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ABSTRACT

We present a complete study of geodesic motion in G8del's
universe, using the method of the Effective Potential. It
then emerges a clear physical picture of free motion and 1its
stability in this universe. Geodesics of a large class have
finite intervals in which the particle moves back in time
(%§<0) without violation of causality. Gddel's geometry pro-
duces the important property of confinement for a large class
of geodesics. We use this property to discuss the construc-
tion of a gravitational container. This structure is high-
ly stable, since there is no singularity in its interior, and

independent of the energy of the particles contained in it.



1. INTRODUCTION

In the present paper we analyse some remarkable properties
of free motion of particles in a rotating universe. The most
impoftant feature of a rotating universe is that matter rotates
with non-zero angular velocity, in the local inertial frames of
its comoving observers. We limit our considerations here to
GBdel's geometry[lj although our results could well be extended
to other rotating G8del-like models. Geodetic motion in Godel's
cosmos has been analysed independently by Kundt, and Chandrasekhar
and Wright[?’sj more than twenty years ago, in which they found
some weird properties of trajectories of the particles. In our
search to understand completely the main features of GBdel's
cosmos we decided to retake this problem in a complete new view.
The basic difference between our treatment and the previous
ones [2’3] rests in our use of the method of the Effective Po
teniial by means of which we obtained not only their results
but also gained a simpler characterization and a clear physi-
cal image of the structure of free motion of particles (massive
and massless) in this space-time geometry.

We divide the paper as follows. In section II and III we
present the equations of motion, the first integrals and we in-
troduce the Effective Potentiaf. The main properties of the
Effective Potential =~ whose parametrization characterizes dis-
tinct families of geodesics - are presented. Section IV deals
with the important property of confinement which G8del's geome-
try produces, for a large class of geodesics. In section V, VI
and VII we give the complete system of integrated . expressions

for geodesic curves and we draw some illustrative graphs of the



trajectories in the plane (r,¢). Also the property of traveling
back in time along a piece of some curves is examined. We con
clude with Section VIII, where we discuss some fundamental
properties of Gddel's geometry related to geodetic motion and

possible applications.

II. THE EQUATIONS OF GEODESIC MOTION

In the cylindrical coordinate system (t,r,$,z) the funda

mental lenght of GUdel-like geometry is given by

ds? = a?{(dt+H(r)d¢#)? - dr? - dz? - R2(r)d¢2} (2.1)

For the case of GHdel's cosmos the functions R(r) and H(r)

take the form

1]

R(r) sinhr coshr (2.2a)

H(r) vZ sinh?®r (2.2b)
where a’= 4/w? and o 1is a measure of the constant rotation
of the matter flow of the model. Coordinates t, r and ¢ are
defined on a 3-dim hyperboloid H® (up to identification of
certain point sets),D"l}’S:| with range —o <t < o, 0 <71 <o,

0 < ¢ £ 2m. The coordinate z is defined on the real line

R. The manifold of the model has structure of H® xR (up to

identification of certain points) and is completely covered

by the above coordinate system.

The geodesic equations of motion are expressed



vy oo (2.3)

where V! = (£,%,4,2) is the vector field tangent to the curve
parametrized with parameter s, and where a dot denotes deriva-
tive with respect to s. Equations (3) have the set of indepen-

dent first integrals

t+H$ = A, (2.4a)

(H*-R?) ¢ + Ht = B, (2.4b)

Tt + HP] + d[HE+(H2-R2)$] - 12 = i% v Cy? (2.4¢)
z=C, (2.4d)

where A, B, and C, are integration constants and €=1,0 ac-
cordingly if the geodesics is time-like or null, respectively.

For GYdel's geometry these equations reduce to

t + V2 sinh?r ¢ = A, (2.5a)
/Z sinh?r t + (sinh*r-sinh®r)¢ = B, (2.5b)
z = Co (2.5¢)

2 = t2 + 2/2 sinh?r té + (sinh“r-sinhzr)éz-(C02+e/a2)(Z.Sd)

From a direct inspection of equations (2.3) we single out



the two families of geodesics characterized by

A(1,0,0, 1- %) (2.6a)

u
V! 5

vM = A(1,0,0,1) (2.6b)

respectively time-like and null-like curves, in which X is a
positive arbitrary number. For X=1 the congruence determined
by (2.6a) are the world lines of the matter content of the
model. The set (2.5), (2.6) exhausts all possible solutions of
the equation of geodesics.

