural analyticity region and the W are univalued . It is remark-
able that T,.; contains real points. It is easy to see that the convex real set:
<0 (TiM€)’<0 A >0 2 A > 0 (the so called Jost points)
is contained in T,.z;. The locality binds all the n! different w(")(x.-, e Xi,) to-
gether to one (anty-)symmetric holomorphic ”master function” with T25;™ the
extended permuted tube being the enlarged analyticity region :

(AroAa)
Ny rdia) g V= J wn (21....20) 5.4
Wn (z'l""z'-) { signPw'(.xl....X-)(zlnuzn) ( * )

The mathematical structure behind this extension is the so called "edge of the
wedge” theorem which generalizes the well known Schwartz reflection principle
from one to several complex variables. The resulting "permuted extended tube”
is not a natural holomorphy domain but its holomorphic completion is difficult
(and fortunately physically not as relevant as it appeared during the 60%¢*.
For a discussion of this and related matters we refer to the literature. One
physically relevant fact is the univaluedness of the masterfunction in d=3+1

1)
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theories. In d=1+1 the possibility of richer spacelike commutation relations (e.g.
braid group statistics) which have multivalued master functions. Naturally its
restriction to the real analytic (Jost) points is always univalued (the branching
bappens in the euclidean region) since otherwise the Hilbertspace setting of
quantum physics would get lost.

The crucial question is now wether the family of w’s with those properties fol-
lowing from the operator postulates suffice in order to reconstruct uniquely (up
to isomorphism) the quantum field theory. From our experience with the GNS
construction we would expect a positive answer. However the "field algebras”
are not C*—algebras of bounded operators and therefore a special construction
which is more adapted to this problem is necessary. One uses the polynomial
algebra P(M) :

N
{fol+ 2/ : ‘/fn(’l---~3n)A(31)-~--A(zn) [ fn € S(Rdn):VN} (5.5)
n=1

Here we have again surpressed all Lorentz- and charge-indices i.e. used our
standard neutral scalar illustration. As in the case of CCR and CAR we can
interprete the expectation values w(®) as affiliating a positive linear functional
on a *- algebra of test functions:

f={fs SN} e PSR")=Ts (5.6)

(f : g)"(zl""zﬂ) = Zfl(zl--zk)gn-k(zk+l--zu) (5.7)
k

(f'),,(zl....z,,) = fn(zn----zl) (58)

Note that different from the CCR and CAR case this is not a Hilbertspace of
"one particle” functions but a tensor algebra T(M) on sequences of functions.
Here M indicates that the testfunction space consists of functions on Minkowski-
space. The localized polynomial algabra P(0O) is a subalgebra of P(M). The
vacuum expectation values w,, just define a state (positive definite normalized
functional) on T :

In the operator way of writing this is just the positivity of the norm squared:

N 2
(fo.1.+ E/.../f'("‘l""'\-)(zl....z,.)A(“‘)(zl)....A(‘\')(;n)) IO)" 20

n=l
(5.10)
With an appropriately defined action a of P on the tensoralgebra, W is covari-
ant:

w(ae,a(f)) = w(f) (5.11)

The reconstruction is completely analogous to the GNS situation. One obtains
a triple (H, 7,Q) i.e. a * representation of the Borchers-Uhlmann tensor-algebra
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which is covariant with positive spectrum and a unique vacuum vector Q. Cer-
tain properties as the time-slice property and its local version have no known
equivalent in terms of correlation function; they need the reconstructed operator
theory for their formulation.

5.2 Simple Structural Properties
1. The Cluster decomposition property. Its weak form is defined:

Jim W(fens(e)) = lim (0]430(02)B,]0) = W()W(g) (5.12)
and results from the fact that only the discrete part of the energy momentum
spectrum (i.e.the unique vacuum contribution) survives, whereas the continuum

oscillates to zero (Riemann-Lesbegue Lemma). The strong form is coveniently
formulated in terms of the connected correlation functions:

(0141, (21).... A7, (20)] 0),,,, 5™ o (5.13)
As(z) = U(@)AU%(z), A;€P(M)
It uses locality (in order to disentangle overlapping clusters) and needs more
mathematical efford for its derivation from the postulates. Note that a vacuum
degeneracy would show up in form of a very specific violation (containing infor-
mation about the dimension of the vacuum projector) of the cluster property.

2.The Reeh-Schlieder Theorem. The localized polynomial algebra P(0)
is cyclic and separating on , i.e.

PO =H, AQ=0n~A=0, AcP(O) (5.14)

For the cyclicity assume that ¢ € [P(0)Q)!, ¢ # 0. Then for A; € P(0), 0 <
O (no boundary touching) define:

F(z;....zp) (Vlae, (A1)....ar, (4n)]0) v €D (5.15)
= 0 on {(::1....:,.) lz;€eV,0+Ve O}

The Fourier transform F(p; .---Pn) vanishes outside the support: r; {XTpie 17*}
as follows from the spectrum condition. Therefore also the matrixelement F en-
joys tube analyticity in z....z, (instead of n-1 z’s as the W’s ). They agree
with the (obviously holomorphic) zero function in the above real neighbour-
hood. The already mentioned mulidimensional generalization of the Schwartz
reflection principle termed ”edge of the wedge theorem” will then lead to the
identical vanishing which contradicts the assumption of nontriviality of ¥. The
proof of separability of Q with respect to P(O) can be reduced to cyclicity by
using locality. We have:

AAQ=A'AQ, AeP(0), A ePO) (5.16)
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Since O' is nonvoid, P(O') acts cyclically on Q and therefore A’Q =0 ~ A’ =
on the dense set P(O)Q and hence A = 0.

With the Reeh-Schlieder theorem we have met the first characteristic prop-
erty of local quantum physics. It has no counterpart in Schrodinger theory and
general quantum theory. Indeed the idea that one can emulate vacuum exita-
tions "behind the moon” by operating with hardware localized on an earthly
laboratory with increasing accuracy,souds somewhat exotic. It has led to many
misunderstandings especially with respect to causality (One of the more spec-
tacular conceptional mistakes even cast doubt on Fermi’s conclusion that Ein-
stein’s causality statements about classical relativistic field theory are also valid
in QFT). On the positive side this property led to deeper thoughts about long
range correlation and the proper operational formulation of causality and phase
space localization of degrees of freedom (nuclearity).

3. Irreducibility of P(M) Starting from the time-development automor-
phism which (according to the positive energy assumption) is implemented by
a positive hamiltonian:

ar(A) =B 4e ™ H>0, Ac P(M) (5.17)

we study the analytic properties of matrixelements of time translated operators
from the commutant:

@) = = (4] T AT 4,9) = (Q|Ajao(4)4:]Q)  (5.18)
Ai € PM), A €PM), where:
PM) : ={C|(A"4,C¥) = (¢,CA¥) VAEP(M), ¢,¢ € D}

One computes:

f@)

(A"Q, a1(A] 42)Q) = (A" Q, '*F 41 4,0) (5.19)
(ai(A341)Q, A'Q) = (A34,Q,e7F 4'Q)

The first line represents f(t) as a matrixelement of e"*¥, and the second of e=i*¥ ,
Therefore f is a bounded function which is simultaneously analytic in the upper
and lower halfplane. According to a theorem of Liouville this forces f to be a
constant i.e.

f®) = (A"Q,EoA14:9) = (Q,A'Q) (A1Q, A:Q), Ep = proj on vac.
~ A'=(Q,AQ)-1

4. TCP Symmetry. We first remind ourselves of the TCP-transformation
property of free fields:

©lp.Ai) = 3 Ip,X,)) Dy a(ios) in Hy, antilinear  (5.20)
Al
i : antiparticles of type i, ©? = (-1*1
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o¢l4.5](z)9-1 (=i)F (~1)Blal4 2] (_z) = 9¢(_z) (5.21)
F  # of fermions, lB , = # of dotted spinor indices

We will show that this formula holds in general (for local interacting fields). If
® = A =scalar field, the proof startes from first rewriting the content of TCP
symmetry in terms of correlation functions:

(OA(zm)....A(21)Q, OA(Zm 41 ) A(z)R) (5.22)
= (A(zm+1)....A(z,,)Q,A(zm)....A(zl)Q)

S w(-z1,....~2,) = w(Z,....2;)

where in the last line we used the above ©-action. We now take notice of the
fact that by combining the symmetry relation from locality in T?;7™ with the
L;(C) invariance (which included the total reflection) we have:

wW(z,....21) = w(z;....z,) L) (5.23)
w(=2).... — z,,) (5.24)

This means that we obtain the above relation in T and hence on the physical
boundary (the boundary ie-prescription in the above relation is the same on
both sides) which is the desired relation for the operators.

5. Spin & Statistics. If we require the wrong local commutation relations

for Q[A'B]:
{2(z)2(v)} = o, @—wum,A+B=%nMd (5.25)
@()2() = 0 (z- ¥)2 <0, neven

then ~ & = 0. With other words within the framework of local fields, the
standard relation between spin and statistics is a consequence of the postulates.
The proof (again for neutral scalar fields) only employs the two-point function

W(z) which is analytic in T,.; and fulfills (as a consequence of L., (C)-invariance)
W(z)=W(-z):

OH{2(2), W)}0) = W(E)+W(-€) =0, (z—-y)* <0 (5.26)
~ 2W(2)=0, ~n®=z)Q=0

Finally the Reeh-Schlieder theorem gives ® = 0. The general case with dotted
and undotted spinors is left to the reader.

The TCP and Spin&Statistics theorem are considered to represent the deeper
parts of structural QFT. They even gave the title for the first monography on
the subject. Later we will see that they continue that role in algebraic QFT with
an additional gain in profoundness (in particular with low dimensional QFT)..

6. Normal C.R. and Klein transformations. The previous theorem
left open the commutation relations between different Lorentz-multiplets. One
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defines as "normal” the spacelike commutativity of two local fields of which at
least one is bosonic, as well as the spacelike anticommutativity between two
fermionic (A+B=balﬁnteger) fields. As a preparatory step towards proving
that normal commutation relation can always be achieved, let us prove that
commutation relations remain stable under transition to the hermitian adjoint
field:

[®1(2), 83wl = 0 (z-y)2<0 (5.27)
~ [Ql(z),ég(y)]* =0 (z-y)’<o0

The proof uses the cluster decomposition property (i.e. the uniqueness of the
vacuum):

(2, 23(1)23(5)82(9)8: (£)02) (5.28)
= lI%:(9)2:()9* > 0
= 7 (92, 81(/)8,(/)83(0)2(5))
B o (N ea(oye?
Here o = +. Consistency requires that ¢ agrees with the 41 in the original c.r.
between &, and ®3. Now we are Prepared to construct the Klein transformation

which carries anomalous into normal c.r. For the typical anomalous situation
assume that:

[P(2), %) = 0, (z-y?<0 (5.29)
¥ : Dbosonic, ¥ :fermijonic
Define:
w'(z)chen = ¢(3)Heuen (5.30)
‘P’(I)Hodd = —9(z)Hoaq

'ﬁ'(z)Heun = ¢'(3)H¢ven
V'(2)Hoag = ¥(2)Hodd

or briefly: ¢/(z) = (-1)F ¥(z), ¥'(z) = y(z) with
{F@¥W) =0, -y»?<o (5.31)
The general situation is analogous.
7. Characterizations of free fields. Assume first that the two-point
function agrees with that of a free field, i.e.

Q. p(z)e(y)2) = ia® (z-y)n~ (5.32)
— 1 -ipz dap
p(z) = W/(c P*a(p) + h.c.)E
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in case of a neutral scalar field. The first step in the proof consists in deriving
the Klein-Gordon equation (8#8, + m?)yp(z) = 0. From the two-point function
one obtains

(2,/(2)i(¥)Q) = 0, where j(z):= (06, + mz)go(:r.) (5.33)
A J(z)=0

The analytic properties in the tube T of the mixed j — ¢ correlation functions
together with the relative spacelike commutativity bring about an edge of the
wedge situation with:

Q. o(21)....3(2i)p(zi41)-...Q) (5.34)
= (Q,¢(z1)...x(2it1).-.3(2:)Q) = 0
on an open set of the boundary and hence the vanishing of all matrix elements

of j on the dense domain D i.e. j(x)= 0. Therefore y indeed fulfills the free field
equation and hence permits a frequency decomposition:

#(z) = ¢ )(2) + M), )2 =0 (5.35)

A characterizing property of free fields is their c-number (anti)commutator, in
our case:

(), e(y)] = iA(z - y)1 (5.36)

But this follows by again using analyticity properties. First we use the spectrum
condition to obtain:

I (2)eM () = iAW)z — y)0 (5-37)

since (%) transfers momentum on the forward (backward) mass shell and hence
the spectral transfer of the product is spacelike +zero i.e. the intersection with
the physical spectrum consists of just p=0 corresponding to the vacuum vector
2. This is a much stronger statement than the assumed two-point function
structure. For the commutator applied to Q we now have:

(@), eI = ia(z - )+ [ PE), oD@ @ (.38

Let ¥ € D and consider the analytic properties of:
F(z,3) = (v, [¢D(2), ¥ D(y)] 2) (5.39)

Since the momentum transfer of each #+) is on the forward mass shell, this
distribution is the boundary value of a funtion F(zy, 25) analytic in 2 = z; ~
1%, ¥i € V*. Since this function vanishes in a neighborhood of the real bound-
ary, ~ F =0 .But:

B(z,y) = [p(z), p(y)] — iA(z — y)1 (5.40)
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is a bilocal operator-valued distribution ( B(f,9) € P(O) ) for which Q is a
separating vector, i.e.

B(z,y)2 =0~ B(z,y) =0 q.ed. (5.41)

This property has no analogon in quantum mechanics i.e. the interaction cannot
be seen by considering two-point funtions (related to the absentselfinteraction).

Remembering that a free field has vanishing connected n-point correlation
functions for n>2, the question arises whether this property is typical. The
afirmative answer is:

if3n > 2 wp(zy,..2,)"" = 0 (5.42)
~  (z) is a generalized free field

A generalized free field shares with the free field the property of having a c-
number commutator. But this commutator is a (continuous) superposition of
free field commutators:

[e(2), o(v)] = / dp(K?)iA(z ~ y, K?) (5.43)

We will not prove the above statement here. Another characterization of (gen-
eralized) free fields not presented here is in terms of gaps in the spacelike mo-
mentum transfer of fields. Reductions to generalized free fields are reductions
to free fields in view of the time slice property and in particular the phase space
nuclearity property presented in a later section.

8. Shape of Energy Momentum Spectrum. The asymptotic factoriza-
tion or clustering of correlation functions suggests that the energy-momentum
spectrum specP is an additive set i.e. with P1,P;€ specP ~ p;+p,€ specP.
To see this consider the vector:

¥a(a) = U(a)4:U*(a)41Q, A € P(M) (5.44)

Assume that the energy-momentum transfer js limited to regions A; € specP.
Then the Fourier-transform of ¥ has its support in suppy € A; + Ajs. The
clustering:

lim||¢,,(a)]* = (2, A3(a)A42(a)Q) (2, A1 A, Q) (5.45)
= |l all®, o = AQ

serves to show that [J1h,;(a)|] # 0 i.e. does not vanish identically thus assuring
the nontriviality of the vector carrying the sum of the momenta.

Classically the hyperbolic causal propagation in classical field theory is in-
exorably linked with Lorentz-covariance. By analogy one would expect that
causality, even if it does not extend translational covariance to full Poincaré
covariance, at least forces the energy-momentum spectrum to have a Lorents-
invariant shape. Indeed, the implementer of the translation can always be chosen
in such a way:

U(a)s.t.as(A) = U(a)AU*(a) (5.46)
U@) = &P  specP inv. shape
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This theorem is easier to prove in an algebraic setting and hence will be deferred.

5.3 Euclidean Fields

Analytic continuations through Wick-rotation have been useful in perturbation
theory because certain regularization techniques only work if noncompact L-
invariance can be replaced by compact euclidean invariance. Therefore it is
interesting to know if a euclidean formulation is also possible outside perturba-
tion theory and whether it is useful. Schwinger and later Symanzik were the first
to realize that a euclidean framework opens a useful connection with statistical
mechanics.

