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1. INTRODUCTION

Feynman's path integra] formalism is a very powerful and
intuitive quantization technique. When this procedure is
extended to Riemannian manifolds, the mixing in the Hamiltoman
of functions of coordinates and momenta introduces difficulties
and ambiguities, the ordering of the operators that provides
the transition from classical to quantum mechanics being the
basic problem one has to face.

If it is assumed that the system should be invariant
under point transformations it is easy to verify that writing
the Hamiltoman in a clearly Hermitian form is not enough. The
second order differential operators must be an invariant operator
in a Riemann space as

b= g /2% gt/2 goB 3 (1.1)

where g is the determinant associated to the metric tensor,
The operator is not obtained trivially from the classical
HamiTltonian (1),

One could now identify
H=—'—— A (]‘2)

but this proposa] is not satisfactory, as soon as one imposes
more requirements to be satisfied by the Hamiltonian operator.
It leads, nevertheless, to an invariant ground state(a constant)

and seems to take into account all Kinematic effects.



For example, one expects that a Green's function can be
defined for such systems. The Green's function or propagator
approach, as a method of quantization, has been discussed by
Pauh'o2

The finite-time Green's function is defined . .according
to Pauli, as a path integral over elementary semi-classical
propagators, elementary meaning that they correspond to very
small times &t+0. The elementary propagators, in this sence,
have been proposed by Van V1eck3, using as a guide the
correspondence principle. Most quantum-mechanical systems
obey Pauli's hypothesis, the functional integral over the
elementary propagators satisfying the Schroedinger equation
and the initial condition, namelly it is a 8- function in the
coordinates for §t-0.

This procedure is a method of quantization because it
defines a differential operator which is the quantum- mechanical
analog of the classical Hamiltonian.

Assuming that the invariant second order differental
operator A exausts the Hamiltonian, Pauli's quantization procedure
is contradictory, unless the classical action is supplemented
by an additional term, a quantum-mechanical potential proportional
to the fully contracted Riemann curvature tensor, R(q).If this
term is not included in the Lagrangean it turns out that ,
consistently, an extra term appears in the Hamiltonian operator

4

for the system, as shown by De Witt', in the form of a quantum

mechanical potential

H=HK+WR (].3)



Notice that H cannot be obtained from H|< by any reordering
of the operators.

Cheng5, using the definition of propagator strickly in
Feyman's sense, i.e., without Van Vleck's preexponential factor,
obtained a quantization where the potential function is twice
that shown in eq.(1.3).

This proposal also violates, already in terms of order'R
the criterium based in Van Vleck's arguments.

One argument that favours De Witt's work is that the
Hamiltonian proposed is invariant under conformal Uﬁnsﬂnmaﬁond
It also obeys the correspondence principle without the necessity
of any modification of the classical Lagrangean.

In the present work we define a quantization procedure
which has the merit of being fully canonically invariant.It is

6,7 for Hamiltonian

based on the theory of Faddeev-Fradkin
constrained systems and Teads exactly to De Witt's proposal.

The quantization of a particle moving in a Riemannian
manifold of dimension n is obtained by first embeding this
manifold in a larger Euclidean space of dimension n + m. The
quantization is performed, subject to m constraints, reducing
the system to the original space.This procedure is not equivalent
to the introduction of very strong potentials associated to
the forbiden directions that eventually go to infinite, since
the divergent zero point energies associated with the collapse
the m extra degrees of freedom, which introduce ambiguities ,
never appear.

In the first part of this work the treatment of the

constraints is performed using Dirac's theory for degenerate



Lagrangeanss.

In the second part Faddeev-Fradkin quantization is proposed
for the constrained system. An elementary propagator, canonically
invariant, is obtained for the system as a phase integration.
In the spirit of Pauli's procedure the integration over the
momenta is performed, in the semi-classical approximation.

This means that we follow for every interval the classical
geodesical trajectory connecting the initial to the final
point. The Hamiltonian we start wich is the classical one.

The result is shown to agree with De Witt's quantization
for curved spaces.

If the manifold is compact, additional complications are
introduced in the problem., The propagator in this case mustbe
constructed taking into account the various classical trajectories
leading to equivalent points, added with appropriate relative
phases. This possibility is not discussed in this work, the

the reader being refered to Marinov's work, ref.(1).