We can rewrite equations (2.5) as

. VZ A, B,
R (2.7a)
cosh?r sinh?r cosh?r
) /2 B
. 2
t = A [1 _ 2 sinh’r ] b -0 (2.7b)
0 cosh?r cosh?r
z = C (2.7¢)

] B 2
> 5 2 2 sinhr _ 0
T o= A - DO"(VQ.AO COoshr Sinhr cosnhr ) (2.7d)

Although equations (2.7) can be directly integrated ( a task
which we postpone for section 5) let us investigate here the
general behaviour of the geodesic families by using the power-
ful method of the Effective Potentialf. This allows us to ob-
tain directly many results of section 5 and also gives us a
deeper insight.on the global properties of motion in G8del's

space-time.



ITI. THE EFFECTIVE POTENTIAL

Equation (2.7d) can be expressed
r* = A%~ V(r) (3.1)

where the effective potential V(r) has the form

B

sinhr 0 z 2
Vir) = [‘/7 Ay Coshr ~ SInhT coshT ] + D, (3.2)

Here we denote

D?= C2+ e/a’ (3.3)
From the above equations we can easily see that ,Ahz is the
square of the total energy in case of photons (null curves,e=()
and the square of the total energy per unit of mass for massive
particles (time-like curves, €8=1). Also B, in interpreted as

the total angular-momentum of the trajectories. In fact, intro

. o'\) _ —.
ducing the momenta P, = 8K we have p = A, P, = -T,
Py = B » P, ==C,, and equ%tion (2.7d) can be put into the

” (p¢-a(r))

form po2 =pr2+pZ + + e/a’. R is given by (2.2a) and

2
we note that this expr;lsion is analogous to the equation of a
charged particle in the presence of the vector potential
A¢ = a(r). In what follows we shall briefly refer to A, as
the "energy'" of the particles (geodesic trajectories).
Now using equation (3.1) we can make a complete character

ization of the motion into three distinct cases: B >0, B,=0 and

By<0, as the corresponding potentials V(r) are basically dis-



tinct. Let us define the parameters
2 2 2
Y = B@/A0 B%= D,7A, (3.4)

For physical particles wemust have 0 < B®> < 1. The potential V (r) is
depicted in Figs. la, b, c. We have actually plotted V(r)- BzAé
and, in the case of B?=0, the graphs represent V(r) directly. For

g2# 0, V(r) 1is obtained by an upward shift of the graphs.

V(r)-8%a} V() -8%a V(r)-B*Af

2 3 R U2 S W
N R s 21 -- 2]
V2
2 2 L S . BIA? = - 4B 2(E241)
Art- AgT-- q A h .me_6 0 o(y
! ' ' :4/
H : H RN 1
T T, r T, 1, T,Tin e r
Fig. la Fig. 1b Fig. lc
Yy>0 Yy=0 Yy <0

FIGURE 1: Graphs of the Effective Potential

Let us discuss the three distinct cases of the above figures.
The radial coordinate r oscilates in the allowable classical

domain riir <y,, the turning points being

L le 2Ty - et s IET /Qye/DP- s (55
i 2(1+82)

sinh?r

respectively for i=1,2, and for which r?=0 (equivalently V(r)=
Af). Since the total "energy" Aj is a fixed quantity for each
geodesic the trajectory is kept within the cylindrical shell
TS T<T,. We show later that the trajectories are closed in the

(r, ¢)-plane. We now consider



Case 1: vy > O

The case B2%=0 corresponds to photon trajectories in a z = const.
plane. For massive particles or photons with non-null momentum
along z (B?# 0) the width of the cylindrical shell diminishes
and goes to zero for B?=1. Indeed this limit 8%=1 corresponds
to an upward shift -of Af for the potential of Fig. 1 —
the new minimum of the curve V(r) is now equal to Aﬁg. This
implies that the width of the shell is zero, localizing the r-
V2

coordinate of the particle at r= Toin~ 2rC sinh? S5 Y .