The starting point for a nonperturbative euclidean approach is the ana-
lyticity and univaluedness of the analytic extension of correlation functions
into the extended permuted tube T5&m- It is obvious that the noncoinciding
(2; # #;V¥i,5) euclidean points are inside this domain. The Wick-rotation

(£,2% — (_; = £,2° = iz,) relates the Minkowski inner product with the
Euclidean one: zhz, = - f=1 z? and the group O, (4) with a subgroup of

L4(C). Here and in most of what follows we present the euclidean formulation

later. The restriction of the analytically continued correlation functions to the
euclidean points (£, z4) € E =R? are called Schwinger functions:

5(z1...z5) = w(Zy....29) (5.47)
= S(¢1--4acy)

where we used translation invariance in the last line. As for time-ordered func-
tions there is no spectrum condition which assures that they are distributions
on the Schwartz-space S, rather their natural domain of definition are those
test-functions which vanish at coinciding points of sufficiently high order. If the
dimension of the fields is canonical i. e. for scalar fields dimy = g—l = dim(free
field) then S is naturally (i.e. without Hahn-Banach extension) integrable and
hence a S(E") distribution. We now collect those properties of the Schwinger
functions which allow to reconstruct a local Poincaré-invariant QFT. These
properties are called the Osterwalder-Schrader axioms. In the following we
present these axioms for the illustrative case of scalar neutral fields,

¢ S1 The Schwinger functions are translation invariant real analytic function
for noncoinciding euclidean variables, They are distributions in &’ &y

with £2°1 = {¢ ¢ En-1 | §1<é.. < &4} where S(£271)is given a weaker
topology which is defined by the following system of seminorms:

Wl = 7], < esten) (5.48)

faan = [ o fe T g gttt
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Here we used the property of the Laplace-Fourier transforms of mapping
continuously S(£2~!) onto a dense set in S(M3"!) which are Minkowski-

space test functions f with
suppf € {g € M"~1 | g0 > 0 vi} = M2~ (5.49)

The above topology is the one which S(E2~1) inherits from S(M3™Y
through this map. The Schwinger distributions are just the continuous
linearfunctionals on S(£7!) in this topology. It is the analoge of the
growth condition on the holomorphically extended correlation functions
W which insured the temperedness of their distributional boundary values
and often called the Osterwalder-Schrader growth condition.

S2. Hermiticity. For the Schwinger functions of a scalar neutral field:

5(21....za) = 8(Tz,...Tz,) . (5.50)
Tz = (%,-z4) -euclidean time reversal

S3. Reflection-Positivity:

Z/s(sz,...,Tzl,yl,...y,,)fm(zl,...zm)f,,(yx, ~Yn)d%zy..d%, >0

- -(5.51)
where the sum only involves a finite sequence of test functioas ( fo, f, wSn IN)
with their support on the time wedges E? = {reEr|0<2t<.. < zi}.
Clearly this property is the analogon of the Wightman-positivity for the
W’s. In fact it results from the positivity of "euclidean states™:

Y(z1.23) = @(F1izd)... (£n,iz8)Q, z€EZ  (552)

Note that the spectrum condition allows to interpret the analytic continy-
ation as a smearing with a an exponential damping factor(fast decreasing
test function in time).

S4. Euclidean covariance:
s(Rz,...Rz,) = 5(z)....z,) (5.53)
$5. Permutation symmetry:
s(zp(1), ZP(n)) = 8(21....2p) (5.54)
S6. Cluster property:

.l_x.ren 3n(Z1, - Zm, Zme1 + a,...,2, + a)f(zy, Zm)9(Zms1, —Zp) (5.55)

= /sm(:},...zm)f(zl,...zm) x /:,,_,,,(z,,,“,...z,.)g(zm+1,...z,,)
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The generalization to charged fields with arbitrary finite spin is obvious:
the covariance law involves the representations of the SU (2) x SU(2) cov-
ering of O(4) and the permutation symmetry carries an additional sign(P)

It is fairly obvious that a theory in terms of correlation functions fulfilling
positivity, hermiticity, P-covariance and locality leads to Schwinger functions
fulfilling S1-S6. One just defines euclidean vectors ¥(z1,....z,) as above. The
reflection positivity allows to equip the linear vector space:

N
{2/--/fn(l‘x,-.--zn)'/’(zx,----zn) I fn € S(EZ)} (5-56)

n=1

S(EZ) with ||f||,,m — topology

with a positive semidefinite inner product. Factoring out the null-space and
forming the closure one obtains a euclidean Hilbertspace which thanks to the
Reeh-Schlieder theorem is equal to the GNS space of the real time correlation
functions. The short-distance growth condition of the W’s in the tube (control-
ling the temperedness of the distributional boundary values) are equivalent to
the {|-||; ., topology of the Schwinger functions:

8(z...z) = (R, Y(z....z)) (5.57)

The permutation symmetry of s is a result of that symmetry for the analytic
w’s (from locality). Actually already the ¢'s are symmetric as real analytic
functions in the euclidean domain for zi # 25,1 # 5, z} >0, as can be shown by
he application of the edge of the wedge theorem. Note that the Osterwalder-
Schrader (euclidean) reflection positivity S3 cannot be interpreted as a state on
a *-algebra (the Borchers-Uhlmann tensor algebra of functions) but only serves
to define a scalar product.on a linear space (finite sequences of test functions
Jn € S(E?Z). The reconstruction of the real time theory can then be carried out
in two different ways. Either one uses fuctional analysis (contractive properties
of space-time semigroups) or the analytic properties of the previous Laplace-
Fourier transforms in S1 which relate the Schwinger distributions ¢ S(E2 Y to

the spectral supported correlation functions W € S(M'_,'__l) and carries the re-
flection positivity into the W positivity. The latter method is more appropriate
in the present context whereas the first method also works in situations without
space-time analyticity e.g. the derivation of the transfer matrix formalism in
clsssical statistival mechanics on a lattice (see a later section). We collect the

result:

Theorem 12 (Osteru)aldcr-Schmdcr) Every set of Schwinger functions with
51-S6 comes from a real time QFT by analytic continuation and resiriction 1o
the euclidean points.

The euclidean framework described here is primarily a structural reformu-
lation, it does not really solve any problem of the real time theory. In fact
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even from a mathematical viewpoint it looks somewhat mocked up, since the
topology we used on S(E?) is not natural. Only under very special circum-
stances it becomes a powerful constructive tool of QFT. This happens e.g. if
the Schwinger functions allow an interpretation in terms of a continuous classical
mechanics. Mathematically this amounts to the Feynman-Kac representability
of the Schwinger functions in terms of a (infinite dimensional) functional mea-
sure theory e,g, (the @*-theory):

S(z1, ) = % / [dg)e= 49l p(z,).... p(z0) (5.58)
Alg] = %(3¢6¢+m’¢’)+9¢‘

A physically fruitful formal interpretation is in terms of a continuous version of
a Gibbs formula for classical statistical mechanics on a lattice:

.1 -
((p(zl)....w(z,,))cu, = lim — Z e p”“["lw(zl)....qp(z,.) (5.59)
A—oo ZA conf A

Zy = Z e~ PHaly)
econf A

Here the dynamical variables ¥ over each lattice point take on either values
in a discrete (e.g. Z, ) or continuous manifold (eg- C,SU©2) etc.) in which
case the sum over configurations represents ag integral over the field values at

above functional integrals have mathematical meaning? , (ii) can one controll
"critical limits” (second order phase transitions) of classical statistica) mechap-
ics precisely enough in order to obtain Possibly existing local QFT? Deferring
the second problem to a later section, we comment here only on the first one,
Damely the relation between a Nelson-Symanzik stochastic euclidean theory and
realtime QFT. Euclidean fields are continuous linear maps ¢ from test function
spaces S(E?) into random variables over a probability space (Q, Z, p) with sa
‘normalized measure on Q and T the #-measurable subsets. Let us define a gen-
erating functional W for the euclidean correlation functions of ¢ in a reference
state (the euclidean ”vacuum”) which has the following properties:

S(f) = /Q e*Ddu, ie80) =1, S(f) = =7, (5.60)

S(f) is of positive type and invariant under euclidean transf.
and "time” reflections
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(the functional fourier-transform of B):

doaSi=f) > 0, S0)=1 (5.61)
1J=1
S(f) S(9f), S(f) = S(aa,rf)

the last line expressing the time reflection (the choice of the time axis is
arbitrary) and euclidean invariance. In addition S(f) is continuous on S in the
Schwartz topology.

This euclidean field setting is obviously appropriate for the Feynman-Kac
representation which assumes that the measure # on the space of field config-
urations is given by an invariant statistical mechanics-like local "hamiltonjan”
which consists of a quadratic free and a polynomial interacting part. We already
know that the validity of the reflection positivity is a prerequisite for obtaining
real time local quantum physics. It is not difficult to prove that such a stochas-
tic euclidean theory with reflection positivity is equivalent to a special class of
real time QFT namely the so called stochastic positive QFT.

Definition 4 A QFT is said o Julfill stochastic positivity if sts associated von
Neumann algebra A contains an abelian subalgebra B (*fields at one time”) and
an automorphism ay(*time translation”) such that: (J, a(B) = A

Theorem 13 (Klein-Landau) A reflection positive stochastic euclidean theory
1s equivalent to a stochastic positive real time QFT.

Hence the equivalence requires the stochastic theory to have an additional
QFT positivity property (reflection positivity) and the QFT to pocess an addi-
tional stochastic (Nelson~Symanzik) positivity. We will not prove this theorem
since our main motivation here is to counteract the erronous but widespread be-
lief that QFT can be always be defined in terms of measure theory or Feynman-
Kac Formulas. Only theories which "stay close” to the d=1+1 ¢4-theory (the
standard relativistic illustrative example of the above theorem ) allow for a
Feynman-Kac representation. Whatever the intuitive appeal of Lagrangian
quantization and functional integrals may be worth, one of its conceptual and
mathematical limitation is set by the above theorem.

Note that we are here not concerned with mathematically fine points caused
by renormalization (e.g. ¢* in d=142 or d=1+3) wrecking the canonical (equal
time) structure. Rather we mean that certain theories are structurally incom-
patible with Feynman-Kac representations. Examples are chiral conformal the-
ories and d=1+42 theories with braid group statistics (Chern-Simons actions).
They are easily shown to fail on the stochastic positivity property. The reason
is the nonexistence of an abelian subalgebra with the required density property.
There are indications that combinatorical or topological field theories result
from imposing singular states on Weyl like algebras. This is again looking like a
promising clash between the geometric approach via quantization and functional
formalism and the algebraic approach relating directly to physical principles. To
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be clear on this point, nobody is forbidden to write down functional integrals
and study their properties also for those cases. The misunderstandings only
start with the claim (generally made by physicist under the spell of differen-
tial geometry) that this can be taken (apart from mathematically fine points of
regularizing such co-dim. integrals) as the definition of quantum physics. The
interesting aspect of the above theorem is that it limits the myth of a general
functional integral "quantization” as a parallelism of quantum with classical
physics (for more details we refer to B.Schroer, Rev. in Math Phys.,Vol 7, No.4
(1995), page 669). Although there are formal-intuitive arguments that d=2+1
anyons and plektons are in some way related to the quantized Chern-Simon
structure nobody has been able to extract a practically useful description of
"free” fields describing such objects which could match the clear formalism of
free Bosons and Fermions. For this Teason we prefer to study this problem by
starting from the point of view of Wigner’s analysis of d=2+1 irreducible rep-
resentations of the Poincaré-group with abelian spin # (semi)integer together
with the powerful formalism of algebraic scattering theory (see chapter 7, last
section).

A closely related, conceptionally more robust constructive idea is to try
to define QFT as scaling limits of mathematically controllable lattice systems.
The guiding priciple going back to Kadanoff, Wilson and others was to use the
possible existence of second order phase transitions (” criticality”) to loose the
memory of the lattice and recover P-covariance and locality. This approach
always has a "light” start since the mathematical controll of lattice systems
is rather simple. But in the last step, the investigation of criticality and the
execution of the scaling limit, one has to Pay heavily for the easy life at the
beginning. The mere control of existence is not enough, the last step requires a
deep structural understanding of the lattice theory. Wheras it is true that most
of the QFT concepts as conserved charges, particles, multiparticle scattering,
antiparticles etc. can be transferred to the lattice (albeit with much more sweat,
since the helpful causality structure is absent), a sufficiently detailed structural
controll is only possible under special circumstances as integrability (meaning
the Yang-Baxter structure for 2-dim. lattice systems). This kind of tempo-
rary practical restriction is quite different from the above restriction through
Feynman-Kac representability. In particular there is no limitation on the short-
distance behaviour: the operator short-distance dimensions of e.g. the Ising,
RSOS etc. models is too far away from canonicity as required by the euclidean
F-K approach. Real time short distance singularities which go significantly
byond canonical behaviour do not threaten the existence of real time QFT but
only limit certain methods as quantizations by funtional integrals. Although
we do not really advocate a lattice approach, the reader can find detais on this
subject in a later section. Our main constructive contribution (presented only
after the chapter on algebraic QFT) will be based on the net approach.
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5.4 Constructive use of Euclidean Fields

The P¢,-models. Feynman-Kac representations Jor d=1+1 (dis)order fields

5.5 Scattering Theory

Whereas scattering theory in e.g. Schrodinger QM is very important for the
comparision of theory with experiments but less so for the formulation and
construction of quantum mechanical models, the S-operator takes on a more
fundamental significance in local quantum physics. The reason is threefold: in
addition to its standard role of permitting experimental verification of the the-
ory, S is an invariant of the net (i.e. S is attached to a Borchers class and should
not be affiliated with individual fields) and finally S is related to the modular
reflection J for the wedge algebra and the TCP-operator @ by S = JJ, = 66,
where the subscript zero refers to the incoming fields (considered as a free the-
ory). In this section we will present the scattering content and the class invarince
property of S. In the perturbative approach we already met the S-matrix as the
adiabatic limit of S(j). But we also realized that from a conceptual point of
view such limits should be avoided since that formalism is good for the local net
properties, but becomes unnatural for the calculation of ”on shell” quantities, in
particular for the scattering operator. The conceptually most satisfying method
is to first calculate the approximations for the correlation function and then to
use the scattering theory for on shell quantities. Similar to the nonrelativistic
theory, the main objective is to use the time dependent formulation because of
its physical clarity but convert its content into analytically simple stationary
formulas.

This aim is accomplished in the Lehmann-Symanzik-Zimmermann (LSZ)
approach. As quantum mechanical time dependent scattering theory relates
interacting wave functions for t— oo with those of a free system, scattering
theory in QFT should relate interacting (Heisenberg) fields with free fields. By
checking with stationary external source models as well as with renormalized
. perturbation theory these authors proposed the following asymptotic condition
(for the standard scalar situation):

lime 100 (¢ Ay (1) ) (#145°|¥) ez =out, in (5.62)
40 = [ 1) 5o )

Here f(x) is a solution of the Klein-Gordon equation, A}* is defined by the same
formula with A replaced by the free incoming or outgoing field (and therefore
time-independent) and the state vectors ¢, ¥ are taken from a dense set of in
states (with nonoverlapping wave functions in velocity space, as we know now-
days). Later the Haag-Ruelle formulation which is based on strong convergence
was derived from the locality and spectral principles of QFT, from which 5.62
follows, was derived. But before we discuss these refinements, we will derive the
useful LSZ reduction formulas.
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Let us start with the reduction of an incoming particle in the following
matrix-element.:

M St Snsm [ A fro fa) . (563)
= Iim:“_,‘_m (fn+l---~fn+m |A(2)AI (t)lfz....fn)m .
= <fn+1----fn+m /KyTA(z)A(y)f(y)d‘y f2fn> +ect.

where T denotes the time ordering, K is the KLein-Gordon operator and c.t.
(contraction terms) is the generic notation for terms in which f’s in the in or
out states have been contracted with resulting (f;, Ji)xlower terms (example:
the annihilation part of A" may contract with f; in the in state if the overlapp
is nonvanishing). In the third term the time ordering occurs since we want the
outgoing boundary contribution in: lim,__c{A;(t) — A;(~t)} = volum term
to appear on the left hand side of the local operators whose matrix elements we
are reducing (then its contribution just produces outgoing contraction terms).
The same statements apply verbatim to the reduction of outgoing states. The
iterative application of this procedure clearly leads to to the following reduction
formula:

U (fatreeSatm |A@)] i fu)™ (5.64)
= /-'--/fn+l(yn+l)---fn+m(yn+m)fl(31)---fn(yn) X
Kn+1 ---Kn+mK1 Kn (0 ITA(I)A(yl)A(yn+m)I 0)

Instead of A(z) we could have also started with any multilocal product of local
fields. In the special case of A— 1 we obtain the reduction formula for the
S-matrix:

M (fadroSatm | froefa)™ (5.65)
[ [ Fesns) Futmnsm) a2 ) x
Kn+1...K,.+mK1...Kn (0 lTA(yl)....A(y,,.,,m)] 0) + c.t.