2, THE CLASSICAL CONSTRAINED HAMILTONIAN

Assume a particle of unitary mass moving in a Euclidean
space of dimension n + m. The Lagrangean is writen as (summation

over repeated indeces is assumed),
cied

L= 3, i=1,2, ...n+n (2.1)

Let us impose m orthogonal constraints



q)J (a)=0, j=1y2, coom, (2.2)
i 297 20" i .
with |ved| # 0 and — =5 = | VoY | aijm sum over j)  (2.3)
3g 99

The Lagrangean now becomes
L =-l-kd1 di+ 5 ¢j , i=1,2, ...n+my, j=1,2,...
(2.4)
Here o are the usual Lagrange multipliers, to be taken
as a new dynamical variables. We have constructed a (n + 2m )
dimension coordinate space. Since &j are absent from the
Lagrangean, the momenta Bj, canonically conjugated to o. must

J
vanish identically.

gd = 8L =0, 5=1,2, ... (2.5)

Let us construct the Dirac Hamiltonian of such system;
Writing
1

= - J o J

The particle moves, now in a 2n + 4m phases space.

We must impose that szo. This means that all time
derivatives of Bj must vanish, generating new sets of constraints
and finally, reducing the system to a 2n dimensional phase space.
AT1 constraints we shall be dealing with are sécond class 1in
the sense of Dirac, and every second class constraint reduces
the phase space in one dimension. A second class constraint x

means that {x,HD} Z 0, the curly brackets meaning Poisson



brackets.

The constraint equation are, j = 1, 2, ... m,

X\] = BJ = 0
XJ+m {BJs HD} = BJ = ch = o
: J
J+2m_ g ¢ Py = 0
9q
. j k 2
J+3m J { 3¢ 3¢ 3°¢ } -0
X =BY = x — o, + P. P =
8q1 8q1 k aqjaqE i "k
. J k 2., J
j+4m j d 3¢ 3¢ 3¢
X = B = p. T T o + T p2 pk +
' aq’ <8q 2" X ag" ¥
2 2, k J
v 20, 20 B L p oy 2 2 -0 (2.7)
9g 39 39 5q 3q
56K a9 i 2
Since, by hypothesis, Det — — J° Det|Vv¢Y |~ # 0
aq aq

the last set of equation can be" solved “for My

Jj+3m

The equations y = 0 can, similarly, be solved for a

5
This eliminates 2m dimensions associated to the conjugated
variables oy and Bj. We are left with a 2m + 2n dimensional
phase space.

This is the essence of Dirac's method: The reduction of
dimensionality of the system through the constraint equations.

We are still Teft with 2m second class constraints Xm+J

2m+j

and y This must reduce futher the dimensionality of the

space. To accomplish this reduction in a more transparent way

we perform a canonical transformation generated by

Fo = £ P, (2.8)

Where f' are functions of the old coordinates and P, are the



new momenta.

We define f1 as follows:

fi(E) = Qi(a) i=1,2, ... n , are the coordinates
defined on the initial n-dimensional manifold and

fi(E) = ¢1'”(6) s 1 =n+ 1, ...n+m, are the m
constraints.

The old momenta are given by

oF J
9q aq
8¢k
Multiplying Eq.(2.9) by ~= , form+ n > j>n+ 1 we
9q
may solve for Pj’
J
P. = ! afT P; » no sum over i. (2.10)
Io(wed) g
Notice that these are equivalent to the constraint
equations ><2m+J s, J =1, 2, m.
Therefore,
P. =0, =n+1, ... n+ m, (2.11)

The new conditions are, for j =n+ 1, ... n + m ,

F
2 -
e L (2.12)
J
Consequently, P P s Qn+], .o Qn+m can also

n+1% *°° " n+m
be eliminated from HD reduces the system to a 2n-dimensional

phase space as required.