On the other hand the value of r correponding to the min-

imum of the potential (sinh’r-= Z v) makes ¢ =0 (cf. eq.(2.73)

2
for any B2< 1. This is actually a necessary condition for the
motion of the particle to occur inside the cylindrical shell,
as this garantees that the extremum é =0 always occur 1inside
the shell. For B%=1 we have ¢=0 always, and the particle moves
only in the z- direction, which corresponds to the solutions
(2.6 a,b) for € =1,0 respectively.

Finally we should notice that from the dependence of L
on the parameter Y,. we can see that the cylindrical shell
can be located at any distance from the axis r=0, for differ
ent values of y. We remark also that geodesics with y>0 are not
allowed to reach the origin r= 0. The form of the potential is
highly stable with respect to variations of the total "energy"

Ao2 of the particles, and as a consequence its properties are

valid for all finite values of AO%



IV. CONFINEMENT

We now show that fory < 0 the potential V(r) produces a
confinement of all the trajectories within the cylinder r<T

with sinh r.= 1.

Case 2: vy =0

For pg2%2=0 it is remarkable that the maximum radial dis-
tance which any of these (y=0) photons can attain is given
by sinh rz 1. This fact was also noticed in Ref.[2]. Remarka-
bly enough this value r=r_ has been defined by Gddel as a lim
iting value separating causal from a causal regions of the
space-time. In fact, the form of the potential V(r) given in
Fig. 1b shows that for any value of the total energy A.O2 the
photons are always confined inside the cylindrical surface
r=r.. But we see that this result holds also for massive par-
ticles although they are never able to attain the limiting

wall.
Case 3: v < 0

From equations (3.2) we obtain that V(r) has a minimun(cf.

Fig. 1lc) at

V2
—7Y

1+VZy

r . = arc sinh?

min (3.6)

Contrary to the two previous cases the minimum of'V—Bz.Afjs not

- - p2p 2 _ 2 V2
zero but has the non-null value Vmin B*A, = -4B0 (77 + 1)
However from equation (3.1) we must have
2
Vmin = Ao (3.7)



This implies that the permissible range of negative values of

Yy is bounded[éj, o
‘/7; 18T <y <0, (3.8)

ALR2
the lower bound v =¥ :Zz;i——iﬁ*

- 5 corresponding to the

equality in (3.7). Contrary to the two previous cases, in which
Vminz'Af is equivalent to B?=1, é=0 — the limiting situa-

in " Af leads to values B2 < 1 and &#(). Thus in

tion le

i imi i i = . = const. wi = .
this 1imit the orbits will have T roin= © with vy Yoin
and ¢ = const # 0. These are circular orbits (more precisely the
projection of the orbits in the plane (r,$) are circular) and
it is clear that the only possible case of circular orbits cor

responds exactly to the lower bound of v .

We remark that for any case the allowable range of y 1is

given by

V7 + ¢1+62 <

> h

Yy < @ (3.9)

_ V2 + /1462

By substitution of the value Y min > in (3.6)
we obtain the radius of the circular orbits given by
/ 2}
sinh?r = V2 - /148 or cosh2r = —YZ (3.10)

2V1+R2 /1+82

and (2.7a) and (3.10) give é = 2 A0/1+82. From (3.10) we

find that for all circular orbits rﬁy%—arc cosh /7<<rc, the

maximum radius corresponding to a null geodesics, as pointed

.

3]. We find also that for y<0, ¢ >0 always, that

out in Ref.

is, ¢ cannot change sign along these trajectories. More general



- 10 -

ly from (3.4) we see that r, <rC for v < 0, which confirms
our previous statement that all orbits with y < 0 are con-
fined inside the cylinder r = .. In other words, the gravita
tional field of GBdel's cosmos selects a whole class of parti
cles (photons or massive particles, with y <0) and isolate

them inside the region r_grc.

V. THE INTEGRATION OF GEODESICS EQUATIONS

To obtain more information about the geodesic motion in
GYdel's universe, let us now integrate completely the system
of equations (2.7).