By going to the limit of plane waves one obtains for theconnected part of the
momenturn space kernel of the S-matrix:

S(p,,.,.l..p,,.,.m;pl..p,.)“""' = Iimp';_.m: H(p? - m’) X (566)
§

T(=Pn+1-- = Pnym,P1.-Pn)

Le. the residua on mass shell of the Fourier transforms of the time ordered
function 7. These reduction formulas are very suggestive of the so called crossing
symmetry:

incoming particle p — outgoing antiparticle -p
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perturbative QFT. The more natural objects turn out to be certain sesquilinear
forms of the fields, the so called ”generalized formfactors”.
In the following we will derive the Haag-Ruelle scattering theory in the
general setting of QFT and then comment in the derivation of the LSZ theory.
In n-particle Schrédinger theory, the physical input for the existence of scat-
tering state vectors as large time limits of suitably chosen time dependent vec-
tors is the strong fall-off Property of the two body potential. Although one can

Q = Z/fn(zl,....,:,.)A(z,,)....A(z,,)d‘zl....d‘:,,

fo € SsY

will be called ”almost loca]” (if suppf, € O, "local”). We will be interested
in the behaviour of correlation functions of Q(z) := U (2)QU(z)~!. The relevant
theorem is

Theorem 14 (RucIIc,I962) In a local QFT with o spectral mass gap (isolated
one-particle mass shells) the quasilocal operators fulfill the strong cluster prop.
erty:

VN €N, 3C s.t. (Q1(21)...-Qn(zn)),,, < CNR-V

Here R denotes the mazimal space like distance:

R= max —(z; — z;)’
s,k

We will not prove the theorem but rather try to understand how it can be
used in order to understand the convergence for large times and the structure
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of the incoming and outgoing multi-particle states. We first pick Q;s which
applied to the vacuum create one-particle states with given wave function @(p).
By choice of f, € $"? with appropiate energy-momentum support this is always
possible. Then we form the operators:

Qi(hist) =i / _ Q@) by ()

where h; is a positive energy solution of the Klein-Gordon equation and the
derivative act with a minus sign to the left. Clearly:

Qi(hit)2=1v,),  ¥(p) = B(p)hi(p)
i.e. one obtaines time independent one-particle states. On the other hand the

multiple application (at least two) of these operators leads to time dependent
states whose large time behaviour js controlled by the following theorem:

Theorem 15 (Haag 1958)

(i) The sequence of state vectors

¥(t) = f]Q.-(h.-;t)Q (5.67)

converge strongly for t— +oo. The limiting states have the physical interpreta-
tion of incoming and outgoing multiparticle scatlering states:

¥ o= lm ¥ = gy, )
vt Jim ¥(t) = |y, ...p,)

(i) The scalar product of these scattering states has the Fock space struc-
ture:

i?n ('ﬁlx'ﬁ; , d’l-""bm)::r = bnm E { :ign(P) }H<¢;“) | wk)
k

PgS,

according to bosonic or fermionic spacelike behaviour of the Heisenberg fields
A(z). One should add that the Poincaré transformation act naturally on the

of the Q(z)—correlations is a refined asymptotic estimate on the single particle

wave functions which goes beyond the result of the well-known stationary phase
method:

1

h(x,t
(x,2) @t
const.t~} exp(~imy~!t)(y3h(myv) + O(¢-1))
1 x

= y V= —
7 V1-~-v2 t

/ i,(p)e--‘(w(p)t—px) =

(5.68)

Il




CBPF-NF-026/97
-149-

The refined version determines the "essential” x-space support of h in terms of
the velocity support in momentum space E={v=RB|pe supph} . one has:

Theorem 16 (Ruelle 62) Let h be a positive energy solution of the Klein-
Gordon equation and X its velocity support. With U an open set containing
T we have:

(i) forvelU : Jh(vt,t)] < Clt|"% as5.68

(ii) for v¢ U : [h(vt,t)] < Cn(1 + [v])=N ¢~

If we now choose one-particle wave functions A’ with nonoverlapping velocity
supports relative to the unprimed A then

(21Q1(h1;1)"....Qm (A1 ;1)° Q(hp; t)....Q(R1; 1))

+ 7., bosonic
120 Snm {Pgs: { sign(P) } H <¢P(‘) | '/)*)} ' fermionic

k=1

The connected part, upon integration with the dissipating wave packets, does
not contribute at all to the limit, as follows from the elementary geometrical
(essential) support pictures in Minkowski space.. The same holds for any cluster
with more than two operators Q;. this fixes the structure of the in/out scalar

products. The fall-off of "-d‘!t-\ll(i)“2 is even simpler, because each term which
contributes to this norm square for large t contains one two-poit function where
one operator is a time derivative of Q(h;,t) which vanishes upon acting on the
vacuum.

The restriction to nonoverlapping wave packets has a physical origin: parallel
flying particles lead to a weaker convergence. The best strategy is to prove
formulas for the nonoverlapping situation and only at the end take the plane
wave limit. The formalism does not only allow to derive the LSZ theory and
the reduction formulas, but also gives higher order t corrections to LSZ (Haag,
chapterll section 4).

The above scattering formalism needs to be modified in an essential and
interesting way, if the fields have a spacelike commutation structure which leads
to braid group statistics. In the physically interesting case of d=2+1 dimensions,
these "plektonic” fields have really a string-like spatial extension i.e. they are
not fields in the sense of Lagrangian QFT. Their construction falls into the realm
of general or algebraic QFT. One still can prove the asymptotic convergence,
but the asymptotic state vectors loose their tensor product structure and the
cut between kinematics (in/out structure) and dynamics (genuine interactions)
has to be essentially modified. The fact that such theories are outside the
Lagrangian framework and even outside quantization ideas, does not make them
any lass physical or unsusceptible to explicit and perurbative constructions, but
the perturbation around free ”plektons” is expected to have more in common
with ideas on perturbing around chiral conformal theories than with Feynman
perturbation theory arond bosonic/fermionic free fields.

The scaitering treatment of plektons is still missing here.



CBPF-NF-026/97
-150-

Chapter 6

Modular Localization and
Bootstrap-
FormfactorProgram

6.1 Introductory comments

Presently QFT presents itself as being formed of several parts which seem to
drift apart into different directions. On the one hand there is the standard
approach which is centered around renormalized perturbation theory and the
various quantization methods (canonical, functional). Enriched with geometri-
cal ideas it has led to recent (mainly) mathematical advances via string theory
and the Seiberg-Witten duality structure. On the other hand there is the more
algebra-based low dimensional approach which has led to the construction of rich

cles, confined objects and solitons as being two sides of the same coin, and other
extended (and somewhat surprising) manifestations of the principle of ”nuclear
democracy”. Thirdly there is a very small group of theoreticians who find it
profitable to continue the structural investigations of algebraic QFT.

In fact the most interesting message of the low dimensional constructive
bootstrap-formfactor program seems to be that the emphasis on the scattering
matrix advocated way back by Heisenberg and later by Chew, Stapp and others,
was well founded. What went wrong in those early attempts was related to the
enforced and artificial separation from local QFT and the (cyclically recurrent)
ideologically motivated working hypothesis of a theory of everything (in this
case: everything minus gravity). The main theme of this article is the realization
that the S-matrix in algebraic QF T acquires a new hitherto unknown pivotal role
in the construction of local nets (whose generators are local fields). It belongs
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to the foundation of the local field theory (in its role as the net invariant which
carries local modular information) as well as to its roof (in its role as describing
scattering observables), a truly vexing "bootstrap” situation. The fact that
in d=1+1 factorizable theories Chew’s bootstrap ideas for the S-matrix work
without fields (but with the help of ”fusion” and "Yang-Baxter”) is not due
to the correctness of the underlying philosophy but rather to undeserved luck:
the physical rapidity scattering variable is at the same time the uniformization
parameter of the analytic properties 1. In higher dimensions or without the
factorization, Chew’s program would fail without the use of local fields (and
it did fail). In that case an iterative procedure which corrects the S-matrix
together with a locality improvement of states and fields may have a constructive
chance, a situation which could be vaguely reminiscent of the Hartree-Fock
iteration in Schrodinger theory..

In this note we propose a new concept [1] of "modular localization” which, as
will be shown, is capable of reconquering the lost unity of QFT. In particular, we
will learn a new and very interesting lesson from the d=1+1 formfactor program.
Far from being a special "exotic” construction, remote from any "real” QFT,
this approach, if analyzed with general and deep concepts related to the TCP
theorem and the S-matrix (interpreted as an invariant of a local net), reveals a
surprising new and powerful nonperturbative construction principle which, so
we hope, may turn out to be the basis of a future new iterative constructive
approach. Locality of observables and localization of states (always relative to
the vacuum or some other distinguished reference state) in QFT is a conditio
sine qua non for the physical interpretation (without any outside impositions).
Global topology as in the so called "topological field (?) theories” or the vacuum
structure assigned to certain effective potentials which does not result from the
local structure of real time QFT remain part of mathematics.

The fastest way to get a glimpse at the "modular localization” is to look at
the relation of the Wigner representation theory [2] for positive energy repre-
sentations of the Poincaré group and free fields. Whereas in Wigner’s theory
these irreducible representations in Hg,':';)are uniquely specified by their mass
and their spin (resp. helicity), this uniqueness is lost if one passes to free fields

“in the Fock-space H;,."'"). There are infinitely many free fields in Fock-space and
they constitute the linear part (in creation and annihilation operators) of a huge
local equivalence class of fields, the so called Borchers class B(m, s) [3][8] Any
cyclic (with respect to the vacuum) representative field from this class generates
the same net of local von Neumann algebras in Hp:

0 — A(0) (6.1)

In fact the emerging picture of pointlike fields, that behave similar to coordinates
in differential geometry, was the prime motivation for formulating algebraic QFT
in terms of nets of algebras [3]. In our illustrative example[1] we regained the
lost Wigner unicity on the level of nets. For a detailed presentation of the

1Even in d=1+41 the situation is very far removed from the desired uniqueness of Chew’s
S-matrix approach.
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physical motivations and aims of this algebraic QFT we refer to a forthcoming
article in Annals of Physics [4].

For the following it is important to understand the direct construction of
this net in terms of the "modular localization” principle. For that one uses the
operators which Wigner’s theory affiliates with a reference wedge for which we
take the x-t wedge:

W, : |ti<z (6.2)
& = UA(2m)), j=U(r)

Here Ar(x) and r, are the x-t Lorentz-boost and the x-t reflection. The latter is
represented by a antiunitary operator j related (via a x-rotation around the x-
axis) to the TCP transformation 9. For a charged particle this requires doubling

of the Wigner space Hg,"-"). The reflection commutes with the L-boost. It has

been shown elsewhere [5].['1] that the unbounded antilinear involution:

s =jéb (6.3)

from which j and 6% can be recovered by polar decomposition, can be used in
order to define a real subspace Hp :

Hp={¢ € Hwi, | sy = ¢} (6.4)

The momentum space wave functions in Hy are in the domain of §% and hence
have analytic properties in the rapidity variable 8 associated to the standard
wedge W: p, = (|p| coshd, p| sinhd, p2, ps3), [p| = (m?+p2 + p2)}. For selfconju-
gate particles Hg consists of analytic functions in the strip 0 < @ < x for which
the two boundary values are related by a generalized reality condition:

Dio3) ac. [DOHBw (Ar(x),pr)] WO + i,p2,p3) = ¥, 72, 3)

where 3 is the 2541 component Wigner wave function, Rw(A,,p) the Wigner
rotation associated with the boost A on which the analytic continuation a.c.
acts, and D(*)(iz;) the charge conjugation matrix. In the non-selfconjugate case
(particles # antiparticles) the reflection j involves a flip in a doubled Wigner
space. Hg has a property which is called "standard” i.e.:

HpNiHg = {0}, Hg+ iHRg dense in Hw;, (6.5)

and j transforms Hp into its symplectic complement Hp (the symplectic form
is the imaginary part of the scalar product in Hw,) which in the case of integer
spin representations (the modifications for halfinteger spin are explained in (1)
is the same as the geometric opposite wedge space:

Hp
w,

Ha(W.) = Hp(W!) (6.6)
Wppresste . Hp(W) 0 Hr(W') = {0}
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P-covariance generates from W, a family of wedges W = gW, and associated
s(W), (W), 6(W) and Hr(W) with the net isotony property:

Hp(W)) C Hr(W2) Wi C W, (6.7)

where the properness of the inclusion is a consequence of the positivity of the
energy (in fact equivalent to it, as it turns out) [5]. Wedge localization in the
Wigner theory (not to be confused with the Newton-Wigner localization) (1)
is the statement that the dense subspace (the precise domain of s) Hg + iHp
describes localization inside the reference wedge. From QFT it is known that
if one applies smeared local fields ¢ with test functions which are supported in
W, to the vacuum, one obtains a dense set of W-localized state vectors. The
relation between the field algebras restricted to wedges and the Tomita-Takesaki
modular theory was first observed by Bisognano and Wichmann [6] and later
used by Sewell [7] in order to obtain a structural understanding of the Hawking-
Unruh effect. What is new is that these spaces allow (in the present case for free
systems) for a very neat characterization in terms of closed real subspaces whose
position within the total space contains the full information about localization
regions. Localization inside compact regions viz. double cones C (which are
inaccessible by direct geometric modular theory) may be defined in terms of
(dense if nontrivial) intersections:

Hr(C) = () Ha(W) (6.8)
woC

As already mentioned, the double cone localization is fulfilled in all positive
energy representations with halfinteger spin, but not in d=3+1 m=0"continuous
spin” (1] representation and also not in massive d<3+1 representations with
” anyonic”spin. )

The important last step in the construction of a localized net of von Neumann
algebras is the application of the CCR (Weyl) and the CAR functor which maps
the net of real Hillbert subspaces into the net of algebras [5](1]

Hwi, — B(Hr)=alg{Weyl(f) | f € S(My)} (6.9)
Hr(W) — AW)=alg{Weyl(f) | f € D(W)}
S = JA*, J=¢, A=¢l

These operators S,J and A** are the Tomita-Takesaki operators of the T-T
modular theory of the von Neumann algebra A(W) in "standard position”.
The inverse hat V on S helps to distinguish the Tomita involution from the later
appearing scattering S-operator, usually referred to as the S-matrix.

For the somewhat subtle point that the obstruction against the equality
of the geometric opposite with the modular opposite localization in the case
of halfinteger spin requires the introduction of a ”Klein twist” and the CAR
functor we refer to the mentioned literature [1].
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6.2 Modular Localization and Interaction

In order to obtain a clue of how to incorporate an intrinsic notion of interac-
tions into this modular localization setting, we remind ourselves that if we do
use pointlike fields, the modular localization for free fields agrees with what we
get by applying the polynomial in the localization region supported smeared
fields. In contrast to the conventional characterization of localization in terms
of x-space pointlike fields, the modular characterization solely works in the
momentum-(Fock)space of the (incoming) free particles. It attributes a phys-
ical significance to the precise position of the Reeh-Schlieder [3] dense set of
localized vectors and the change of this position resulting from the change of
localization region. In order to formulate the modular localization principle in
the case of interactions, one must take note of the fact that the scattering matrix
S of local QFT is the product of the interacting TCP © with the free (incom-
ing) TCP ©, and (since the rotation by which the Tomita reflection J differs
from © is interaction-independent as all connected Poicaré transformations are
interaction-independent) we have:

§=0:6¢, S=J-Jp (6.10)
and as a result we obtain for the Tomita involution:
$=JAt =5t = 55 (6.11)

Again we may use covariance in order to obtain S(W) and the localization
domain of S(W) as D(S(W)) = Hgr(W) + iHp(W) i.e. in terms of a net
of closed real subspaces Hp(W) of the incoming Fock space. However now
the construction of an associated von Neumann algebra is not clear since an
”interacting” functor from subspaces of the Fock space to von Neumann algebras
is not known. We will make some remarks (still short of a solution of this
important problem) in the concluding section and continue here with some more
helpful comments on modular localization of interacting state vectors.

As in the free case, the modular wedge localization does not use full Einstein
causality but only the so-called "weak locality”, which is Jjust a reformulation
of the TCP invariance [8) Weakly local fields form an equivalence class which
is much bigger than the local Borchers class but they are still associated to the
same S-matrix (or rather the same TCP operator). Actually the S in local quan-
tum physics has two different interpretations: S in its role to provide modular
localization in interacting theories, and S with the standard scattering interpre-
tation in terms of (nonlocal!) large time limits. There is no parallel outside local
quantum physics to this state of affairs. Whereas all concepts and properties
which have been used hitherto in standard QFT (perturbation theory, canonical
formalism and path integrals) as e.g. time ordering ? and interaction picture
formalism, are shared by nonrelativistic theories, modular localization is a new

2There is a conspicuous absence of the time-ordering operation in the bootstrap construc-
tion of factorizable field models. Instead the basic objects are generalized formfactors i.e.
sesquilinear forms on a dense set of state vectors.
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structural element in local quantum physics 3 and a characteristic property
for Einstein causal quantum physics. The simplest kind of interacting theories
are those in which the particle number is at least asymptotically ("on shell”)
conserved i.e. [S', N.-,,] =0.

In the next section we will briefly review the d=1+1 bootstrap-formfactor
program in a manner which facilitates the later application of modular localiza-
tion.