No zero point energy is to be associated with the m



constraints since these degrees of freedom have been excluded
from Hamiltonian, definitely.
The Hamiltonian is obtained directly as
1

_ ij 1
HD = g v(Q) Pin + —5— G

ke S S

PkPQ,— O(.s (f) - 'US B [
(2.13)

. i Jj
where g1J = —ng —Eif is the contravariant metric tensor
aq " aq

for the manifold, 1<i,j<n, 6k s diagonal, n + 1<f,kn + m and
T<s<m,

3. QUANTIFICATION

In order to obtain the Green's function for the system we

shall adopt Faddeev—Fr‘adk1'n7’8

quantization procedure for
constrained systems.
The elementary propagator is writen 1in phase spaceas the

canonically invariant quantity.

. t+e . .
86 = exp {%— ft [(Pi Q' + g’ o5 = Hp) dt} duy (3.1)

Here d“t is the non-trivial metric

dm S m i n+m dQl dpt'
duy, = T 8 (X )Al/z'rrdoc.t dB% L (3.2)
s=1 j=1 J i=1 ' (21h)

which takes care of all the constraints in the S-functions,and

A/2 = I:Det {x",xs} ]1/2 =, l v b,

(3.3)



Integrating over the appropriate 4m variables in order to

eliminate the &-function we are left with

n e i ar, oy
SGF =1 expj —:h—— [P_iQ - HCI.:[ dt '—"———--—-r-;—* s (3.4)
i=1 t (21h)
where
_ 1 ij ..
HCL = > 9 Pin, T <i,j<n

is the classical Hamiltonian for the particle.

To obtain the propagator in coordinate space we make use
of the semi-classical approximation. This _ means that the
exponential term, which is a functional of Q(&) and P(g) , is
evaluated over the classical trajectories geodesics leaving
Q(t) and reaching Q'(t + €),

In this sense, given Q(t) and Q'(t + €), the classical

value for P(g) is fixed and the integral over dPi sthe initial

t
momenta, is evaluated in the stationary phase aproximation.
This corresponds to a particular canonical transformation, the
dynamical transformation in which the old variable are Q(t) ,

P(t) and the new variables are Q(t) and Q'(t + €).The generator

of this transformation is the classical action S(Q',Q). The
integral over the momenta turns out to be9
86.(Q",0Q) *——ﬁndqi | det —3 ,1/2- L 50,0
R = et ——— exp '
F (2mih)" 3Q' kaqQJ L

Notice that the pre-exponential factor

328 BP%]
BQ'kBQj {: 3Q'k (3.6)

tte




- 10 -

illustrate the change of variable mentioned above.
To compare eq.(3.5) with De Witt's propagator one must
consider the fact that De Witt uses the natural metric4, i.€.,

the wave funtion normalization
[ oy o /5700 "0 = 1 (3.7)
while here, as in Faddeev's proposal,
+ n. _
J wF wF d'Q =1 (3.8)
Therefore,
be(@') = [o 6L (21,0) vp(0) (3.9)

and in De Witt

o (@) = [ 585, (@°20) VAR wy(@) - | ?2n2353%2

52§ 1/2 i 1/ _1/u
det ——T—T exp [:'-h— S(Q|SQ):]9 (Ql) g (Q).
20780 (3.10)

Comparing eq.(3.9) and (3.10) we verify that

1/ $1/4

86¢ (0',0) = ¢" " (0") ¢" ' (Q) 6y, (0'Q) . (3.11)

But for the wave function normalization, the theories are

identical. They have therefore the same physical content.



Making use of the elementary propagator we may calculate
the Schroedinger equation for the particle. The procedure is
very similar to that of ref.(5), the only difference remaining
in the pre-exponential factor (see appendix I),

1/ 2 1/2 701 R. . .. ..
det —25 | S LUI ) |y, A (gr7og)(019-0))
3Q'15QJ € 6

The calculation, long but straigh forward, leads to

- S L ij h?

which is the Schroedinger equation for the particle.

3. CONCLUSION

The quantization of systems moving in Riemannian
manifold 1is performed by first embeding the space into a
larger Euclidean space. The reduction to the original manifold
is performed using Dirac's treatment of degenerate Lagrangean
and Faddeev-Fradkin quantization technique for constranied
Hamiltonian systems.

The integrations over momenta, being performed over
semi-classical trajectories, lead to De Witt's quantizationof
particles moving in curved space.