Equation (2.7c) can be immediately integrated to

zZ = C,S+ Z (5‘1)
. 0 0

To integrate equation (2.7d) or (3.1) we introduce the varia-

ble p defined by

p = sinh’r (5.2)
Equation (3.1) is then reexpressed
6% = 4 A2 {-(1+B%) p? + (1+2/2y-B*) p - B2} (5.3)

a solution of which is given by

o(s) = Lx2/2v-B" | V1-B" O T 7 (1482) cos 2A0/1462' (s-5,)
2(1+8%) 2(1+89 (5.4)
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This solution corresponds to have chosen S, such that p 1is
maximum at $=5S,.

We reobtain now a number of results which have been ob-
tained in section III from equation (3.5) and the analysis of
Figs. la, b, c, showing the power of the method of the Effec-

tive Potential. The values of P and o ._ drawn from (5.4)

X min

are obviously the roots rs given in (3.5), namely

oo lx2/7y -8t AsT VWD) (5 5

min 2(1+6%)

From (3.5) or (5.4) we must have
(2y+v2)2%2 > (1+82) (5.5)

This inequality together with the obvious condition p> 0 im-

plies (cf. Ref.[6])

-VZ + /1+B? <

) LY < ®, (3.9)

the lower limit corresponding to the equality in (5.5).

We also have that p 1is a constant for the cases

(i) 8% =1
2
(ii) v = -VZ + /148 7
2
from (3.5) taking Pnax = Ppin ° °F from (5.4). Case (i) gives
0 =-%Z Y which implies é = 0. These are curves with p, ¢ =

const., and a velocity vector field along the z-axis. Case (ii)
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corresponds to the lower limit of y (cf. (3.9)) and we have

o = YZ - V1487 (3.10)
2/1+82

or, equivalently,

N

cos2r = /T:E?
which for 0 < 8% <1 implies 1 < cosh2r < V2, as already
mentioned. Also é = const = 2 A0 /E:E? and it is clear
that this is the case of '"circular" orbits (actually spatial
helices if C? # 0).

We also remark that for both cases (i) and (ii) the or-
bits r = const. are stable, since they are located at the mini-
mum of the potential T =—~%¥ = 0.

Of course all the above results are contained in equation
(5.4), which shall be used in what follows. We now turn to the

integration of ¢(s). Our choice of solution (5.4) corresponds

to take for equation (5.3) the root

b o= -2 AOVC(1+62)02 + (1+2/Zy-8%)p - B2 (5.6)

Using (2.7a),

V2p

N @72

we have

dd) -(‘/-ZD‘Y)
90 7 20 (pe1) VoC2p-1) 2+ B0 (L) |
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which can be immediately integrated to

2(6-¢ ) = A + B (5.7)
where ¢, is an integration constant, and
2 2

A = arc sin —(1-B7+2VZY) o - 2v — (5.8)

o/T-8Z /(2y+vZ)2- (1+82)

[2y(VZ+y) + 1 - B2](p+1) - 2(VZ+¥)%p (5.9)
(p+1) V1-BZ V(2y+v/Z)2% - (1+82)

B = arc sin

Equation (5.7) results

_ (2y+v2) p + ¥ (5.10)
V(2y+/2)2 - (1+82) /p(p+1)

cos (¢-¢0)

for cosA cosB <0. The case cosA cosB >0 is compatible only for

vy=0 in which case the solution coincides with (5.10). ‘From

(5.10) and (5.4) we can easily conclude that the trajectories

are closed in the (p,¢) - plane. We remark that the expression

(5.10) is not valid for the orbits with p = const. (cases (i)

and (ii) above).

The equation for t(s) can also be integrated to

tg %; (t+A (5_50)) - 1+82+/7(2Y+/7)-VT;B2NQ2Y+wﬂZ)2—(l+62)tg[% GZE?TTS-SJ,
0 2(y+v2) /1+87%

(5.11)

_ =VZ + /14872

For the two limit cases (i)B?=1 and (ii) vy = > ,

expression (5.11) can be simplified and yields

(1) t = A (s-s) , (i1) %; t = A (V1+8%- %?)(S-SO)
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An alternative expression to calculate t(s) is obtained by
noting that — for a given geodesics characterized by A , B,

C0 — we have

A, t(s) - F(r(s)) + B, ¢(s) - C, z(s) - e(s-s ) =0 (5.12)

where F(r) = Idr VA% - V(r), which is an  obvious in
tegral of Py vH o= el We remind that € = 1,0 for time-like

and null-like geodesics respectively.