6.3 The Bootstrap-Formfactor Program

In this section we will meet a constructive approach for "integrable” d=1+1
QFT. Our first task is to obtain an intrinsic QFT understanding of integrability
in a way which avoids classical notions as e.g. complete sets of conservation laws
etc. For this purpose we note an important d=1+1 peculiarity.. Our generic
expectation is that large spatial separation of the center of wave packet of two
particles in the elastic two-particle scattering matrix leads to the weakening of
scattering, or in momentum space:

(Pip: 11 Ppa) = (Birslore) + 81 + B2 = B} ~ P T(prpapisl)  (612)

where the identity contribution is more singular (has more é-factors) than the

-term and therefore the second term drops out in x-space clustering. This
argument fails precisely in d=1+1 and therefore the cluster property of the S-
matrix is not suitable in order to obtain an intrinsic understanding of interaction.
The two-particle S-matrix looses its higher particle threshold structure, but it
remains nontrivial (in distinction to d=3+1). However for all higher particle
scattering processes the behavior for d=1+1 is qualitatively the same as in
higher dimensions: the decreasing threshold singularities (which decrease with
increasing particle number) are responsible for the spatial decrease. Therefore
any d=1+1 QFT is expected to have a limiting Sjim-matrix which is purely
elastic and solely determined by the elastic two-particle S(®)-matrix. The Yang-
Baxter relation results as a consistency relation for the elastic 3—3 particle
.S'l(i:z-matrix. If this limiting S-matrix would again correspond to a localizable
QFT, we would have a new class division of QFT, this time based on a long
distance limit (which in some sense is opposite to the scale invariant short
distance limit). It is this (long distance) class property * which makes these
factorizing models so fascinating, as much as the fascination of chiral conformal
QFT results from their role of representing short distance universality classes.
In d=3+1 S;iy, = 1 and therefore the limiting theory is expected to maintain the
same superselection rules but in the ”interaction freeest” possible way (literally
free theories as we will argue later on). Hence in d=1+1 we are invited to

3This characteristic modular structure lifts local quantum physics to a new realm by its
own which cannot be obtained by specialization from general quantum theory.

4 Although I kmow of no article in which this has been spelled out, its pervasive presence
behind the scene is is recognizable in some publications.
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speculate on the validity of the following commutative diagram:

Fia
F{ (6.13)
> f'd

Here Id(sd) labels the long (short) distance limits. There are also arguments [9)
that with the help of a perturbative idea one may ascend from F,4 to Fiy. It
is however presenly not clear how one can use the known properties of the Id
theories (i.e. integrable models) in order to formulate a constructive program
for the nonintegrable members of the Id equivalence class. We hope that our
modular localization principle (which is not restricted to factorizable models)
may turn out to be helpful for this purpose.

The constructive approach based on the bootstrap idea proceeds in two steps.
One first classifies unitary, crossing symmetric solutions of the Yang-Baxter
equations which fulfill certain minimal (or maximal, depending on the view-
point) requirements. Afterwards we use these factorizing S-matrices together
with the Watson equations (a notion from scattering theory relating formfactors
with the S-matrix) and analytic properties for formfactors in order to compute
the latter. One obtains the complete set of multi-particle matrix elements of
"would be” local fields, i.e. one constructs the fields as sesquilinear forms. It is
characteristic of this method that one does not use the ”axiomatic” properties of
the beginning of this section but rather less rigorously known momentum-space
analytic properties which, although certainly related to causality and spectral
properties, are more part of the LSZ+dispersion theoretic folklore than of rig-
orous QFT. As long as one demonstrates at the end that the so obtained fields
fulfill local commutativity this is a legitimate procedure. It leaves open the ques-
tion whether there exists a more direct conceptual link between the S-matrix
and the local fields or rather the field independent local nets. That this is indeed
the case will be shown after the presentation of the formfactor program.

6.3.1 Properties of Factorizing S-Matrices

Consider first the analytic structure of an elastic S-matrix for a scalar neutral
particle. In terms of the rapidity variable §:

IP1,P2)™" = Sp1, P2} = Su(p1,p2) Ip1, p2)*™ (6.14)

Sei(p1,p2) = :5(6), pi=mlcoshd;,sinh;), 6 := |6, —(8:15)
" (PP ISIpLpa)" = (6" (pl,py | propa)

Usually the elastic S-matrix is written in terms of the invariant energy s =
(P1 + p2)* = 2m?(1 + coshf) and the momentum transfer (not independent in
d=1+1) ¢t = (p1 ~ p3)? =.2m*(1 — coshf). As a result of undeserved fortune,
the rapidity 6 turns out to be a uniformization variable for the real analytic S
i.e. the complex s-plane with the elastic cut in s > 4m? is dumped into the
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strip 0 < Imf < x and the S-matrix becomes a meromorphic function S(4)
with §(~0) = 5°(0) = S~1(6). (unitarity). Hence the strip —x < 8 < 7 is the
physical strip for $(8). Crossing symmetry in our special (neutral) case means
a symmetry on the boundary of the strip: § — ix — 8. Note that the presence
of inelastic thresholds would destroy the uniformization.

The factorization implies the operator relation:

S12(p1, P2)S13(p1, P3)S23 (P2, p3) (6.16)
= 523(p2,P3)S13(p1, p3)S12(p1, p2)

According to Liouville’s theorem, the only minimal solution (minimal number
of poles,smallest increase at oo) for this scalar diagonal case is S = +1. More
general solutions are obtained by placing bound-state poles into the minimal
solution. In order to maintain unitarity, the pole factor must be of the form:

sinhf + isin)
sinhf® — isin)

P(6) = (6.17)
Transforming back this pole at 8 = i) into the original individual particle vari-
ables, we obtain the following parametrization in terms of a center of mass and
relative rapidity:

n m (cosh(x + %),sinh(x + %)) (6.18)
P2 = m (cosh(x - %), sinh(x ~ '—;))

Clearly the two-particle bound state has the momentum:

A ,
P12 = (P1+P2assdrtare = 2mcos§ (coshx, sinhy) (6.19)

Pl = md my= sinA

c A
smz

The "fusion” of particles may be extended. For a 3-particle bound state we
would look at the 3-particle S-matrix which, as a result of factorization has the
form:

S5®)(py, pa, p3) = 5(012)5(613)S(82s) (6.20)
We first fuse 1with 2 and simultaneously 2 with 3 as before. The center of mass
+ relative rapidity parametrization yields:
m (cosh(x + 1), sinh(x + i})) (6.21)
m (coshy, sinhy)

pP1
P2
Ps = m(cosh(x — id), sinh(x — i)

Again we get the mass of the 3-particle bound state by adding the zero compo-
nents in the xy = 0 frame:

m3 = (p1+p2+p3)o = mzcos% + mcos) = 22;:%31'1137'\ (6.22)
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Induction then gives the general fusion mass formula:

ni m
= 2usin — = .2
Mo = 2usino-, p 2sinT (6.23)

We will meet such trigonometric fusion formulas later in algebraic QFT where
they are related to the statistical dimensions of fused charge sectors. They were
first known through the Dashen-Hasslacher-Neveu quasiclassical approach. The
above fusion calculation was done as far back as 1976 [10] and consisted in a
synthesis of the quasiclassical work of DHN with some ideas of Sushko using the
factorization principle, but still without the ideas of Yang and Baxter (which are
not needed for this scalar case). The decisive step towards a general factorizable
bootstrap program was taken two years later [11][12].

The consistency of these particles as incoming and outgoing objects leads
to additional structures. Consider the scattering of the mass m, bound state
with a third m-particle. This S-matrix for the scattering of these two different
particles is obtained from S() by:

1
Sbe.(P1 + P2,P3) l(p, 4pyr=ms = 7 (m+£‘)¢,s_*m, 512513523 (6.24)
2

where the projector P, together with a numerical residue valye R is defined
by:

Re S(p1,p2) = RP; 6.25
(m+”)f_mg (p1,p2) 12 (6.25)

and we used the word elementary e.and bound b. as labels on the new two-
particle S, . . The factorization insures that:

P12513523 = 533813 P, (6.26)

A prominent family of scalar S-matrices with N -1 bound state fulfilling all
these requirements are the Zy models [13]. Consistency requires that the bound
state of N-1 m-particles is again a m-particle. For N=2 this family contains the
Ising field theory with S}f,)-,u = ~1 which we already met in the section on
(dis)order variables. Instead of elaborating this scalar factorization situation,
we pass immediatly to the matrix case where we meet a new and interesting
phenomenon. We assume that the particle from which we start has an internal
”charge” which can take on a finite number of values i.e.

lp.a) e Hi®V, dimV < oo (6.27)

The two-particle S-matrix is then written as a matrix acting on V ® V whose
entries are operator-valued (represented as in the previous case by momentum-
space kernels):

S IPI, sesey pn):::a. = lplr ",pn):;al_ Sg:‘:&(}’l, ""pﬂ) (6'28)

S (py, ..., pa) = [] (s, p;) (6.29)

i<j
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The factorization requires a specific order of the product of matrices. Consis-
tency requires the validity of a Artin (braid-group) like relation:

S12(p1, P2)S13(p1, P3)S23(p2, p3) (6.30)
= S23(p2,P3)S13(p1, P3)S12(p1, P2)

The notation should be obvious: the subscript on S indicates on which of the
tensor factors in the 3-fold tensor product of one-particle spaces the object
acts. The relation with the Artin relations becomes clear if one ignores the
p-dependence and rewrites the Y-B relation in terms of S, = PS, where P is
the permutation of two tensor factors.

This is the famous Yang-Baxter relation, since at the time of the discovery
of the S-matrix bootstrap it became clear that such a mathematical structure
had appeared before outside QFT in a quite different setting. Here this iden-
tity permits to change the temporal order of individual rescatterings so that
the n-particle scattering S is independent of those (graphically: invariance
under parallel shifts of 2-momenta in graphical illustrations of scattering pro-
cesses). The problem of finding the natural parametrization (e.g. Baxter’s
elliptic parametrization) for these Yang-Baxter relations does not arise in QFT;
the uniformizing rapidity 0 is already the natural Yang-Barter variable:

512(0)S13(60 + 6')S53(6") = S23(6')S13(6 + 6)S12(9) (6.31)

If fermion-antifermion pairs can go into boson-antiboson pairs, the object which
fulfills the Yang-Baxter relation is not S but oS where o = =1 with + for bosons.
As the braid group relation, this is an overdetermined system of equations. For
the former one found a powerful mathematical framework within V.Jones sub-
factor theory [14). Although the attempts to get an equally powerful mathemat-
ical framework for the latter was less than successful (the *Baxterization” of the
subfactor representations of Artin braids) one was able to find many interesting
families of nontrivial solutions of which some even allowed a comparision with
Lagrangian perturbation theory.

The S-matrix bootstrap idea originated in the early 60°** from dispersion
theory. Its revival in connection with d=1+1 factorization in the late 707
showed that its premises were physically reasonable, except the idea that it
could be seen as a "theory of everything” (TOE) which was wrong and even
obsert (for the more recent TOE’s one would be hard pressed to say friendly
words about their physical content).

The basic new message [15][16] is that one should use these factorizing S-
matrices as computational tools for the construction of local fields and local
nets as explained in the following subsection

6.3.2 Generalized Formfactors

Now we will probe the idea that these S-matrices belong to localizable fields.
Let A be any local field which belongs to a Borchers equivalence class of local
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fields. We write the generalized formfactor of A(x) as:

arean™ (P1r e, P |AO) P 1, Pl (6.32)

We are interested in its analytic p-space properties. "On shell” p-space ana-
lytic properties are more elusive than x-space analytic properties. For the latter
the spectral support properties play the important role, whereas p-space analyt-
icity relies heavily on caucality. The above matrix element still contains energy-
momentum §-functions resulting from contracting incoming p’s with outgoing.
These are removed by taking the connected parts of the formfactors. Only for
the distinguished formfactor:

Q1A Ps, P}, .00 = OLAONpr, i, (6.33)
we have coalescence with its connected part. Similar to x-space analyticity, one
expects the existence of one analytic master-function whose different boundary
values correspond to the different n-particle formfactors:

oram " (PL, coors P |A(0) 1 ooy p) 0" (6.34)

Ampl-...0g

F;(s.'j+i€,i,-,—i€,8u+i€), i<j$m<k<15"l
ty = (Pr‘P:)zy r<m<s<n

There are Watson relations between the S-matrix and the formfactors. In the
d=143 dispersion theory setting it is well known that the cuts below the inelastic
threshold of (0]A(0)) P1,p2) is related to the partial wave phase shifts in that
elastic region. In a factorizing d=1+1 theory these Watson relations can be
written down in general:

F& . (sij +ie) ©1AQ)py, ..epair o (6.35)

Y~ (01A(0)| out) (out | py, eees P ...

A g ad(8ij +i€) = FA o (si — i€)Soh8n (5i5) (6.36)
and for the mixed formfactors6.32:

F(sij +ie, by, — i€, 51 + i€) (6.37)
= Salllal (si)FP(si — e, try + i€, 811 — i€)San ™3 (41)

Using the uniformazing ¢'s this is like a generalized quasiperiodicity property
on f-strips for the F’s (instead of the periodicity of S). The first who consid-
ered formfactors beyond two-particles (18] and presented a system of axioms for
their calculation was Smirnov [15] Following a recent presentation by Babujian,
Fring and Karowski [16] in a more standard field theoretic setting (LSZ+ dis-
persion theory), the formfactor program for the construction of d=1+1 QFT is
as follows. Introduce the orderd formfactors:

1461, .....6,) := (0|A(0)] py, ...., Pa)y, 61>..>0, (6.38)
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and define the value for reordered #'s by analytic continuation (starting with
this ordering in the physical region). Demand that the f’s fulfill the following
properties:

] (l) A.J ...,0,',0,',...)= ffj,-”_(...,o,-,a.-,...)S.-,-(a.- —0,‘) v 9'3

° (ll) fﬁn(ol + i1l’,92, ...,9") = f,{_"l(og, ...,0,,,01 - fl’)

[} (lll) fi‘m,,(al, 0,,) "_.:~';+“ 0,+:_.';Clzf;..n(e3’ ceey 0,,)(1 - Sgn...Sza)

where Cop = 655 is the charge conjugation matrix.

Here we have not mentioned the poles from bound states (states which ap-
pear by the previous fusion) since they are automatically entering the formfac-
tors via the S-matrix. The word "axiom” in the context of this paper has the
significance of working hypothesis i.e. an assumption which receives its legiti-
mation through its constructive success. Physical principles on the other hand,
as the spectral and causality properties of general QFT, will not be called ax-
ioms. Our main aim is to show how one can reduce the above axioms of the
bootstrap-formfactor approach to the principles of QFT and thereby recuperate
the unity of this nonperturbative approach with the rest of QFT.

The conceptually somewhat unusual property is the "symmetry” property
(i). Here one should bear in mind that from the point of view of the LSZ
formulation fis an auxiliary object to which the statistics property under particle
exchange does not apply (it would apply to the original matrix-element). The
above exchange property for f is a statement about analytic continuation. The
statistics of incoming particle is only used in order to get the charges (i.e. the
tensor factors) into the same j — i order as the analytically interchanged #'s.
Following BFK [16] let us first remind ourselves of the standard argument for
(i) in somewhat detail. For the special case (0]A(0)[8,1682)*" ex = in,out it is
evident that: .
(014(0)] 8,65)""
(014(0)] 6,6,)

i.e. there is one analytic masterfunction f (2) (assuming identical particles) with
different boundary values on the s > 4m? cut having the in, out interpretation.
Assuming Bose statistics, the physical matrix elements on the right hand side
are symmetric under the interchange of the #’s. In terms of the uniformization
variable 6 in F the transition from in — ouf means a change of sign via
analytic continuation i.e. without changing the charge quantum numbers o i.e.
the position of the tensor factors. After accomplishing this last step by the bose
commutation relation the negative 6,5 formfactor F(631) can according to the
definition 6.38 be identified with f21(63,61) and the relation

(014(0)] 6261) S(16, - 6,]) = (0]A(0)} 6,6,)"™ (6.40)

agrees with 6.38 The generalization to *** (95..., |A(0)]6182) 25, has a problem
because replacing in by out means passing from time-ordering to anti-time-
ordering but the LSZ scattering theory produces boundary terms contributing

lim,_.oF(su + t€) = { (639)
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to the connected part. Although they are absent for theories in which the
number of in-particles are conserved, it is unclear what property of general
QFT is bringing about (i) through specialization to factorizing d=1+1 models.

On the other hand (ii) and (iii) are consequences of the following standard
crossing formula [16] which relate the connected part of the generalized form-
factors to the analytic master function f:

1{01A(0)! P2, ... pa)y" (6.41)
= ) i(m 1P3); f3' 5 nS2i--Simtj + fly a8y +i7-...,8,)

j=2
= Z 1{p |Pj),' f:_.J‘-‘_nSjn-‘-Sjj'H + fi‘...nl("-»onol —ir_)

j=2

The fastes way to understand this is to draw the corresponding graphs and
remember that a positive energy particle crosses into a negative energy antipar-
ticle. Successive application leads to a formula which expresses the formfactors
in terms of the analytic auxiliary function f .The analytic part of this relation
gives (ii) whereas the é-function part is responsible for (iii). A proof that these
properties do not only insure TCP-invariance (weak locality) but also Einstein
causality can be given by using JLD spectral representations [19) However the di-
rect derivation of the bootstrap-formfactor axioms from the principles of QFT
was hitherto not achieved. It is part of the complicated and incomplete mo-
mentum space analyticity problem. Even the derivation of forward dispersion
relations in particle physics took several Years, not to mention the derivation of
the analytic aspects 5 of crossing symmetry which remained utterly incomplete.
It is precisely at this point where our modular localization approach shows its
strength. To anticipate one result, it shows that the crossing symmetry is a
kind of strengthened TCP-property and that the cyclicity it leads to is identical
to the KMS-temperature (=Hawking -Unruh temperature in this special case)
characterization of the (Rindler-)wedge based Hawking-Unruh effect. From our
point of view the most valuable result is that it opens for the first time the
way to a new constructive iterative (but not perturbative) approach to non-
" quantization non-Lagrangean based QFT. My confidence that this may amount
to more than just another fashion rests on the observation that the tool of
modular localization comes from a refinement of TCP which, as anybody will
immediately admit, the central structure of local QFT.