The conclusion drawn here is that Faddeev's formal
propagator, must be understood as a functional integral over
semi-classical phase space trajectories of the elementary

propagator. To eliminate the momenta over to obtain an



- 12 -

elementary propagator in coordinate space, corresponding to
a time interval e, the momenta are integrated off by means of
the trajectories corresponding to the classical Geodesical

motion between the initial and final points.

APPENDIX

In this appendix we derive the Schrodinger equation from
the elementary propagator proposed in this work.The expansion
is essentially the same as that found in ref.(5).

A wave function at time t + € is related to the wave

function at time t by the propagator

Y(q'',t+e) J <(q'y q', €) w(q',t) vg(q) d"q’ (A.1)

where

"oa' L 1 1 1/2 i " o
k(q''sq'se) = D'/2 explg S(q',q's €)}
(20" Tg(q" )J1/4  [g(q")]1/4 i ’
(A.2)
The action S is the stationary value of
tt+e
[T, ez av (A.3)
t
for
q" = q(t+e), q'= q(t). For a free particle
1 1 gl ‘o
L =594 (alt)) a” a” . (A.4)

The determinant of Van Vleck, D, is given by
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9(a")1'/% [9(a")]"/2 RS, i vy, owd i
p - )l n[ ! [n—%—J—(q"‘-q"ﬂq”-q“)]

€

(A.4)
Here R1.j is the Ricci tensor, connected to R by,

In order to calculate the propagator K we must use the

equations of motion derived from the Lagrangean,

k [ ] .
gk . q® qf (A.6)
o B
and,
. 99 ag 3g
v J 1 mB mo aB ‘o e f
g . g° = - + - g q (A.7)
mj 2 < quc an aqm>

The last equation is obtained from the definition of the

Christ8ffel symbols (and use of (A.6)).

k __/agmu agmB 9948 gkm
..\ 7 + . - X - 5 (A.8)
q q

It is easy to prove that, using the result above, that

ac'l'f<_]Z' g'ij él-i (.]J> =0, (A,Q)

Which exhibits the energy conservation

From (A.9), the action may be calculated directly

s = 4 [éij (q(t+e)) ' (t+e) ] ¢ (A.10)



Moreover, using the expansion of q as

G1(t) = &t (tre) -edd (tre) + == G (tre)s Lo (ALTD)

and (A.6), we obtain

[, -
m.m.aa%,& pal-{ b oA aq” Aq +

S(q",t+e q',t)

1 i J m,n,o, B 1/9 1

+ 7 mn " AgT Aq AQT AqT + Jw.mmmw: o
i o .

+ AgY >% 53 E:g (A.12)
al mn

Where

Expanding /g(q(t)) and v (g,t) about t + e similarly we

obtain for eq.(A.1) after expanding also the exponential term,

. . . J
" _ 1 J K _ 1 K m n
v (q",t+e) = % eXP Zpz 95, 447 4q T e Jjc - AQ” AqT Aq +
. J K
i m n o B
mn) (aB
. ] J o
1 9 m n 2
e dik G F ¥ 2q° 40" 89" Aq” -
9 mn of, mn
g:.. 9 J s S
. —Jk st ad¢ aqt aq™ Aq" aq® aq® + ...
8h% €2 n) Lap

. . N
T@E?m: - Aq? lwlf,_\HTW Aq? %_AWI,._IP.__A+
aq 3gq” 9q —
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[ . J T ...3 32
'w(q',t+e)-q —9%')"' 5 x’AqJ AqK —'-:]"—q%(-"' :[
~ 3q 39%9q

I.d (Aq ,
1+ R AY AqY + . ] (A.13)
L Hv 2I[1'T1 €)

Making use repeatelly of the integral,
o o i ‘ | | d(aql)... d(aq") =
J J exp (s 95, 407 Aq'<> Aq%t 8q%2...nq*2M d(8a) (897)
-a =Q

(2mie)™2 g7 P (ine)™ g%i% g%3oe | gorm-l,0am 4

all possible permutations,

we calculate eq.(A.13) in just order in e, obtained

e O _ -h? Hh2  mn 32y 2 1 d ;= mMn, A
ih < = | - Ry - g B —— - — —(/9 9g) —=
ot 7»12 2 qu 3qn J /g aqm aqn
(A.14)
or finally
A 3 —mn 3y \ . h2R
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