VI GRAPHS OF TRAJECTORIES IN THE (P, ¢)- PLANE

With the aid of the results of the previous sections we
can now have a general picture of the projection of geodesic

trajectories of particles on the (p, ¢)- plane. From expression

(5.10) it follows that 1.

cos(¢m¢0) = +1 (6.1)
for o = pmax,min (cf. (3.5)). More specifically
if vy > 0: cos(¢-9,) = +1 for Prax, min (6.2)

if vy < o0: cos(¢-¢,) = +1 for o (6.3)

Cos(¢-¢0) = -1 for O min

By the other hand, expression (2.7a) defines the value

V2
p(b___z—

Y (6.4)



i = " = . It re
and that ¢|p=p¢ 0. We also note that ¢ > 0 at o Pmax e
sults
i : . 6.5
if vy > 0: pm1n < p¢ < pmax ( )
if y < 0: Pnin < Pmax (6.6)
é > 0 always
if vy = 0: Poin = 0 (6.7)
_n2
e . = 1-8
max 1+82
/ 2
We remind once more that for y = /2 +2 1+B (the 1lower
limit of y wvalues) we have "circular” orbits with
/ 2
p = vZ - / 148 . The graphs of Fig.2 are illustrative.
2/1+R7%

Pig. 2a: Yy > O Pig. 2b: Yy < O
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Fig. 2c: Y =0

FIGURE 2: Graphs of geodesic trajec

tories in (p,$)—-plane

As v becomes large

2 /1-82 v (6.8)

p - p . -
max min 1482
and
/ n2
%(p +p0_._) > /2y , o > _ité_ (6.9)
max ~min 1+g2 2
In other words, as y =+ « the angle goes to zero and the

ellipse of Fig. 2a is located at an infinite distance from the
origin (cf.(6.9)). From (6.8) we have to distinguish three cases:

(i) for fixed g%, as y » » the ellipse is stretched infinite

ly along the direction ¢ = ¢, ;(ii) if vy increases as 7;%ﬁ§5
for B2 -+ 1 , the ellipse is stretched along the direction
¢ = ¢, in an interval of length kg (iii) if y increases as

1 for B> + 1 , where k > 1 | the ellipse reduces to
(1-p2)K/2

a point at an infinite ddstance of r=0 along the(ﬁrecthn1¢=¢d
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We depict several curves for increasing Y , in Fig. 3. We

remark that the trajectories have all the same counter clock-

wise direction.

(a) Y increasing with B? fixed. The
ellipse is stretched infinitely

along ¢ = ¢0

k

. . 0

(b) Large Y increasing as Werak
for R2+1. The ellipse stretch

ed in an interval k0 along ¢=9¢,

. . 1
(c) Large Y increasing aSEI:E;;E7§’
for 82+1, where k>1. The el-

lipse reduces to a point along

$ = 9,

FIGURE 3: Graphs of the (p,p)-trajectories for increasing Y

VIT HOMOGENEITY IN SPACE-TIME

- TRAVEL BACK IN TIME

From the above picture we can now make a comment about the

homogeneity properties of free motion in GYdel's universe. It

is suggestive that the structure of curves that occurs around

r=0 1is reproduced at any point r# 0, up to a suitable defor-

mation which comes from the r-dependence of the metric coeffi-

cients. In other words, the structure of geodesics about the

origin 0 1is topologically equivalent to the structure about any

other point 0'. Indeed we now know that the properties of the
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curves depend basically on the value of the angular-momentum
parameter y of the trajectory, relative to the origin r=20

and in principle it is always possible to find a new parame-
ter Y ' — connected to the origin 0' of a new coordinate
system — such that one set of the old elliptic curves can
be circular orbits around the new origin and vice-versa. In
this way, the structure of the potentials of Fgs la, b and
c as well the structure of curves of Figs. 2a, b and c about
the origin r = 0 are reproduced for each observer taken as de-
fining the new origin 0' of the coordinate system (see Fig.3)