6.3.3 Modular Theory and the Formfactor Program

In this section we will analyze the formfactor program from the viewpoint of
modular localization. To avoid complications we start with theories which have
a diagonal S-matrix. A prototype is the Ising field theory with S = -1, § = K

50nly together with the (mass shell) analytic properties the crossing symmetry aquires a
physical content.
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where K is the Z; Klein twist of the previous section. We look first for a weakly
local (not necessarily local) field in the TCP class associated to this simple
S-matrix. For this purpose we modify the Fermi-creation and annihilation op-
erators ax. of the free Majorana field associated to the Ising field theory in order
to obtain the bosonic Z; commutation relations. With some experience [20] one
immediately writes the following expressions:

B(O) = :ain(8)e 1w Sin(Daum®)dr . (6.42)
c‘(0) = :a:n(o)eit .“a:_(l)a..(‘)dl:
Bz) : = % / {e=7=b(6) + £'7*c ()} do (6.43)

~  ©B(z)0 = B*(-z), © = Si,iny 60, ©0=6in

This field creates wedge localized vectors in the n-particle projections of D(W) =
Hgp + iHpg:
B*(z,)...B¥(z,)Q, z,eW (6.44)

These b#s produce the Sliing S-matrix:

B*(01)- 6" (0n)@ = Stringa®(81)....a"(62)2
b#(o) = S’"'"la#(a)s;n'n'

and fulfill the Zamolodchikov algebra:

b(6)b°(8") S-1(6 - 6')b° (6")b(0) + 6(8 — ') (6.45)
b()b(8") = S(8-6')b(6)b(6)

Operators of this kind have been used a long time ago in order to exem-
plify the fact that massive d=1+1 theories describe ”statistical schizons” [20)]
in distinction to conformal field theory, where the statistics (in form of field
commutation relations) are inexorably linked with the fusion law of charges®.
Recently Fring [21] and Lashkevich [22] constructed these operators using the
realization of anyionic deformations [20] of Fock space d=1+1 creation- and an-
nihilation operators a¥(p) as a guiding principle. It was through discussions I
had with Lashkevich that I later recognized that there may be an interesting re-
lation between the above Zamolodchikov algebra and certain auxiliary operators
in my modular localization approach.

$For this reason the widespread use of the terminology "bosonization” in conformal QFT
is unfortunate , but appropriate in d=14+1 massive theories. Whereas "bosonization” (or
"fermionization”) in conformal QFT means that the current algebra admits fermionic su-
perselection sectors, in the massive case the same sector allows different "pseudo”statistical
descriptions since schizons only have intrinsic charges but not intrinsic statistics. A periodic
table of elements in a d=1+1 world does not require fermions.
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The above expressions may be generalized to factorizable S-matrices which
are diagonal.. The corresponding b-operators are then of the form:

B(8) = in(B)e’ 2o Fec(0=0000u (0" 2an (0")a0 (6.46)

where 6,.(6) is the scattering phase shift. Again the TCP invariant operators
and the wedge localization through the S-domain is analogous to the constant
case. From those wedge localized n-particle states one reads off the formfactors
of the would be local field. The solution is unique.

The main observations which links the bootstrap-formfactor axiomatics (i)
(ii) and (iii) with modular localization are contained in the following statements:

¢ The TCP-covariant (not necessarily local, but weakly local) fields B(z)
with z = r(sinhy,coshy) € W which generate a right wedge algebra
A(W) equipped with the global vacuum state (i.e. that state which is the
vacuum with respect to the global algebra A) result in a KMS-temperature
state with the Hawking-Unruh temperature § = 2x. The KMS bound-
ary condition for a correlation function of B's together with local fields
A(z),z e W:

(01B(ry,x;)B(ra, X2)--A(z)...B(ry, Xn)|0) (6.47)
= (0|B(rs, x,)..A(z)...B(r,,,x,,)B(r,, X1 + 2xi)| 0)

is equivalent to the cyclicity property (ii) (the f “4is obtained from the
connected part of the B-correlation function). The 2x strip-analyticity in
the x's, which is provided by the KMS-theory, translates into momentum
space analyticity for the rapidity variables 8; of fA. In particular the
analyticity and the crossing symmetry of the S-matrix is a consequence of
this temperature structure 6.47for A = 1 e.g.:

{01B(r1,x; +ix)B(rs, x;)B* (rs, X3)B*(r4,x,)]0) (6.48)
= (0[B(r2, x2)B"(r3,X3)B" (r4, x4)B(r1, x; ~ ir)| 0)
& S(0) = S(ix - )

¢ The (improper) state vectors B(r1,x1)-...B(rn, x,, )2 are boundary values
of "half-strip” analytic vectors:

B(rl,zl)....B(r,.,z,,)Q, *>Imz, > .. .Imz; >0

Upon taking the n-particle component this property translates into the
half strip analyticity of the vectors:

b‘(zl)....b‘(z,.)ﬂ, i = 0; +i;

As a result of the Zamolodchikov commutation relations of the #'s, we
find that there is one half strip-analytic "master”state vector ¥(21,....25),
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whose diflerent boundary values correspond to different operator order-
ings:

li w2g) = b%(6 ...b%(6 Q 6.49

> Impy> S Imspeey >0 YL E0) = 87 (0p(1)).- 6 (0p(n) (6.49)

Ims =0

The analytic structure in rapidity space has an intriguing similarity with
the analytic x-space structure known from Wightman’s formulation of
QFT. The reason is of course the close connection between the L-boost
variable x and the rapidity 6.

¢ The above state vectors generate the p-particle component of the modular
localization subspace:

Po$B(z1)...B(2n)Q = PaB*(2,)...B" (2, n (6.50)
< 5¢*(61)...¢°(6a)92 = 8°(8,)...5°(6,)Q (6.51)

A (61)-€(0n)2+ 6 (8,)..5°(0)R € HP (W) (6.52)

Here we used the relation 6.45 i.e. the factorizability of the theory. As
in the free case, the closed real subspace Hr(W) represents the encoding
of the complex dense modular localization space associated with W. Note
that this last discussion used the factorization structure.

The generalization to charged particles and to halfinteger Lorentz spin is
straightforward but the case of nondiagonal S-matrices gives rise to additional

problems. The modular localization equation for the real subspace Hg')(W) is
now:

s / Yay...an(01,..-60) |61, ...8,) 21 (6.53)

/ (Pay...ap St 782)(01 + 7.8 + i) |8y, ...0,) 21
= /'/’al..-a. (6:, ...0,) 184, -..9,,):'"“‘“"

N (Do St G001 +in. o 4 i7) = oy o (01, 0n)  (6.54)

This ”S-reality” equation seems to be a new mathematical structure as far as
the mathematical physics literature is concerned. In the formulation of crossing
symmetry the charge multiplicity indices & must be replaced by their conjugate
values:

5612201 — 82) = S3103(8, — (8, — i) (6.55)

azf,

In the case of nondiagonal S one does not have operators B(z) at ones disposal.
It turns out that analogous to the Bethe Ansatz inspired solution of this prob-
lem [16]in the formfactor approach, the modular wedge localization (i.e. the
S-reality) entails a natural Bethe Ansatz structure which permits an explicit
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description of the space H;")(W). The latter is indispensable for a realization
of the Zamolodchikov algebra in the incoming Fock space and the construction
of local fields within the formfactor program. These matters will be taken up in
a separate paper [19]. There we will also present the new rich structures which
result from intersections of wedge spaces in order to describe the localization
spaces e.g. of the compact double cone regions. Although the modular struc-
ture of wedge localized von Neumann algebras in QFT as we used it here may
be found in the literature, we do not expect most of our readers to know it.
Therefore we decided to present the modular material in a broader context 77,

The coordinate-free point of view of the net theory suggests that the form-
factor program may not be the most efficient and natural way to relate an
S-matrix with local fields i.e. the inverse problem of the net field theory: given
the modular invariant S of the net, reconstruct the net. Since an S-matrix is not
associated to a particular field but rather is an invariant of a local equivalence
class or a net, a direct construction (in the spirit of the functorial construction
for free systems in the introduction) of the net instead of individual fields may
be simpler than the rather cumbersome formfactor program. Such an algebraic
approach would then consist of two parts, the conceptual problems related to
the modular wedge localization of state vectors in Fock space i.e. TCP, antipar-
ticles, crossing symmetry etc. and the ascend to local nets of subspaces and
associated nets of von Neumann algebras.

Apart from the new analytic modular structure, the wedge localization equa-
tion is reminiscent of Yang’s use of the Bethe Ansatz idea [17]. Our modular
localization method therefore suggests that a suitably generalized Bethe idea
may be a valuable tool in a new constructjve approach to algebraic QFT (and
not just for factorizable models). Related to this is the hope that our approach
may lead to an explicit Fock space representation of the Zamolodchikov algebra
(beyond the above diagonal cases) also in nondiagonal factorizable models, and
that one meets analogues of this algebraic structure (which is somewhere inter-
mediate between the algebras generated by the Heisenberg fields and that of
the incoming fields and hence may be viewed as an algebraic QFT counterpart
of the fictitious [3] interaction picture) in general local quantum physics.

6.4 Open Ends and Outlook

The really difficult problem in a constructive approach build on modular lo-
calization is the passing from the net of localized subspaces to a net of von
Neumann subalgebras (educated guess: subfactors of von Neumann type III,
as in the free field case). Here the most important issue is uniqueness. The net
of localized subspaces is uniquely determined by the TCP-operator. Therefore
the question of uniqueness of nets of operator algebras can be rephrased as: does
the weak locality equivalence class contain maximally only one local Borchers
class? We think that by a judicial use of spacelike (anti)commutativity, a given
S-matrix (¢<a given ©) will maximally allow (up to isomorphisms) one field
system or algebraic net. The only argument we have in the momentis: S =1
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~ree field Borchers class [19]. The essential step in the argument is the use of
crossing symmetry and the Watson relations which link physical cuts in the an-
alytically continued formfactors (matrix elements of a representative local field
in the basis of the incoming multiparticle spaces) to the S-matrix. The fact
that analytic on shell p-space properties, as one needs them for such arguments
(e.g. crossing symmetry as an analyticity statement and not just a suggestive
formal statement abstracted from LSZ extrapolation formulas), are difficult to
obtain from the locality and spectral principles of QFT one can try to coun-
teract by (as in the d=1+1 factorizable case) assuming " maximal analyticity”
i. e. only taking physically motivated singularities into account. On the one
hand this is certainly reasonable in a constructive approach and on the other
hand we expect that the same modular theory which underlies the modular
localization approach will also lead to a much better understanding of on shell
analytic p-space properties. The present analytic techniques result from the
so-called JLD-representation for matrix elements of causal commutators. We
expect the exploration of modular localization concepts to give more powerful
analytic results.

Some speculative remarks on the problem of associating a net of von Neu-
mann algebras with a net of localization spaces may be helpful at this point. In
the theory of operator algebras the Araki-Connes concept of the "natural cone”
allows to construct a von Neumann algebra from the knowledge of the split of
HRp into positive cones +C,:

H}z = C+ - C+ (656)

In the case of factorizable models the modular localization principle which leads
to Hr(W)- and Hr(double cone)-subspaces uses the real (on shell) particle con-
servation and gave rise to (albeit new and subtle) quantum mechanical on shell
Bethe Ansatz problems. However the local fields (or nets of von Neumann alge-
bras) in such theories are known to have a very rich (non-quantum mechanical!)
virtual ("off-shell”) particle creation and ennikilation structure. The same is
expected in a theory of "free” anyons and plektons as opposed to free Bosons
. and Fermions. According to the arguments presented in this paper, this richness
must occur in this last (unfortunately poorly understood) step from modular
localized subspaces to (Einstein-) local algebras’. Connected with this is the
already mentioned uniqueness problem i.e. the inverse scattering problem for
local nets, which we will investigate in a future publication [19).

Finally we want to make some speculative remarks on how one imagines
an iterative approach which unlike perturbation theory (which uses interaction
densities expressed in the form of Wick-polynomials and their time-ordering) is
based on modular concepts. One would start with a Heisenberg Ansatz for a
relativistic S-matrix:

SO =¢" 5= Z/nn(zl...zz) 1 0in(21).-Bin(zn) : (6.57)

"This is also step from which I would expect a profound understanding of on shell crossing
symmetry.
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where the coefficient function should be Poincaré-invariant and cluster-connected,
but yet without those complicated analytic p-space properties of multidimen-
sional dispersion theory. In order to make at least some formal intuitive contact

with the standard perturbative implementation of interaction via invariant free
field polynomials one may choose for 1 the same expression. This Ansatz already

assures (via © and J) the modular wedge localization ( at almost no analytic
costs) which leads to mass shell analyticity in certain rapidity variables (which

form families corresponding to the family of wedges) as in the factorizable case

??. However the nontriviality of intersections of wedge spaces and the required

existence of a map from the net of modular localized subspaces to a net of
von Neumann algebras suggests to iteratively correct S by S(1), §()_etc. in

order to achieve an increasing amount of localization®. Unlike the bootstrap-

formfactor problem of the previous section for which a candidate for a "local”,

crossing symmetric S-matrix fulfilling the ”maximal” p-space analyticity was

known at the start of the formfactor program, such a contemplated iterative

approach based on modular localization would constitute a true ("heterotic field

theory-S-matrix”) mized bootstrap approach. It would be at least as removed

from perturbation theory and functional integrals as the bootstrap-formfactor

program is from Lagrangian QFT. The interaction could then receive its name

not from Lagrangians but rather from the e.g. polynomial Ansatz for .

At this point the question arises what, if any, is the relation between this
modular approach and the standard one build on quantization. Here it is helpful
to think of a kind of field theory-adapted "Murphy’s law”: if there is neither
a proof nor a an intrinsic structural reason for a conjecture in QFT, then it is
wrong. Although this law does not follow from the physical principles, I do not
know a single exception to it in QFT. So the idea, that behind the renormalized
Gell-Mann Low formula or functional integrals (even with all their instanton
corrections!) or the Bogoliubov-Shirkov axiomatics in terms of a space-time
localized formal expression S(g), there is an interacting theory based on those
concepts would be an illusion, except for those low-dimensional models (o3 ete.
where there is a connection through Borel resummability) for which one has a
proof. Perturbation theory remains an infinitesimal deformation theory with
no possibility for globalization. Despite its non-existence (invoking Murphy’s
law) of S(g), from a formal physical point of view it is close to the modular
invariant S (section 4 of [4]. Whereas standard perturbation theory maintains
the linear structures as locality in every order but links unitarity with the non-
perturbative existence (futile according to Murphy’s law in QFT), any inductive
approach based on modular properties is unitary in each step of the induction,
but acquires sharp locality only in the limit (which is also the limit in which.
the modular S acquires the scattering interpretation).

The present modular framework is not applicable to zero mass theories for
which the LSZ incoming fields vanish i.e. a scattering matrix cannot be de-

8The problem seems to be vagely reminiscent of a selfconsistent Hartree-Fock jteration with
the iteratively improved interaction being the analog of the S{")s, and the zero order bilinear
(mean field) interaction corresponding to an S(®) in the form of a Heisenberg ansat26.57.



CBPF-NF~026/97
-169-

fined ("Infraparticles” as opposed to Wigner particles). Whereas for e.g. chiral
conformal theories this is no problem since they are scale-invariant limits of
massive theories, theories as QED (which presumably do not allow such a lim-
iting description) require conceptual modifications. The modular approach is
uncompromising but thankful for new conceptional challenges. It flourishes on
the weaknesses, paradoxes and contradictions of the standard approach. Even
at the risk of sounding immodest, one may hope to overcome the narrowing of
QFT at the beginning of the 70°*, when (as a result of enforcing classically
based concepts as the "gauge principle” via quantization) very unfortunately
noncommutative real time field theory was forced to become a footnote of eu-
clidean field theory. Besides recent (in my opinion artificial) attempts to get out
of the euclidean malaise by compensating the loss with a doses of noncommuta-
tive geometry®, there has been a renewed interest in real time QFT. In addition
to the formfactor-bootstrap program presented in this work, this is illustrated
by recent progress on QFT in curved space-time for which the euclidean ap-
proach is physically senseless (23] (albeit mathematically interesting). We hope
that our ideas on modular localization may also contribute to find a way out of
the present stalemate and particularization of QFT. In any case our confidence
at the moment is more based on its unifying point of view and its fundamental
modular structure leading to new mathematical equations with the promise of
a deep relation to Bethe Ansatz structures. Anybody with some knowledge of
nonperturbative QFT will have no problem in recognizing that one is dealing
here with the most fundamental structures which QFT has to offer.

*Instead of trying to escape the euclidean trap by physical brute force methods (employing
ideas from nomcommutative geometry) one should remember that QFT has a natural noncom-
mutative structure and allows Jor a exclidean formulation and & Feynman-Kac representation
only under very special circumstances.
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Chapter 7

Introduction to Algebraic
QFT

7.1 Some Useful Theorems

A representation (x,U) of a C*-algebra and an automorphism group (A, ag)isa
representation x of 4 in a Hilbert space H together with a strongly continuous
unitary representation U of Rin H:

Utyx(A)U(t)~! = (e (4)), U(t)= fH B> (7.1)
For such representations the following theorems hold.

Theorem 17 (Reeh-Schlieder) Let {.A(O)}C,e x be a local net with transiation
symmetry and N a space-time region such that there is MCNanda neigh-
bourhood of zero V with: N 5 M +V and additivity:\/_ ANy +z) = A”. It

—

Jollows that: AN = AY for all Y €D(e?P), ac V!

Proof. One shows that for any vector ¢ 1 AN) A ¢=0
For any such vector we have (¢, az,(41)....aq, (An)¥) = 0, or in terms of
boudary values of analytic functions in the tube:
lim (¢, e"""A,e‘('=-'=)PA,....A,.e-("-+°>‘°e°”¢) =0
Tz,
where the limit is taken from inside the tube T(n.e), Im(ziyy ~ LZ)EVT 2=
0, zn41 =1a in which the matrix element is an analytic function Fou(z1....2,).

Since it vanishes in an open set on the boudary it is (thanks to the generalized

Taking now locality into account we conclude that if Ay = 0 for a vector
¥ as above and 4 € AN') ~ BAY = ABY = 0 for all B € A(N) and hence
A =0on adenseset ~ A=0or in words: ¥ is cyclic and separating.
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This is a characteristic property in QFT of finite energy states (in particular
the vacuum Q) with respect to local algebras .4(0) such that O’ is not empty
i.e. it does not hold in standard Q.M. If not handled with great care, one can
easily get into pitfalls with causality! Most of the more sophysticated " violations
of causality” are due to some conceptual misunderstanding of QFT. Literally
speaking the R-S theorem says that by applying suitable operators which have
some time duration in a spatially limited laboratory, one can approximate a state
which describes the instanteneous creation of matter "behind the moon”. A
closer look reveals that the higher members of such an approximation sequence
require more and more exotic (increasing energy-momentum costs) pieces of
hardware. This suggests that the limited localization in phase space (i.e. a field
theoretic analogon of the finite number of degrees of freedom of standard QM)
becomes relevant for the cost balance. Indeed the precise formulation of this
idea in the form of the " nuclearity property” of degrees of freedom has turned
out to be extraordinarily useful. Theories which do not obey this requirement
as e.g. those with a e.g. ”Hagedorn temperature” are physically ill.

Another technically important property is the following ”property B” which
is due to Borchers.

Theorem 18 Let E be a local projector E € A(O). Then there ezists an isom-
etry V localizable in a possibly slightly bigger region O D O with E = VV»,

Somebody with some knowledge of von Neumann’s classification theory of
factors and its refinement of type III factors by Connes and Haagerup?, will
have no difficulty in realyzing, that if it would not be for the possible enlarge-
ment of O, the statement £ = Vv vy =1 (isometry) yields £ ~ 1, 1e.
the projectors are ™infinite” A A(O) is type III. Indeed all explicitely known
local QFT algebras are factors of type III; in the refined classification theory.
The subscript 1 stands for "hyperfinite” which is somewhat loosely speaking a
property of approximability by finite degrees of freedoms (prerequisite for lattice
approximations) and which can be shown to arise from the QFT phase space
structure encapsulated in the nuclearity requirement. It holds for the local al-
gebras but does not necessarily apply to globalizations as Auniv. Type 111 are
the "biggest” von Neumann factors in the sense that they absorbe any tensor
factor. For the wedge region one can actually prove that A(W) is a type III,
factor (factor algebras are very natural also in physics since they substitute the
notion of irreducibility in those cases where their intrinsic impurity prevents
irreducibility). On the opposite end of the side one finds type II factors which
are absorbed into any other tensor factor. The latter are however big enough in
order to incorporate all the generalizations of group symmetry which recently
surfaced in V. Jones inclusion theory of subfactors. In algebraic QFT the inter-
twiner algebras associated with the charge sectors of observable algebras are of

1Some of the more " spectacular” published claims about appearant causality violation have
been reviewed in B.Schroer, "Reminiscences about many pitfalls and some successes of QFT
within the last three decades”, Reviews in Mathematical Physics, Vol.7, No.4 (1995), page
651.

2An account from the point of view of a theoretical physicist can be found in Haag's book.
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this kind (combinatorical or topological QFT).

In connection with the limitation of energy-momentum and the nuclear-
ity formalism it is convenient to have a mathematical framework which makes
precise the concept of energy-momentum transfer. This was done by the mathe-
matical physicist Borchers and the mathematician Arveson. The idea is to first
introduce a notion of spectrum of the automorphism. The automorphism a; of
the C*-algebra may be extended via 7.1to the envelopping von Neumann algebra
7(A)". It should not lead to any confusion if we stay sometimes with the same
symbols for the extended objects. With the help of L.Schwartz test functions
f € S(R) we form ay(A) = [dtf(t)a,(A). It is easy to see that the extended
automorphism, and therefore ay, maps also the von Neumann extension into
itself (since it commutes with elements from the commutant x(A)’ inside matrix
elements). One now defines the (Arveson-)spectrum of A € x(A)" as:

speca(4) = {w € R |Vnbhds N of w,3 f € S(R) s.t.suppf C N, ay(A) # o}

(7.2
The size of the individual a 4(A)-contributions is evidently limited by suppf).
We can manufacture operators A with spec, (A) € 1,1 given, by smoothening a
given B with f,suppf C I:
A=« 7 (B)

The (algebraic) subspaces with energy transfer > E are defined as:

Ag = {A € A| spa(4) C [E, 0]} (7.3)

The usefulness of these concepts begins to show up if one relates this with
projection operators in the Hilbert space H of the representation (x,U ):

Pg := proj on n ApH (7.4)
E'<E

One may now associate a "hamiltonian” with a; :
H = / EdPg, V(t) := B = / e'EtdPg (7.5)
~ a(A) = V)AV(t)~?
Since: x(A) AgH C AgH, we find:
APs = PgA'Pgp=PgA,
~ [Pg,A1=0VA' € x(AY

or using more physical words: the infinitesimal generator H of the symmetry
a; may always be chosen in such a way that H is associated to the algebra
(the Arveson-Borchers theorem). The algebraically determined H is called the
“minimal” generator. Although the general situation, unlike the well-known
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explicite expression (Sugawara) for the chiral translation generator in chiral
conformal QFT, does not lead to a concrete functional expression, nevertheless
this should be interpreted as the generalized analogon of the situation known in
conformal QFT.. The generalization to abelian groups with several parameters
should be obvious.

In the same vein, but taking in addition locality into account and using
more powerful analyticity tools ("edge of the wedge techniques”), one proves
the following four interesting theorems (H:J: Borchers " Translation Group and
Particle Representations in Quantum Field Theory” Springer Lecture Notes in
Physics 1996).

Theorem 19 (Locality and the shape of the spectrum) Let { A(0), A, RY, a} be
a local net with translation symmetry and positive energy. Let V(a) denote the
above minimal positive energy representation. Then the lower bound of specV
1s Lorentz-invariant.

This is the counterpart of the classical fact that causal propagation can
only be satisfied with L-covariant equations. As a result of this inexorable link
in the classical theory, Einstein never separated the issue of L-invariance from
causality.

Theorem 20 (General cluster property) Let {A(O),A,R‘, a,} be a local net

as before and w a tranlation invariant state and {x,H,Q,U(a)} the GNS-representation
with U(a)Q = Q. Denote by P, the projector onto the subspace of pointwise in-
variant vectors i.e. Q € PoH. Assume furthermore that the center of x(A)" is
pointwise invariant under a,. Then we have the following relation:

'\l_x_‘ngo (2, x(Ay)x(ax B, )x(Az)...x(An)x (s Ba)R) (7.6)

= (Q,ﬂ'(A;AQ...A,‘)PoI'(BlBQ...Bn)Q)
(2, x(B; Bg...B,.)Pox(A1A3...A,,)Q), b spacelike

Naturally some of the A, B; may be identity operators 1 which allows to
have #A # #B. In the case of the unique vacuum and a spectral mass gap one
may prove the strong approach of the right hand side (faster than any inverse
power in A) which is the standard form of the cluster property. This is then the
starting point of the derivation of scattering theory.

Theorem 21 (Additivity of spectrum) Let {x, H,U(a)} be a factor represen-
tation ( a von Neumann algebra with trivial center: Z = z(A)Y N x(A)") of
a theory of local observables fulfilling the spectrum condition and assume that
U(a) is the minimal representation. Then if prand p; are in specP, so is P1+ps.
moreover if the mass spectrum consists of a discrete partmg < my < ...and a
continuum slarting at m. > m; then:

3mo > m,

The expected relation m, = 2mq remains still unproven.
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Theorem 22 (Absence of classical fields) There ezist no classical field theories
(i.c. abelian algebras) which fulfill the spectrum condition.

Theorem 23 (Algebraic generalization of Bohr-Rosenfeld observation on e.m.
fields) Let {A(O),A,R‘,a} be a theory of local observables and define:

Ala) = (] A0)

a€o
Then A(a) C Z(A).

Clearly this may be interpreted as a generalization of the nonexistence of
finite e.m. quantum field strength at a point i.e. the necessity for smearing
quantum fields. This theorem which is due to Wightman has generalizations
to subsets of Minkowski space. For spacelike 3-d hypersurfaces and for time-
like segments the analogously defined algebras are nontrivial and equal to the
algebras of their causal completions i.e. A(O")

7.2 Abstracting Principles from Standard Set-
ting

If we use fields in standard QFT in order to define local nets of field algebras
{F(0)}, we find the following properties3:

¢ P—covariance, positive energy and uniqueness of the vacuum.

3 a strongly continuous representation U of the covering of the Poincaré
Pl
group P, :
uiyFowr)? = F(LO) (7.7)

and the generators P, of the translations satisfy the spectrum condition
spec € V1 with PQ = 0, Q being the unique vacuum.

¢ 3 a compact (global gauge) group* G and stronly continuous faithful
representation U of G which commutes with the Poincaré group (fac-
torization of internal and external symmetries) s.t.: U(g)F(O)U(g)~! =
F(O), U@ga=9

¢ 3x € G of order two i.e. k? = 15.t. with F = Fe+F_ ,ax(F), =xF
and spacelike separated ©yand O;; the following graded (or twisted” )
locality relation holds:

{F-(01), 7_(02)} 0 (7.8)
[F+(01), F_(0,)] 0 = [F4(01), F+(02)]

3The reader interested in technical and conceptual details should follow the historical path
and look at Haag's book and the original articles.

4 Always global gauge group, because local gauge groups are not related to symmetries in
the same theory.
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We write this in the condensed form:

F(O) = FO)*, FO)y*:=VvFoO)y (7.9)
K st. KF(O)K™? x(F(0))

* Additivity: F(0) =\, F(0;), O = Uo
¢ Haag (twisted) Duality:

FO) = FO)Y A (7.10)
AOY | 5= AO) |n,, A©) =FO0)nU(GY

where the observable algebra is defined by this invariance principle and the
von Neumann algebra of a boncompact region, as the causal complement
of a double cone ¢, are defined in terms of an additive covering by double
cones together with von Neumann closure:

Comments: although these properties have an enormous plausibility, I rec-
ommend to look up the proofs. The conclusion rvdoes not hold in the case
of d=1+1 where the order-disorder duality makes its appearance (see chapter
3, section 7). The "quantum intuition” aquired from standard QT (as well as
from Lagrangian quantization) is treacherous in QFT, an area for which a good
intuition still needs to be developped.

The notation | H, denotes the restriction to the vacuum sector Ho: U(G)Hy =
Hy pointwise in Hy. What is referred to as the observable algebra in these notes
is not Ain H but rather the smaller (irreducible) algebra 4 |a, - The gauge
invariant part can also be obtained via the conditional expectation (averaging
with compact group):

m(F) : = /G dga,(F), /G dg=1 (7.11)
properties : (1) m(F(0)) = A(0)
(2) m is normal,i.e. ¢ — cont.
(3) m commutes with a,

The continuity property (2) allows the continuation of m to all operators B(H).
We obtain 7" = B(H), A" = m(F") and hence A" = m(B(H)) as well as
A =UG)

This gives us the desired tensor decomposition of the Hilbert space:

H=PH, 0 H, (7.12)
-4

where the first factor H, is the irreducible representation space for the irre-
ducible representation Us(G) of the internal symmetry group and H! denotes
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its (infinite dimensional) multiplicity space which is an irreducible representa-
tion space of A4 correspoding to 7, . With other words we have:

A | Hen =1y,07,(A) AcA (7.13)
U@) | nenm =Us(9)®1s4 g€G

A in H contains generally many other irreducible representations r, besides
the vacuum representation, and the primer into the theory of superselection
sectors consists in classifying these, in particular to understand what properties
they share. For this purpose we introduce minimal projectors in the algebra
U(G)' :

E= [450() (6.Uuls™)0) € H, asbitrary, [1] = 1 (7.14)

Since according to the Reeh-Schlieder theorem F(O) acts cyclically on Q, we
always find elements F € ¥ (O) with EFQ # 0. The definition: -

TY=EFYy y¢€H,
determines a partial intertwiner T : Ho — EH with the intertwining property:
Tro(A)=xg(A)T, Ac A(O") (7.15)

The reader easily checks that the vectors TQ € H E and [T)|Q € H, (since
T°T : Hy — Hy) have the same expectation values on A(Q') i.e. induce the
same partial states. Using the Reeh-Schlieder cyclicity one shows that there
are sufficiently many partial intertwiners such that the set of states over A(0')
in all representation obtained from the decomposition of 7(A) on H agree i.e.
the restriction of the net A to A(O') gives the same folium (see mathematical
appendix) of states independent of the charge sector o.

Theorem 24 All irreducible subrepresentations x, satisfy the (DHR) cond;-
tion:
%o la©n= %0 |40y (7.16)

i.c. the representations of the observable algebra (obtained from an invariance
principle on the field algebra) are unitarily equivalent in the causal complement
of any space time region which admits a nontrivial causal complement.

This is taken as a definition of (DHR) compactly localizable representations
for an arbitrary observable net.

7.3 Starting the Reverse: the DHR Endomor-
phisms

The previous DHR localization condition may be now be taken as the starting
point of the most important part of algebraic QFT: the DHR superselection
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theory. Let us start with the classification of abelian (simple) sectors because
they are also simpler in the everyday use of the word. In order to appreciate the
following definitions, one should think of one-dimensional representations of a
group G which form a subcategory of representations closed under compositions
(i.e. the projectors E, on H, ® H, of the previous section are elements of the
center Z(U(G")) = Z(A") or U(9)E, = E,U(g) = x(9)E,). In order to un-
derstand this property in terms of observables A (without F) only, we convince
ourselves that the representation x, satisfies the Haag Duality property, which
we up to now only met in connection with the vacuum representation:

T(A(0')" = x(A(O)) N x(A)" (1.17)

Comment: the left hand side is the von Neumann algebra generated by A(O,)
for all Oy, C O'. For « irreducible the relation is often written as x(A(0')) =
*(A(O))'. Replacing = by C we have the Einstein causality relation, therefore
7.17represents a (maximal as i8t turns out) strengthening of causality.

A 7, as obtained in the previous section by restriction from a field algebra
¥ fulfills Haag Duality since .A(O) = (F(OY nUGYY = F(Ooy vu (G)" and
acting with the projection by E, as well as with m from both sides (those actions
commute) the U(G)" is killed and we obtain: 7o(A(O)) = E,(F(OYE, =
E,(F(O)Y NU(G))E, = x, (A(0O"))" where in the last step we used the twisted
duality of F. We will later see that representations of the observable net A fulfill
Haag duality iff they correspond to simple sectors.

Let us now start to do the reverse, namely construct a charge carrying field
algebra ¥ from the observable algebra A and its DHR7.16 representations. We
first must find some good mathematical concepts to classify the DHR localized
representations. The unitary equivalence of *(A(0')) with xo(A(Q)) in7.16
garanties the existence of partial intertwiners i.e. isometries V: Hy — H, with:

Vro(4) = x(A)V, Ac AO) (7.18)
We define a representation #(A4) in H equivalent to x(4) in H, by:
T(A):=V-x(A)V, AcA (7.19)

By construction this representation agrees with xg in 0. For sufficiently large
regions namely O; D O, the range of # is contained in that of xoie. #(A(O,)) C
7o(A(01)) and hence a fortiori #(.4) C 7o(A). This follows by using (vacuum)
Haag Duality, namely: [xo(A’), #(4)] = #[A’, A] = O for A’ € A(0)), A € A(0O)
and ~ #(A) € 7o(A(O}) C xo(A) by Haag duality. Therefore p defined by:

p=x3lok, p: A=A (7.20)

is an endomorphism of the C*algebra A with the following remarkable prop-
erties:

® pislocalized in O (locp C 0), ice. p(A) = 4, A € A(0')
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e transportable, i.e. VO,,0; with O, D O, U0 U € A(O2) s.t.AdU o
p(A) = A for A € A(O})

e p(A(Oy)) C A(O1) YO, D locp

The very simple proof of these properties is left to the reader. We follow
Haag and call the set of such p's A, and denote by A(O) the subset of p’s with
locp € O.