This observer (located at the origin r=0 of a given coordi-

nate system) will nevertheless be constrained to see only
the portion of the universe inside the cylinder r = T, be-
cause all geodesics whichcan reach r=0 are confined in-

side the cylinder r= L
Beyond p = DC=,1 (that is, r= rc) it occurs the fact that
the time coordinate t runs backwards. This can be seen from

the expression (2.7b),

t=A VZy+1) - p (2.7b)
0 p+l

that defines the value of o

Dt=/2_Y+l (7.1)

for which t=0. kr p>p, we see from (2.7b) that t decreases.
From (7.1) and the allowable range of y (cf.(3.9)) we can

verify that for Y <y <0, 0 < . The first

min



root of the equation Pmax = Pt occurs for (Y= 0,B%=0). The

diagrams of Fig.4 are illustrative of the properties of the
N

curves for several y , with respect to Pe and Pe

B ( p :
l/ ﬂ\ Pe 1/, Kma%
I

. \ \ /
' 2 \
. ,\p S e =0, <P,
S c \ mirny /
=1 /
o _
_V/2-/1+8% -
Y = Ynin c1rc
2/1+B ‘
//‘ —-\\\ .
//
// _ - T .-
Ve N .
// ‘ \ \
\ r/ ~t LA
\ / / I, r \
I . o AR ‘ .
) T 1 ¥ T T —>
/ \\ |‘ \ ’I / '
\ \ mi ~4 , 1
. >p ; /
\ Pe”R y
/\pt-pc-]_ \ p\\s‘ ‘,, //
~ max i //
~ P4
\\‘ ’,/
-
y =0 = g? Yy >0

FIGURE 4: Graphs of the trajectories in the (p,¢)-plane for
several values of Y, with respect to Pe (G8del's
critical radius P = sinh?r = 1) and pt(for values

of p beyond p_ the time~coordinate t decreases).
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VIII CONCLUSIONS

Although the study of geodesics in G8del's universe has
been undertaken more than twenty years ago by by Kundt, and
Chandrasekhar and Wright[?’sj, the complete physical features
of geodesic motion in this geometry remained somewhat obscure,
possibly related to the choice of the coordinate system used
by these authors to integrate the geodesic equations. In the
past twenty years, there seemed to be a general inability to

recognize that the direct use of cylindrical coordinates al-

lows a deeper insight into the properties of geodesics and
that in this coordinate system we are able to use in a very

powerful way the method of the Effective Potential. Also in

this coordinate system (t,r,¢,z) the first integrals of motion
(velocity compenent along the z-axis, energy, and angular-mo-
mentum with respect to the origin r=0) provide a simpler and
more physical parametrization of the equations of motion. The

Effective Potential is completely characterized by this set

of physical constants of motion, and its form is highly stable
under variation of these parameters. In particular the ratio
y of the angular-momentum with respect to the origin to the
energy of the orbit allows us to distinguish three families

of geodesics, whether respectively +v>0, y=0 and vy<O0. The

negative range of y is limited, the lower bound corresponding

to the family of circular orbits in the (r,¢)-plane. The im-

portant property of confinement of geodesics is produced by

Gddel's geometry: from the graphs of the potential we obviously
see (cf. Fig.l) that all geodesics for y<0 are confined inside

the cylinder r=r, about the origin, where r. is Godel's crit



ical radiusl-lj. The only geodesics which can reach the lim-
iting wall rﬁrc are photon trajectories with zero velocity

along the z-axis. This confinement is independet of the energy

of the particles. Inother words an ensemble of particles with
v<0 is always confined inside the cylinder with radius r. a-
bout the origin r=0, for any distribution of the particles

energy.