In the constructive approach based on the observable net and its endomor-
phisms with the above properties, one defines the sectors as the equivalence
classes of p's modulo inner automorphisms. The following structural investiga-
tion of localized transportable endomorphisms is independent of the dimension-
ality of the QFT i.e. holds as well for low dimensional theories. Let us first look
at abelian sectors which by definition are equivalence classes of automorphism
i.e. p's with p(4) = A.

Theorem 25 p is automorphisme %, = %xoop is Haag dualss p? is irreducible
(no branched fusion )& Ind[A :p(A)] =1 (trivial Jones indez)

The reader should try to prove it for himself and consult Haags book if he
needs more than 5 lines.

In algebraic QFT the Jones index enters through the statistics operators ¢
which we explain briefly in the sequel. They are special intertwiners (” Verket-
ter” in the sense of Schur). An intertwining operator is a V € B(H) which links
a representation xgp with a subrepresentation of 7,0 i.e. V-xop(a) = xo0(a)-V.
In case that p is irreducible, the two representations are equivalent and the inter-
twining operator becomes a ”charge transporting” operator. By Haag duality®
one obtains V = xo(T') with T € A and the intertwining relations:

Tp(A)=o(A)T ¥V AcA (7.21)

The space of self-intertwiners: p — p is the commutant p(A)’ of p(A) in A and
by Schur’s lemma, equal to the scalars C iff p is irreducible. Therefore, when p
is irreducible, the linear space of intertwiners: p — o is a Hilbert space within
the algebra of local observables with the inper product (T},T3) := T T;. The
notation for the space of intertwiners T from ¢ to pisT € (p,0).

For every pair of DHR endomorphisms there is a unitary local intertwiner
€(p,0) : po — op iec € (op, po). This flip operator is called the statistic
operator. The collection of statistics operators is uniquely determined by the
coherence with local intertwiners and among themselves:

&(o1,02)01(T2)Ty = Tapy(Th)e(py,p2) YV T; ‘P O (7.22)
&(p1p3,0) &(py,0)p1(e(pa, 7))
e(p,0103) o1(e(p, o2))e(p, 01)

SIn the reverse approach which starts from the observable algebra A, the Haag duality is
postulated for the vacuum representation. if it does not hold for the original net, one passes
to the dual net A% which fulfills Haag duality by construction.
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together with the initial conditions”

€(p, id) e(id, p) =1 (7.23)
€(p,o) = 1 whenevero<p

where ¢ < p means loco is in the spacelike complement on the left of locp. The
Artin braid relation is a special consequence of the above coherence relations

P3(e(p1, P2))e(py, £3)p1(e(P2, p3)) (7.24)
= €(p2, P3)P2(e(p1, P3))e(p1, p3)

In particular, by assigning the local operators p'~!(¢(p, p)) to the standard Artin
generators o; of the braid group B, (see remarks and figure in chapterl ) we
obtain a unitary representation of the brajd group in A wich we call the statistics
of the endomorphism p for reasons which will become evident soon.

We introduce a conjugate endomorphism p to p by demanding that pp con-
tains the vacuum sector, i.e. that there exists an intertwiner R € (id, pp) which
induces a standard left inverse ¢ of P

#(A)=R'H(AR YVAcA (7.25)

with finite statistics. Here we recall that the left inverse of an endomorphism p
of A is a normalized positive linear mabp satisfying the relation #(p(A)Bp(C)) =
A¢(B)C. 1t is called regular if it is of the above form, and standard if in addition
the statistics parameter A = ¢(e(p, p)) € p(A) is a nonvanishing multiple of
a unitary which depends only on the sector [¢]. A sufficient condition for the
existence of a standard left-inverse and therefore of a conjugate is that there
is some left-inverse with statistics parameter A, # 0 -("finite statistics”) and
that p is translation covariant with positive energy condition. the uniqueness of
the standard left inverse is a consequence of its definition. Any theory with a
mass gap possesses a standard left inverse. The standard left inverse of p turns
out to be a trace on p(A)'. The inverse modulus of A, is called the statistical
dimension d(p) = d, > 1. One easily proves that A, = Ap. For irreducible p's we
have A, = 5:— with x, being the statistical phase. If one computes this numbers
using the field formalism presented below, one finds d, = dimH p and x, = =1
for Bosons/Fermions. In fact for d=3+1 the statistics operator is easily shown
on general grounds to fulfill 2 = 1 (absence of monodromies) which leads to
permutation group statistics.The concepts are much richer in the case of braid
group statistics. Even in that case one succeeds to prove the identity of the spin
phase with the above statistics phase. '

We will not enter a presentation of V. Jones inclusion theory, but just men-
tion that Ind[A : p(4)] = d2, ie. the index is the square of the statistical
dimension.

In order to understand the reconstruction in the case of genuine endomor-
phisms ie. for p's with Ind[A :p(A)] > 1, we need some more conceptual
preparation. This is obtained by briefly returning to the field algebra F in the
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case where A is the fixed point algebra under a nonabelian G. In that an irre-
ducible endomorphism p with ¥oop =%, and locp C O gives via w = wg o pa
pure state localized in @. The big Hilbert space H in which F acts has many
vectors which induce w :

Ho = {¢ € H| (6, 40) = u(4) 4"} (7.26)

As the notation already anticipates, H, is a Hilbert space (i.e.linear combina-
tions again belong to H,) a fact which is easily verified using the purity of w. Its
dimension is equal to the dimension of the A »— tensor factor namely d,. Phys-
ical intuition tells us that such vectors in H, can be created from the vacuum
by applying charge-carrying fields in F. In fact we have:

Theorem 26 Every ¢ € H, determines uniguely a field operator ¢ € F(O)
with Y°Q = ¢ and the inlertwining property YA = A, Ac A..

Encouraged by the intertwining relation in the previous theorem we define
the following linear subspace of £ :

Hy={Y € F | YA =p(A)p,A € A} (7.27)

The notation suggests the structure of a Hilbert space. Indeed for two vectors
¥;,i=1,2 we have the following scalar product:

YiY,€C-1 (7.28)

The reason is that the inclusion of A4 € F is irreducible ie. A/'NF =C.1.
This follows from A'NF = U (G)"NF and the statement that for any element
Fo with Fg |lH,= clg, from the latter algebra the conditional expectation of
F*F with F := Fy — ¢1 vanishes: ( = *o(m(F*F)) ~ m(F*F) = 0 since %o
is faithful. But the expectation values of m in any vector state ¢ € H may be
written as an average with a positive integrand:

0 = (4,m(F"F)¢)= / dg(b,a(F F)e) ~  (1.29)
a(F°F) = 0AF'F=0~ Fy=cl ged

This phenomenon of finding Hilbert spaces of isometries inside von Neumann
algebras always occurs for B(H) with H infinite dimensional.

Theorem 27 For any set of field operators (F.-),~=1__,¢, € F(0) transforming
like an irreducible tensor representation U, there ezists a p € A(O) and a
B € A(0) s.t. F; = By, with (¥;) € H, a orthonormal system of isometries
spanning H,. The endomorphism p is implemented by the ¢'s :

d,
PF) = Y yFy; (7.30)

=1

4,
% Y ViFY,, ie. $(p(F)) = F

i=1

with the left inverse ¢(F)
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The most interesting and useful emerging structure is the so called Cuntz
algebra O4 i.e. the unique C*—algebra generated by a family of isometries
(¥;) with a full range i.e. L ¥i¥; = 1. A detailed investigation (not done
here) reveals that this is a Z-graded simple (no two-sided ideals) C*algebra.
Doplicher and Roberts found that this algebra Oy is the perfect model for a
characterization of the group dual which is appropiate for internal symmetries
in QFT. The reason is that since each compact group G is a subgroup of some
U(d) for sufficiently large N, there is a natural action a on O4 (summation
convention):

ay(¥;) = ¥;g;i, unitary in Hy (7.31)

The tensor product structure is naturally contained in O4 since H* ~ H®.. @ H.
The fixed point algebra :

Oc = {A € 04| ay(A) = A Vg €G)

gives rise to an inclusion Og C Oy which, in analogy with Galois theory is
expected to encode the group structure. It naturally contains all the intertwiners
of tensor representations T' : H®" — H®’ In terms of endomorphisms these
may be characterized without tensor products purely algebraically:

Tp"(A) = p*(A)T, A,TeO¢ (7.32)

This should be compared with the classical” Tanaka-Krein theory of group
duals in terms of representation spaces and intertwiners. In QFT based on ob-
servables A4 only, one only knows the p's of A and neither the H »8 nor F. So the
question how to construct from an algebra of intertwiners a bigger algebra with
a group action is a "baby version” of the QFT symmetry problem: how to re-
construct the symmetry from its shadow it leaves on the observables (in analogy
to the famous problem of Marc Kac: how to hear the shape of a drum?). For
a successful treatment we must make sure that our representation category i.e.
the endomorphisms and their intertwiners are big enough in order to contain the
conjugates (antiparticle representations in QFT). This is easily achieved by se-
curing the existence of a faithful selfconjugate representation because the tensor
products of such a representation contain every irreducible representation. Let
us briefly look at the special case SU (d). The first tensor power which contains
the identity representation is H49, explicitly the first invariant is:

1 .
S= —ﬁ Pg‘ s:gn(P)ng(l)....gbp(d) (7.33)
Hence:
J)'- = ; Z sign(P)t/:p(,)....qu(‘) (7.34)
V(d-1)! Pes,
P(1)=s

fulfill Y, = Vdy!S and therefore is a basis in Hg™ and p(A) = T3 §,A9,.
Thus Osy gy contains all irreducible representations of SU(d) and every inter-
twiner. But how do we recognize that a C*-algebra is isomorphic to Osu(a)?
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The answer is surprisingly simple: in addition to the operator S we must find
a copy of the (infinite) permutation group Se. The model theory Osy(g) C Oy
as such a presentation:
€P) = D Y@Wary PESaCSw, SumSupy  (7.35)
() (a1,....,an), (ap) = (apq)---.ap(n))

where we used a multiindex notation. In particular the formula for the basic
transposition is:

e((12) = Y w979} = £p(U*)U, +: F/B (7.36)
iJ

where U is an auxilary charge transporter: ¥; = Uy, which shifts the charge
into locy; C (locy;)'.
One easily checks that the ¢, S and p are related by:

1 .
8§ = E;:= 7 E sign(P)e(P)
PeSq

S$*p(S) = (~1)¥ld M1

PEP) = e(P), P'€Spp1, P(1)=1,P(i+1)=P(i)i=1.n
_ [ eP) PQ)=1

#e(P) = {%e(P') P)#1, P'()=((IPA)P)i+1)

Here Ejy is the antisymmetric representation projector in the Sy group algebra
and p and its left inverse ¢ implement right and (partial) left shifts on So,. The
algebra Osy g) is generated by these permutation group ¢(P) and S-intertwiners.
If G C SU(d) then Og D Osu(dy and therefore there are more generators.

We will give the DR characterization of G without proof:

Theorem 28 Let O be a simple C*—algebra with an endomorphism p and a
unilary representation & of S, with the following properties:

(i) &(P)€ (",5"), P €S, _

(i) &((12..n+ )T = p(T)e((12...m+ 1)), T € (3", ") L

(iii) 3S € (id, p%) with 5*$ = 1, S*A(S5) = (-1)*"'31 and $8° = £,

(iv) O is generated by the intertwiners T € #",p™),n,meN

Then there is a closed subgroup G € SU(d) (unique up to conjugation) and
an embedding of O in O4 with O € Og, s.t. plog=p,é=¢, and § = S hold.

The basic idea on which the proof relies is actually reasonably simple: one
takes a kind of amalgamated product B of O with 04 amalgamated over Osu) C
O, i.e.we look for an algebra with the following relations:

* Y, A= p(A);, A€O, ¥, €04, i=1...d
* é(P)=¢(P)
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e S=S
The SU(d) action on B is:

ag(¥;) = Z'l’.'gj.', a,(A)=A

For the special case that O is generated by é(P)and $ ~ O = Osuy(a)y C Oq4 and
B is obviously Oy, as expected. If Ois genuinly bigger, there exist intertwiner
O 3 T ¢ Osy(q). The operators Tiayp) := q/)zp)Tt/;(a) commute with A € O and
hence Tiays) € OnB. Actually such operators are automatically in the center of

Bi.e. O'NB = Z(B). This follows from the invariance of O'NB under the action
of SU(d) which means that this subalgebra consists of invariant SU (d) tensors
Fi. With Fi,i=1...n being a tensor multiplet we determine an orthonormal
basis ;,i = 1....n and obtain the representation:

F,=By;, B=) Fv;

If we could show that the F; commute with the generators of the Cuntz algebra,
we would be done. But this is an easy computational result of :

Be (p",id), ;€ (id,p")

which according to the assumption (ii) of the previous theorem yields:
p(B) Bé(n+1,....,1)
p(¥;)) = €Q1,....,n+ 1)¢;

and hence ¢, F; = ¢; By; = P(B)p(¥)¥; = ......= $iv;. qed.

Let us now return to the problem of construction of the field algebra. A
helpful and informative intermediate construction is the introduction of the so-
called "reduced field bundle”. This is a bimodule over A which allows to use
the p’s in a direct manner.

Definition 5 As our Hilbert space in which we define the reduced field bundle
we take the direct sum of vacuum Hilbert spaces Hy := (a,Hy) and define
operators (e, A) with A€ A, e = {(pp,pp,)} the set of "charge edges” i.e triples
of source charge p,,transferred charge p and range charge py. All the irreducible

endomorphisms are taken from a preselected set with one endomorphism p,, per
sector [a] . We the define:

F(C!A) : (a)¢) = (Pp,‘l’o(T:P.(A)) : 'b)
where T, € A are intertwiners from the space T, € (ps, pp,)-

The F’s generate a Cralgebra F,.q in H = @, H,
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This reduced field bundle only agrees with the field algebra of the standard
approach if G is abelian. Its Hilbert space lacks the group theoretic multiplicities
incorporated in the formula [?] and the net inclusion A C Fred is reducible
and its index is the square of the index of the irreducible inclusion 4 ¢ F
(thinking of a finite G). For d=3+1 this is the parastatistics description which
deals with higher Young tableaux but without an internal symmetry group. The
Parastatistics fields are more noncommutative and do not allow an interpretation
in terms of ”quantization” (e.g. they have no Lagrangians). In case of the
nonabelian braid group statistics of chiral conformal field theory and d=2+1
plektons this is the only available description. There the F,.4-algebra is also
called the "exchange algebra”(Rehren-Schroer).

In case of d=3+1 theories and for the subcategory of permutation group
statistics sectors in d<3+1 there exists the famous canonical Doplicher-Roberts
construction of a genuine field algebra in the sense of the beginning of this
section.

Let us first mention the special case of only automorphism and assume
d=3+1 i.e. permutation group statistics. Since for automorphisms d, = 1, the
permutation group representation is abelian, we are dealing with Bosons/Fermions.
In this case some very simple modifications of the reduced field bundle will give
the field algebra. The interested reader is refereed to Haag’s book.

For the above mentioned nonabelian representations one applies the DR
theorem [?] about the construction of the group from a subalgebra of the Cuntz
algebra with a distinguished endomorphism. Without loss of generality we may
assume that there exists a p with statistical dimension d 8.t. id C p? which
can always be achieved by adding conjugates. A C*-algebra O as needed in the
theorem may be obtained via the inductive limit of intertwiner spaces:

00" = U (pn’ m)

n,m>0

where the induction uses the embedding (p”, p™) — (p"+1, pm+1) . T, T 1,.
This leads to a natural composition of two operators S and T by embed-
ding both in a space sufficiently shifted to the right. The algebra contains
the statistics operators €(P) (still in bosonized form) as well as an isometry
S € (id, p?), SS* = E;. The endomorphism p acts in a natural way on °0 and
#(.) = S*p(.)S defines a left inverse of p. The properies of é,p,€(P) and S are
easily checked by computation. °0 has a unique C*-norm and no ideal (ie. O
is simple). Now the DR theorem leads to the identification with a subalgebra
O¢ C 04 with a subgroup G of SU (d) which is determined up to conjugation.
The field algebra is now simply the free product of the observable algebra A
with the Cuntz algebra O; modulo the following relations:

Vid=p(A);, A€A
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7.4 Remarks on Broken Symmetries

The idea of spontaneusly broken symmetries originated during th 60°** in La-
grangian QFT (Goldstone, Nambu). There were parallel developments in con-
densed matter physics in which case the understanding of the phase transitions
in the Heisenberg model was the main goal. Already at the end of this decade
there was a general model independent understanding within the framework
of QFT*®* pocessing conserved quantum Noether currents independent of their
(Lagrangian or non-Lagrangian) origin. The main theorem of this more general
approach was the relation of the nonexistence of the global charges (as a result
of large distance infrared divergencies in the spatial integrals over currents) as a
result of the occurrence of "Goldstone Bosons” in the energy-momentum spec-
trum. The nice feature of these rigorous methods is that they apply to com-
posite ”Goldstones”(no Lagrangian field i.e. beyond the family of Goldstone
Lagrangian for which a perturbative approach to the broken phase is possible)
as well.

Algebraic QFT offers an even more profound physical picture which we are
going to explain in the sequel. The starting point is the DR reconstruction the-
ory of the previous section. That theory always deals with unbroken symmetry
G because only those transformations are in a one to one correspondence with
the superselection sectors. Where to look for the bigger spontaneously broken
group I'? The answer is contained in the breakdown of the vacuum Haag duality
of A (J.E.Roberts 1974). The physical reason for this is that certain operators
which, if one only looks at their local properties, carry charges and transform ac-
cording to I'-multipletts globally condense into the vacuum sector. We have met
a special case of this phenomenon in connection with the d=1+1 order /disorder
discussion in the last section of chapter 3. The main point there was that the
original net violated the vacuum Haag Duality and the order/disorder fields
were required precisely in order to restore it. By definition we called the field
which did not belong to the original vacuum representation but has a nonvan-
ishing vacuum expectation "disorder”. It is the adjunction of this field, which
enlarges the observable net A to the Haag dual net 49 Adjusting this to the
situation at hand, we assume that our original observable net A is smaller than
its unique dual extension 49 i.e.:

AcAicrF (7.37)

where F is the unique DR field algebra determined by the superselection theory
of A? . The DR group G is the unbroken gauge group and I' D G with I defined
to be the group of automorphisms of F which leave A pointwise fixed. G is the
unbroken part of T'. The following theorem demonstrates the correctness of this
interpretation.

Theorem 29 (Buchholz et al.)

(1) Each v € T leaves F(O) for each © € K globally stable and is locally
normal.

(i) G is the F—vacuum stabilizer in T
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(i1i) The normalizer of G in T is the invariance subgroup which act auto-
morphically on A4

The Goldstone theorem, i.e. the prediction of a special kind of zero mass
particle as a result of spontaneous symmetry breaking, only follows under more
stringent conditions and the standard situation of & conserved Noether current
is certainly one possibility. In order to understand better the physics involved,
let us look at the vacuum expectation of the derivation defined by the generator
6 of the automorphism, using one-parametric subgroup:

5(F) = lim A~} (3,(F) - F)

The criteria for a spontaneous symmetry breaking in the general setting of alge-
braic QFT without or with Goldstone particles are then formulated in terms of
behaviour of the vacuum expectation of §(F) for increasing localization regions.

From Lagrangian field theories one knows another mechanism of symmetry
breaking which was first conjectured and exemplified by Schwinger and then
brought into a perturbative setting by Higgs. Since it needs the formalism of
gauge theory its, intrinsic content has never been spelled out; up to this date
there is no known property of the observable part of the theory which tells us
that a massive particle received its mass in such a way. Most of the folclore
around this mechanism is not quite correct. For example the idea that the
mechanism could be thought of as a "fattened” Goldstone boson is contradicted
by the Schwinger model because in d=1+1 there arent any Goldstone bosons
but there is the Schwinger-Higgs mechanism. However this does not mean that
there are no consistent nonperturbative conjectures which have some chance to
be proven in algebraic QFT. To me the most appealing idea is to think of a
would be charged field with a Maxwellian i.e. very nonlocal charge®

7.5 Chiral Conformal Algebraic QFT

" but the confidence in the algebraic method has also significantly increased. To
cite a recent example, within chiral conformal QFT one was able to rigorously
prove the equivalence of the standard approach using pointlike covariant fields

Box concerning the physical content, but rather only put the advanced theory
of von Neumann algebras to the use for exploring the physical principles of local
QFT.

Since the literature on the subject, even if restricted by the above guideline,
is quite formidable, I will limit my attention to two points:

SFormally a semiinfinjte extended object formed from a Dirac field of QED modified by a
Mandelstam like A,-flux to spatial oo serves as a candidate for a local gauge invariant, but
global U(1) charge carrying field.
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¢ What is charge structure and quantum symmetry of the A, (S? )-compactification?
o How does one classify chiral conformal QFT?

Concerning the algebra Aun;(S?) as opposed to the non-compact DHR quasilo-
cal algebra A(R) we note that the net {A(])} Icst is not directed as the nets
of double cones in Minkowski space towards infinity). Therefore would should
think of a globalization which is different from the inductive limit. For this we
use the following definition universal algebra Ayniy :

Definition 6 Auniy is the C*algebra which is uniquely determined by the sys-
tem of local algebras (A(I))1er ,T = family of proper intervalls I C S! and the
following universality condition:

(i) there are unital embeddings if : A(I) — Ayniv s.1.

i’ IA(1)=3'I if ICJ, ILJeT

and Auniy is generated by the algebras i’ (A(I)), I € T;
(ii) for every coherent family of representations ! : A(I) — B(H,) there
is @ unique represeniation x of Aypiy in Hy s.1.

xoil = o

The universal algebra inherits the action of the Moebius group as well as the
notion of positive energy representation through the embedding.

The universal algebra has more global elements than the quasilocal algebra
of the DHR theory: Aguasi = A C Auniv with the consequence that the vac-
uum representation xg ceases to be faithful and the global superselection charge
operators which are outer for A become inner for Ayni, . From this observa-
tion emerges the algebra of Verlinde which originally was obtained by geometric
rather than local quantum physics arguments. The removal of a point £ from
S? (this removal recreates the infinity of Aguasi) forces Ayniy to shrink to A.

Most of this new features can be seen by studying global intertwiners in
Ayniv. Let I,J € Tand €, € I' N J' (i.e. two points removed from the
complements) and choose p and ¢ s.t. locp,0 C I and p € [p) with locp C J.
Then the statistics operators ¢(p,0) and ¢(o,p) € A(I) C A¢ N A¢ are the
same (i.e. they don’t need a label £ or ¢) independently of whether we use
the quasilocal algebra A or A¢ for their definition. By Haag duality a charge
transporter V' : xgp — mop lies both in 7o(A¢) and xo(A¢). However its pre-
images with respect to the embedding are different. In fact:

Vo : =VyV_ with V; € 4, V. € A
Vo @ p—p

is a global selfintertwiner which is easily shown to be independent of the choice
of V and p. The representation of the statistics operators in terms of the charge
transporters £(p,0) = o(V4)' V., €(0,p)* = o(V-)* V. leads to:

o(V) = ep, 0)V,e(0,p) ~ x00(V,) = %o [e(p, 0)e(o, p)] (7.38)
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The first identity is very different from the relation between ¢'s due to local
intertwiners. The global intertwiner V, is trivial in the vacuum representation
thus showing its unfaithfulness with respect to Ayniy, it only "comes to live”
in charged representations where it coalesces with monodromy operators. From
its definition it is clear that it represents a charge transport once around S!7.
As a result of its existence, the monodromy which is defined as the above two-
fold iteration of the braid generator, takes on some of its geometric meaning
which it has e.g. in the theory of complex functions. The left hand side of
the first equation in 7.38 expresses a transport "around” in the presence of
another charge o, i.e. a kind of charge polarization. Let us look at the invariant
version of V, namely the global "Casimir” operators W, = R)V,R, : id — id.
This operator lies in the center A,,;, N Ajniy and depend only on the class
(=sector) [p] of p. By explicite computation one shows that after the numerical
renormalization C,, := d,W, one encounters the fusion algebra:

(i) Cgp = Cg'CP
(%) C, = G

() C, = Y N°Ca if p~@aNp,

Verlinde’s modular algebra emerges upon forming matrices with row index equal
to the label of the central charge and the column index to that of the sector in
which it is measured:

-4

Spe =3 _d3|  d,d, - %o (W,)
v

In case of nondegeneracy of sectors, wzhich expressed in terms of statistical di-
mensions and phases means lz: L reda| =3 , 4%, the above matrix S is equal to
Verlinde’s matrix S which together with the diagonal matrix T = x~!Diag(x,),

with &% = (3 xpd2)/ IZ ) x,dﬁl satisfies the modular equations of the genus 1
mapping class group

Sst = 1= TT', TSTST =S
52 = C, CPC = 6’0
TC = CT=T

The matrix S is similar to the character matrix in section 2 of the first chapter.
However in distinction to nonabelian finite groups (which also yield a finite set
of charge sectors of the fixed point observable algebra) the present nonabelian
sectors produce a symmetric ”character” matrix S which signals a perfect auto-
duality between charge measurers {Q} and charge creators {p} . Furthermore

"Note that in Auniv which corresponds to a compact quantum world it is not possible to
"dump” unwanted charges to "infinity” (as in the case for Aquasi), but instead one encounters
"polarization” effects upon charge transportation once around.
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the algebra Q generated by the central charges and the action of the endomor-
phisms on those charges®do not contain the old group theoretical stuff since
the phenomenon of charge ”polarization” is completely blind against it; only
monodromic properties are retained in Q. This strongly suggests to look for the
new ”quantum symmetry” property by investigating the structural properties
of Q. As a generalization of S one finds for the Q's in the presence of more than
one polarization charges the entries of the higher genus mapping class group
matrices. Closely related to these structures are the knot theoretical invariants
of 3-manifolds. Some of these objects also have been seen by analyzing certain
formal functional integrals with the hindsight of geometry and topology. But in
the context of algebraic QFT the pbysical interpretation is totally different: the
new properties have nothing to do with the "living space” (in the sense of quan-
tum theoretical localization) of fields or algebras but are rather manifestations
of the inexorable link between external (space-time) and internal symmetries
which one encounters in low dimensional QFT. They generalize in some sense
the angular momentum decompositions and are expected to be useful e.g. for
the analysis of scattering of d=2+1 plektons. Also these ideas of linking ”quan-
tum symmetry” with a kind of universal mapping class group (containing all
geni) are highly seducive, I did not yet find an convincing argument why one
should read the numerical aspects of those polarization charges as entries of
mapping class matrices.

It should be mentioned here that most attempts in the direction of quan-
tum symmetry have been directed towards modified ("weak”..) Hopf algebras
which is more in the spirit of the DR by looking for same ”square root” of the
inclusion of the observable algebra in the reduced field bundle. None of the
present attempts was successful. Perhaps it is helpful for the reader to define
success in this context. One expects from a useful quantum symmetry concept
a clarification of the following two points:

¢ A better understanding why in low dimensions the link between exter-
nal/internal symmetries is so strong whereas in d=3+1 there was no possi-
bility to bring them together in any nontrivial way. This aims in particular
at a better physical understanding of the 3-manifold invariants.

¢ A simplification of the problem of computing correlations of "free” plek-
tons, i.e. the freest objects (in d=2+1 preferably with vanishing cross
sections) which fulfill the new braid group statistics.

Concerning the classification of chiral conformal QFT’s, it is reasonable to
approach this problem in two steps:

¢ Classification of the physically admissable braid group representations
which go with the category of finitely many localizable representations
("rational” representations).

8This action leads out of the center and generates a global subalgebra of Aynis.
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e Construction of representative 4-point functions for the different plektonic
families.

The basic techniques for this two step approach is quite old (Rehren-Schroer,
"Artin Braids and Einstein Causality” Nucl.Phys. B 312, 715 (1989)) and
have been elaborated for the unitary braid group representations affiliated with
the special family of the Jones, Temperly-Lieb algebras. The more general
representations are those affiliated with the Hecke algebra and with the Bierman-
Wenzl algebra. Even if one does not know anything about these mathematical
construction, the principles of algebraic field theory will lead us there and even
supply us with an argument in favour of completeness of these families.

Here a detailed account of the construction of these families by using the
fusions of algebraic QFT will be given.

7.6 Constructive Aspects of Plektons

One particle modular localization structure of d=2+1 Wigner representations
with non-semiinteger U(1)-spin. The structure of the multi-particle scatlering
space of plektons. "Free” plektons: real particle conservation in the presence of
virtual (off shell) nonconservation. Spacelike cone (semiinfinite string) localiza-
tion properties in d=2+1. First attempis at plektonic construction.
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Chapter 8

Tentative Resume and
Outlook

The most fruitful times in theoretical physics are those of clash of principles.
A good clash can lead to an enormous amount of progress as exemplified by
the rapid emergence of QM as a result of Bohr’s atomic model and the ensuing
paradoxical situation.

The post electro weak stagnation in particle physics and QFT did not lead
yet to such a clearcut clash. The present situation restricted to QFT seems to
be somewhat similar to the years preceeding the progress of "renormalization”
of QFT. Then there was no clearcut clash with fundamental principles but many
physicist thought that the correct handling of the ultraviolet problem requires
radical new inventions. In my opinion the present situation is the result of a
total disequilibrium between two modes of thinking whose delicate balance is the
ball-mark of good times in theoretical physics. I am thinking of Dirac’s method
build on mathematics and estethical appeal versus the Bohr-Heisenberg-Einstein
approach based on conceptual analysis. The modern Diracian approach is that

_of inventions based particularly on the formal geometric extension of formalism
leaving behind the physical principles which originally led to this formalism.
Recent illustrations are the invention of supersymmetry with most contributions
emphasizing some formal aspects of perturbation theory but little attention to
problems of stability with temperature as mentioned in the introduction.

In such a situation it seems to me to be helpful to revisit those old ideas
in a critical spirit which were essential to the conceptual development of QFT.
Naturally those structures which are most ”Diracian” i.e. geometrical esthetical
inventions in the setting of functional integrals have received our sharpest critical
scrutiny (in particular the gauge concept and its alleged spontaneous breaking)
because they are farthest from the principles of local quantum physics. The
reason for their tremendous popularity can not be understood in solely logical
terms. This trend which narrowed the rich conceptual structure of nonperturba-
tive QFT to some rituals practiced on some classical field space is immediatly
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understandable if one excepts a secret (not admitted or subconscious) long-
ing for a classical (euclidean) structure. The guilt feeling resulting from this
indulgence is then often compensated by a dosis of noncommutative geome-
try or g-deformation. We hope that we convinced at least some readers that
there is a third way which consists simply in following the logic of the physical
principles instead of formalism a path taken first which considerable success by
E.P.Wigner. There are three big unsovled (resp.partially solved) problems which
we presented in these notes: the problem of understanding the non-Lagrangian
constructive (bootstrap formfactor) approach and the standard approach in a
common setting, the elaboration of a theory of free anyons end plektons and the
clarification of "quantum symmetry” in low dimensional QFT with braid group
statistics in particular its appearant inexorable link with space time symmetry
as exemplified by the relation to invariants of 3-mannifolds.

We also emphasized in these notes that despite its conservative way of dealing
with physical principles, algebraic QFT leads to a radical change of paradigm:
instead of the Newtonian view of a space time filled with a material content
one enters the Leibnizian reality created by relation (in particular inclusions)
between ”"monades”( the type III local von Neumann factors A(Q) which as
single algebras are nearly void of physical meaning). Related to this is a very
new esthetics namely the art of comprimating relations between very big objects
as type III; von Neumann factors® into extremely simple structures which is very
reminiscent to the esthetics of the V. Jones subfactor theory. Another important
distinction between the standard approach and algebraic QFT is that the former
deals already in its formulation with global concepts as e.g. functional integrals
whereas the latter is making contact with global aspects (as global topology)
only in a later stage. Those aspects of the vacuum structure, which through
the spontaneous breaking of localizable symmetries and superselection rules are
related to local properties of the theory, are accounted for. However vacuum
degeneracies without any visible local origin as e.g. the vacuum structure in the
Seiberg-Witten Duality construction are presently out of reach by methods of
algebraic QFT.

It was our intention to apply the concepts of algebraic QFT to those prob-
lems which in our view are not appropriately taken care of by the standard
quantization formalism or which may even contain paradoxa and physically
fruitful contradictions. Examples are the local gauge concept, QFT’s in curved
space-time, the structure of nonperturbative low dimensional QFT’s, and the
role of various forms of ”Duality” as well as”Quantum Symmetry”. Even in
cases where definite answers are still missing, algebraic QFT certainly casts a
different and physically interesting light on those problems. We reviewed the
two notion of temperature, the standard one being generated by a heath bath
and the second one by a loss of information through the creation of a horizon
(the Hawking-Unruh temperature or mathematically: the Tomita KMS temper-

1Those von Neumann algebras are the biggest in the sense that they absorbe any tensor
factor with another von Neumann algebra. Although V.Jones formulated his subfactor theory
in terms of the smallest (type II)which gets absorbed by any other tensor factor), his theory
applies with only a few modifications.
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ature originating from the vacuum representation of local observable algebras).
Certain noncausal symmetries, as the supersymmetry, are known to be unstable

against the former and it is an interesting question if they suffer the same fate
under the latter.