The above results are obtained directly from the explicit
expression of the Effective Potential. From further investiga
tion of geodesic equations we show that, expect for one lim
iting case, all trajectories are closed curves in the (r,¢)-
plane. For vy<0, the origin r=0 is contained inside the curve,
for y>0 the origin is outside and only for: y=0 the curve
passes through the origin. All trajectories have the same
counterclockwise direction about any point contained inside
the curve in the (r,¢)-plane. In this sense we say that all
trajectories co-rotate with the matter content of the model.
For large values of y (y»«) the trajectories are located at
an infinite distance from the origin r=0 and their behaviour
at infinity depends on the asymptotic behaviour of y(cf.Fig3)
with respect to the ratio (p; + e/a?)/p} .

The structure of the curves about the origin of the coor
dinate system 1is reproduced about any point 0', up to a situa
ble deformation, that is, the structure of geodesics about the
origin 0 1is topologically equivalent to the structure about any other
point 0'. The latter could be described in the same way
by a new parameter Yy' associated to the angular momentum of
the orbits about 0', as should be expected from the homoge -

neity of the space-time.



The fact that the time coordinate t decreases occurs on
ly beyond r=T_, along geodesics wiht y>0. This does not repre

sent a direct violation of causality with geodesics.

We now use the confinement property of Gddel's geometry

to discuss the construction of an idealized gravitational con-

tainer. As we have mentioned earlier the topology of G5ddel's
manifold is H3®xR, with the z-coordinate defined on the real
line R. We are then free to identify certain point sets in R,
changing the topology into H®xS' and generating a new univer-
se locally isometric to Gddel's cosmosl:gj. The surface r=r_
is then transformed into the compact surface of a torus and
all trajectories of y<0 particles are contained in the interior
of this torus surface, for any distribution of eneryg of the
particles. This ensemble of particles constitute a structure
whose gravitational stability is garanteed by the inexistence
of singularities in the interior of the surface r=r_. No other
gravitational field seems to produce this type of stable struc
ture. We can then speculate if in the actual universe gravitation
could produce, through inhomogeneous matter rotation, a sample
of these idealized containers hiding in its interior an unex-

pected source of energy.
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APPENDIX
For completeness and future reference we give here the
relation between our constants of motion and the constants
which appear in Ref.[3].
Expression {46) of Ref.[3],
2
1+e2c1(coszo + 2sin?o0)? + L%:ll~ sin? 20
o
cosh2r = c :
2e"1(cos’®0 + a sin?® o)
can be simplified to
cosh2r = Q + P cos 20 (A1)
where
- 1—& C _ -C (o4
P = (T) (e 1 e ]'/ ) (AZ)
qQ = (120‘> €1 4 e V) (A3)
- (8]
Introducing a new parameter x such that
a = e X (A4)
P and Q can be expressed
P = sinhx/2 sinh(c1 - X/Z) (A5)
Q = coshx/2 cosh(c, - X/Z) (A6)

With respect to our constants of motion, the parameter

is
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given by
= A, 1487 (s-s) (A7)
for our choice of the origin $=5, corresponding to p = Pmax

(cf. (5.4)).
Now comparing (5.4) with (Al), and using expressions (A5)

- (A7) we obtain the desired relations

2
sinhzx/2 - 1-8 , coshzx/2 - 2 (A8)
1+p2 1+B*?

2 2 2
sinh? (c,-x/,) = L2 = QB | eoqhe (o) - y/,) = L2L2 Y20 (a9
Pz 1482 2 1+82
We note that for v = Yoin (cf. (3.9)), coshz(c1 - x/2) = 1.

Also from our expressions (5.4), (5.6) and (5.10) we ob-
tain straightforwardly equation (45) of Ref.[2]. In fact expres
ing (5.4) as p = Q'+P' cos 20 and using the result of Ref.[7],

we can rewrite (5.10) as

(=)’

2
2Vp(p+1) cos(¢-¢ ) = -V P (o+1) 1 ZZ> (
+

1+82

and it follows then

4 p(p+l) sin®(¢-¢,) = 1- ) [ <E;QL)2 } (1 B> ) sin? 2o

1+B2 p! 1+82

or

p(p+1) sin 20

/‘1‘82
1+R2

which, using the relation (A8), reproduces equation (45) of Ref.

KIp
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